////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2012. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_SET_HPP #define BOOST_CONTAINER_SET_HPP #if defined(_MSC_VER) # pragma once #endif #include #include #include #include #include #include #include #include #include #include #include #ifndef BOOST_CONTAINER_PERFECT_FORWARDING #include #endif namespace boost { namespace container { /// @cond // Forward declarations of operators < and ==, needed for friend declaration. template inline bool operator==(const set& x, const set& y); template inline bool operator<(const set& x, const set& y); /// @endcond //! A set is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of the keys themselves. //! Class set supports bidirectional iterators. //! //! A set satisfies all of the requirements of a container and of a reversible container //! , and of an associative container. A set also provides most operations described in //! for unique keys. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template , class Allocator = std::allocator > #else template #endif class set { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(set) typedef container_detail::rbtree, Compare, Allocator> tree_t; tree_t m_tree; // red-black tree representing set /// @endcond public: ////////////////////////////////////////////// // // types // ////////////////////////////////////////////// typedef Key key_type; typedef Key value_type; typedef Compare key_compare; typedef Compare value_compare; typedef typename ::boost::container::allocator_traits::pointer pointer; typedef typename ::boost::container::allocator_traits::const_pointer const_pointer; typedef typename ::boost::container::allocator_traits::reference reference; typedef typename ::boost::container::allocator_traits::const_reference const_reference; typedef typename ::boost::container::allocator_traits::size_type size_type; typedef typename ::boost::container::allocator_traits::difference_type difference_type; typedef Allocator allocator_type; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator; ////////////////////////////////////////////// // // construct/copy/destroy // ////////////////////////////////////////////// //! Effects: Default constructs an empty set. //! //! Complexity: Constant. set() : m_tree() {} //! Effects: Constructs an empty set using the specified comparison object //! and allocator. //! //! Complexity: Constant. explicit set(const Compare& comp, const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //! Effects: Constructs an empty set using the specified allocator object. //! //! Complexity: Constant. explicit set(const allocator_type& a) : m_tree(a) {} //! Effects: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template set(InputIterator first, InputIterator last, const Compare& comp = Compare(), const allocator_type& a = allocator_type()) : m_tree(true, first, last, comp, a) {} //! Effects: Constructs an empty set using the specified comparison object and //! allocator, and inserts elements from the ordered unique range [first ,last). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate and must be //! unique values. //! //! Complexity: Linear in N. //! //! Note: Non-standard extension. template set( ordered_unique_range_t, InputIterator first, InputIterator last , const Compare& comp = Compare(), const allocator_type& a = allocator_type()) : m_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a set. //! //! Complexity: Linear in x.size(). set(const set& x) : m_tree(x.m_tree) {} //! Effects: Move constructs a set. Constructs *this using x's resources. //! //! Complexity: Constant. //! //! Postcondition: x is emptied. set(BOOST_RV_REF(set) x) : m_tree(boost::move(x.m_tree)) {} //! Effects: Copy constructs a set using the specified allocator. //! //! Complexity: Linear in x.size(). set(const set& x, const allocator_type &a) : m_tree(x.m_tree, a) {} //! Effects: Move constructs a set using the specified allocator. //! Constructs *this using x's resources. //! //! Complexity: Constant if a == x.get_allocator(), linear otherwise. set(BOOST_RV_REF(set) x, const allocator_type &a) : m_tree(boost::move(x.m_tree), a) {} //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). set& operator=(BOOST_COPY_ASSIGN_REF(set) x) { m_tree = x.m_tree; return *this; } //! Effects: this->swap(x.get()). //! //! Complexity: Constant. set& operator=(BOOST_RV_REF(set) x) { m_tree = boost::move(x.m_tree); return *this; } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } //! Effects: Returns a reference to the internal allocator. //! //! Throws: Nothing //! //! Complexity: Constant. //! //! Note: Non-standard extension. const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } //! Effects: Returns a reference to the internal allocator. //! //! Throws: Nothing //! //! Complexity: Constant. //! //! Note: Non-standard extension. stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } ////////////////////////////////////////////// // // capacity // ////////////////////////////////////////////// //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant iterator begin() { return m_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return m_tree.begin(); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return m_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return m_tree.end(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return m_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return m_tree.cbegin(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return m_tree.cend(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return m_tree.crbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return m_tree.crend(); } ////////////////////////////////////////////// // // capacity // ////////////////////////////////////////////// //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_tree.max_size(); } ////////////////////////////////////////////// // // modifiers // ////////////////////////////////////////////// #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object x of type Key constructed with //! std::forward(args)... if and only if there is //! no element in the container with equivalent value. //! and returns the iterator pointing to the //! newly inserted element. