rusefi/firmware/controllers/math/throttle_model.cpp

152 lines
5.4 KiB
C++

#include "pch.h"
#include "throttle_model.h"
#include "fuel_math.h"
#if EFI_ENGINE_CONTROL
static const float pressureRatioCorrectionBins[] = { 0.53125, 0.546875, 0.5625, 0.578125, 0.59375, 0.609375, 0.625, 0.640625, 0.65625, 0.671875, 0.6875, 0.703125, 0.71875, 0.734375, 0.750, 0.765625, 0.78125, 0.796875, 0.8125, 0.828125, 0.84375, 0.859375, 0.875, 0.890625, 0.90625, 0.921875, 0.9375, 0.953125 };
static const float pressureRatioCorrectionValues[] = { 1, 0.9993, 0.998, 0.995, 0.991, 0.986, 0.979, 0.972, 0.963, 0.953, 0.942, 0.930, 0.916, 0.901, 0.884, 0.866, 0.845, 0.824, 0.800, 0.774, 0.745, 0.714, 0.679, 0.642, 0.600, 0.553, 0.449, 0.449 };
static float pressureRatioFlowCorrection(float pr) {
if (pr < 0.531) {
return 1.0;
}
if (pr > 0.95) {
return 0.449f;
}
// float x = pr;
// float x2 = x * x;
// float x3 = x2 * x;
// return -6.9786 * x3 + 11.597 * x2 - 6.7227 * x + 2.3509;
return interpolate2d(pr, pressureRatioCorrectionBins, pressureRatioCorrectionValues);
}
static float flowCorrections(float pressureRatio, float p_up, float iat) {
// PR correction
float prCorrectionFactor = pressureRatioFlowCorrection(pressureRatio);
// Inlet density correction
float tempCorrection = sqrt(273 / (iat + 273));
float pressureCorrection = p_up / 101.325;
float densityCorrection = tempCorrection * pressureCorrection;
return prCorrectionFactor * densityCorrection;
}
float ThrottleModelBase::partThrottleFlow(float tps, float flowCorrection) const {
return effectiveArea(tps) * flowCorrection;
}
float ThrottleModelBase::partThrottleFlow(float tps, float pressureRatio, float p_up, float iat) const {
return partThrottleFlow(tps, flowCorrections(pressureRatio, p_up, iat));
}
class InverseFlowSolver : public NewtonsMethodSolver {
public:
InverseFlowSolver(const ThrottleModelBase* model, float target, float pressureRatio, float p_up, float iat)
: m_model(*model)
, m_flowCorrection(flowCorrections(pressureRatio, p_up, iat))
, m_target(target)
{
}
private:
const ThrottleModelBase& m_model;
const float m_flowCorrection;
const float m_target;
float fx(float x) override {
// Return 0 when the estimate equals the target, positive when estimate too large
return m_model.partThrottleFlow(x, m_flowCorrection) - m_target;
}
float dfx(float x) override {
// The marginal flow per angle (dFlow/dTPS) is not trivially differentiable,
// but it is continuous, so we can use a finite difference approximation over some
// "small" step size (0.1 degree ~= 0 for throttle purposes)
// Too small a step may provoke numerical instability.
return (fx(x + 0.1) - fx(x - 0.1)) / 0.2;
}
};
// Find the throttle position that gives the specified flow
float ThrottleModelBase::throttlePositionForFlow(float flow, float pressureRatio, float p_up, float iat) const {
// What does the bare throttle flow at wide open?
float wideOpenFlow = partThrottleFlow(100, pressureRatio, p_up, iat);
// If the target flow is more than the throttle can flow, return 100% since the throttle
// can't open any further
// If we don't do this, trying to solve using the solver may diverge
if (flow > wideOpenFlow) {
return 100;
}
InverseFlowSolver solver(this, flow, pressureRatio, p_up, iat);
return solver.solve(50, 0.1).value_or(0);
}
float ThrottleModelBase::estimateThrottleFlow(float tip, float tps, float map, float iat) {
// How much flow would the engine pull at 0.95 PR?
// The throttle won't flow much more than this in any scenario, even if the throttle could move more flow.
constexpr float crossoverPr = 0.95f;
float p95Flow = maxEngineFlow(tip * crossoverPr);
// What throttle position gives us that flow at 0.95 PR?
float throttleAngle95Pr = throttlePositionForFlow(p95Flow, crossoverPr, tip, iat);
throttleModelCrossoverAngle = throttleAngle95Pr;
bool useWotModel = tps > throttleAngle95Pr;
throttleUseWotModel = useWotModel;
if (useWotModel) {
// "WOT" model
// Maximum flow if the throttle was removed
float maximumPossibleFlow = maxEngineFlow(tip);
// Linearly interpolate between the P95 point and wide open, where the engine flows its max
return interpolateClamped(throttleAngle95Pr, p95Flow, 100, maximumPossibleFlow, tps);
} else {
float pressureRatio = map / tip;
return partThrottleFlow(tps, pressureRatio, tip, iat);
}
}
expected<float> ThrottleModelBase::estimateThrottleFlow(float map, float tps) {
// Inputs
auto iat = Sensor::get(SensorType::Iat);
// Use TIP sensor
// or use Baro sensor if no TIP
// or use 101.325kPa (std atmosphere) if no Baro
// TODO: have a real TIP sensor
auto tip = Sensor::hasSensor(SensorType::ThrottleInletPressure) ? Sensor::get(SensorType::ThrottleInletPressure) :
Sensor::hasSensor(SensorType::BarometricPressure) ? Sensor::get(SensorType::BarometricPressure) :
SensorResult(101.325f);
if (!tip || !iat) {
return unexpected;
}
return estimateThrottleFlow(tip.Value, tps, map, iat.Value);
}
void ThrottleModelBase::onSlowCallback() {
throttleEstimatedFlow = estimateThrottleFlow(Sensor::getOrZero(SensorType::Map), Sensor::getOrZero(SensorType::Tps1)).value_or(0);
}
float ThrottleModel::effectiveArea(float tps) const {
return interpolate2d(tps, config->throttleEstimateEffectiveAreaBins, config->throttleEstimateEffectiveAreaValues);
}
float ThrottleModel::maxEngineFlow(float map) const {
return getMaxAirflowAtMap(map);
}
#endif // EFI_ENGINE_CONTROL