Merge branch 'v0.8' into identities

This commit is contained in:
Eric Martindale 2014-10-06 15:41:56 -04:00
commit 2216fd3f96
3 changed files with 0 additions and 109 deletions

View File

@ -1,25 +0,0 @@
var Block = require('../lib/block');
var BufferReader = require('../lib/bufferreader');
var BufferWriter = require('../lib/bufferwriter');
//This example will parse the blocks in a block file.
//To use, pipe in a blk*****.dat file. e.g.:
//cat blk00000.dat | node blockreader.js
var head = null;
process.stdin.on('readable', function() {
if (!head) {
head = process.stdin.read(8);
if (!head)
return;
}
var body = process.stdin.read(head.slice(4).readUInt32LE(0));
if (!body)
return;
var blockbuf = BufferWriter().write(head).write(body).concat();
var block = Block().fromBuffer(blockbuf);
console.log(block.toJSON());
head = null;
process.stdin.unshift(process.stdin.read());
});

View File

@ -1,21 +0,0 @@
var ECDSA = require('../lib/ecdsa');
var Keypair = require('../lib/keypair');
var Hash = require('../lib/hash');
//ECDSA is the signature algorithm used in bitcoin
//start with a keypair that you will use for signing
var keypair = Keypair().fromRandom();
//a message to be signed (normally you would have the hash of a transaction)
var messagebuf = new Buffer('This is a message I would like to sign');
//calculate a 32 byte hash for use in ECDSA. one way to do that is sha256.
var hashbuf = Hash.sha256(messagebuf);
var sig = ECDSA.sign(hashbuf, keypair);
//Anyone with the public key can verify
var pubkey = keypair.pubkey;
console.log('Valid signature? ' + ECDSA.verify(hashbuf, sig, pubkey));

View File

@ -1,63 +0,0 @@
var Pubkey = require('../lib/pubkey');
var Address = require('../lib/address');
var Stealthkey = require('../lib/expmt/stealthkey');
var StealthAddress = require('../lib/expmt/stealthaddress');
var StealthMessage = require('../lib/expmt/stealthmessage');
var Keypair = require('../lib/keypair')
//First, the person receiving must make a stealth key.
var sk = Stealthkey().fromRandom();
//It has an associated stealth address.
var sa = StealthAddress().fromStealthkey(sk);
console.log('Stealth address: ' + sa);
//Now make a message.
var messagebuf = new Buffer('Hello there. Only you know this message is to you, and only you know what it says.');
//Encrypt the message with the stealth address.
var encbuf = StealthMessage.encrypt(messagebuf, sa);
console.log('Hex of the encrypted message: ' + encbuf.toString('hex'));
//Note that the first 20 bytes are a pubkeyhash, which may be interpreted as a bitcoin address.
//This address has never been seen before in public.
var address = Address().set({hashbuf: encbuf.slice(0, 20)});
console.log('The randomly generated address the message is to: ' + address);
//And the next 33 bytes are a nonce public key, which the message is "from".
//It has never been seen before in public.
var pubkey = Pubkey().fromDER(encbuf.slice(20, 20 + 33));
console.log('Nonce public key: ' + pubkey);
//The owner of the stealth key can check to see if it is for them.
console.log('Is the message for me? ' + (StealthMessage.isForMe(encbuf, sk) ? "yes" : "no"));
//The owner can decrypt it.
var messagebuf2 = StealthMessage.decrypt(encbuf, sk);
console.log('Decrypted message: ' + messagebuf2.toString());
//If you do not have the payload privkey, you can still use isForMe.
sk.payloadKeypair.privkey = undefined;
console.log('Without payload privkey, is the message for me? ' + (StealthMessage.isForMe(encbuf, sk) ? "yes" : "no"));
//...but not decrypt
try {
StealthMessage.decrypt(encbuf, sk);
} catch (e) {
console.log("...but without the payload privkey, I can't decrypt.");
}