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Throws: If memory allocation throws or //! Key's in-place constructor throws. //! //! Complexity: Logarithmic. template std::pair emplace(Args&&... args) { return m_tree.emplace_unique(boost::forward(args)...); } //! Effects: Inserts an object of type Key constructed with //! std::forward(args)... if and only if there is //! no element in the container with equivalent value. //! p is a hint pointing to where the insert //! should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_tree.emplace_hint_unique(hint, boost::forward(args)...); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ std::pair emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_tree.emplace_hint_unique(hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));} \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(const value_type &x); //! Effects: Move constructs a new value from x if and only if there is //! no element in the container with key equivalent to the key of x. //! //! Returns: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. std::pair insert(value_type &&x); #else private: typedef std::pair insert_return_pair; public: BOOST_MOVE_CONVERSION_AWARE_CATCH(insert, value_type, insert_return_pair, this->priv_insert) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, const value_type &x); //! Effects: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent to the key of x. //! //! Complexity: Logarithmic. iterator insert(const_iterator position, value_type &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, value_type, iterator, this->priv_insert, const_iterator, const_iterator) #endif //! Requires: first, last are not iterators into *this. //! //! Effects: inserts each element from the range [first,last) if and only //! if there is no element with key equivalent to the key of that element. //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) template void insert(InputIterator first, InputIterator last) { m_tree.insert_unique(first, last); } //! Effects: Erases the element pointed to by p. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Amortized constant time iterator erase(const_iterator p) { return m_tree.erase(p); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(set& x) { m_tree.swap(x.m_tree); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_tree.clear(); } ////////////////////////////////////////////// // // observers // ////////////////////////////////////////////// //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return m_tree.key_comp(); } ////////////////////////////////////////////// // // set operations // ////////////////////////////////////////////// //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //! Returns: Allocator const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return static_cast(m_tree.find(x) != m_tree.end()); } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //! Returns: Allocator const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //! Returns: Allocator const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return m_tree.equal_range(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template friend bool operator== (const set&, const set&); template friend bool operator< (const set&, const set&); private: template std::pair priv_insert(BOOST_FWD_REF(KeyType) x) { return m_tree.insert_unique(::boost::forward(x)); } template iterator priv_insert(const_iterator p, BOOST_FWD_REF(KeyType) x) { return m_tree.insert_unique(p, ::boost::forward(x)); } /// @endcond }; template inline bool operator==(const set& x, const set& y) { return x.m_tree == y.m_tree; } template inline bool operator<(const set& x, const set& y) { return x.m_tree < y.m_tree; } template inline bool operator!=(const set& x, const set& y) { return !(x == y); } template inline bool operator>(const set& x, const set& y) { return y < x; } template inline bool operator<=(const set& x, const set& y) { return !(y < x); } template inline bool operator>=(const set& x, const set& y) { return !(x < y); } template inline void swap(set& x, set& y) { x.swap(y); } /// @cond } //namespace container { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor_after_move::value && has_trivial_destructor_after_move::value; }; namespace container { // Forward declaration of operators < and ==, needed for friend declaration. template inline bool operator==(const multiset& x, const multiset& y); template inline bool operator<(const multiset& x, const multiset& y); /// @endcond //! A multiset is a kind of associative container that supports equivalent keys //! (possibly contains multiple copies of the same key value) and provides for //! fast retrieval of the keys themselves. Class multiset supports bidirectional iterators. //! //! A multiset satisfies all of the requirements of a container and of a reversible //! container, and of an associative container). multiset also provides most operations //! described for duplicate keys. #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED template , class Allocator = std::allocator > #else template #endif class multiset { /// @cond private: BOOST_COPYABLE_AND_MOVABLE(multiset) typedef container_detail::rbtree, Compare, Allocator> tree_t; tree_t m_tree; // red-black tree representing multiset /// @endcond public: ////////////////////////////////////////////// // // types // ////////////////////////////////////////////// typedef Key key_type; typedef Key value_type; typedef Compare key_compare; typedef Compare value_compare; typedef typename ::boost::container::allocator_traits::pointer pointer; typedef typename ::boost::container::allocator_traits::const_pointer const_pointer; typedef typename ::boost::container::allocator_traits::reference reference; typedef typename ::boost::container::allocator_traits::const_reference const_reference; typedef typename ::boost::container::allocator_traits::size_type size_type; typedef typename ::boost::container::allocator_traits::difference_type difference_type; typedef Allocator allocator_type; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::stored_allocator_type) stored_allocator_type; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::iterator) iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_iterator) const_iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::reverse_iterator) reverse_iterator; typedef typename BOOST_CONTAINER_IMPDEF(tree_t::const_reverse_iterator) const_reverse_iterator; ////////////////////////////////////////////// // // construct/copy/destroy // ////////////////////////////////////////////// //! Effects: Constructs an empty multiset using the specified comparison //! object and allocator. //! //! Complexity: Constant. multiset() : m_tree() {} //! Effects: Constructs an empty multiset using the specified comparison //! object and allocator. //! //! Complexity: Constant. explicit multiset(const Compare& comp, const allocator_type& a = allocator_type()) : m_tree(comp, a) {} //! Effects: Constructs an empty multiset using the specified allocator. //! //! Complexity: Constant. explicit multiset(const allocator_type& a) : m_tree(a) {} //! Effects: Constructs an empty multiset using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //! Complexity: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template multiset(InputIterator first, InputIterator last, const Compare& comp = Compare(), const allocator_type& a = allocator_type()) : m_tree(false, first, last, comp, a) {} //! Effects: Constructs an empty multiset using the specified comparison object and //! allocator, and inserts elements from the ordered range [first ,last ). This function //! is more efficient than the normal range creation for ordered ranges. //! //! Requires: [first ,last) must be ordered according to the predicate. //! //! Complexity: Linear in N. //! //! Note: Non-standard extension. template multiset( ordered_range_t, InputIterator first, InputIterator last , const Compare& comp = Compare() , const allocator_type& a = allocator_type()) : m_tree(ordered_range, first, last, comp, a) {} //! Effects: Copy constructs a multiset. //! //! Complexity: Linear in x.size(). multiset(const multiset& x) : m_tree(x.m_tree) {} //! Effects: Move constructs a multiset. Constructs *this using x's resources. //! //! Complexity: Constant. //! //! Postcondition: x is emptied. multiset(BOOST_RV_REF(multiset) x) : m_tree(boost::move(x.m_tree)) {} //! Effects: Copy constructs a multiset using the specified allocator. //! //! Complexity: Linear in x.size(). multiset(const multiset& x, const allocator_type &a) : m_tree(x.m_tree, a) {} //! Effects: Move constructs a multiset using the specified allocator. //! Constructs *this using x's resources. //! //! Complexity: Constant if a == x.get_allocator(), linear otherwise. //! //! Postcondition: x is emptied. multiset(BOOST_RV_REF(multiset) x, const allocator_type &a) : m_tree(boost::move(x.m_tree), a) {} //! Effects: Makes *this a copy of x. //! //! Complexity: Linear in x.size(). multiset& operator=(BOOST_COPY_ASSIGN_REF(multiset) x) { m_tree = x.m_tree; return *this; } //! Effects: this->swap(x.get()). //! //! Complexity: Constant. multiset& operator=(BOOST_RV_REF(multiset) x) { m_tree = boost::move(x.m_tree); return *this; } //! Effects: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! Complexity: Constant. allocator_type get_allocator() const { return m_tree.get_allocator(); } //! Effects: Returns a reference to the internal allocator. //! //! Throws: Nothing //! //! Complexity: Constant. //! //! Note: Non-standard extension. stored_allocator_type &get_stored_allocator() { return m_tree.get_stored_allocator(); } //! Effects: Returns a reference to the internal allocator. //! //! Throws: Nothing //! //! Complexity: Constant. //! //! Note: Non-standard extension. const stored_allocator_type &get_stored_allocator() const { return m_tree.get_stored_allocator(); } ////////////////////////////////////////////// // // iterators // ////////////////////////////////////////////// //! Effects: Returns an iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator begin() { return m_tree.begin(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator begin() const { return m_tree.begin(); } //! Effects: Returns an iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. iterator end() { return m_tree.end(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator end() const { return m_tree.end(); } //! Effects: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rbegin() { return m_tree.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rbegin() const { return m_tree.rbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. reverse_iterator rend() { return m_tree.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator rend() const { return m_tree.rend(); } //! Effects: Returns a const_iterator to the first element contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cbegin() const { return m_tree.cbegin(); } //! Effects: Returns a const_iterator to the end of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_iterator cend() const { return m_tree.cend(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crbegin() const { return m_tree.crbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! Throws: Nothing. //! //! Complexity: Constant. const_reverse_iterator crend() const { return m_tree.crend(); } ////////////////////////////////////////////// // // capacity // ////////////////////////////////////////////// //! Effects: Returns true if the container contains no elements. //! //! Throws: Nothing. //! //! Complexity: Constant. bool empty() const { return m_tree.empty(); } //! Effects: Returns the number of the elements contained in the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type size() const { return m_tree.size(); } //! Effects: Returns the largest possible size of the container. //! //! Throws: Nothing. //! //! Complexity: Constant. size_type max_size() const { return m_tree.max_size(); } ////////////////////////////////////////////// // // modifiers // ////////////////////////////////////////////// #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts an object of type Key constructed with //! std::forward(args)... and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic. template iterator emplace(Args&&... args) { return m_tree.emplace_equal(boost::forward(args)...); } //! Effects: Inserts an object of type Key constructed with //! std::forward(args)... //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_tree.emplace_hint_equal(hint, boost::forward(args)...); } #else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #define BOOST_PP_LOCAL_MACRO(n) \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); } \ \ BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \ iterator emplace_hint(const_iterator hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \ { return m_tree.emplace_hint_equal(hint \ BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _));} \ //! #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! Complexity: Logarithmic. iterator insert(const value_type &x); //! Effects: Inserts a copy of x in the container. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(value_type &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(insert, value_type, iterator, this->priv_insert) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! Effects: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator p, const value_type &x); //! Effects: Inserts a value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! Returns: An iterator pointing to the element with key equivalent //! to the key of x. //! //! Complexity: Logarithmic in general, but amortized constant if t //! is inserted right before p. iterator insert(const_iterator position, value_type &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, value_type, iterator, this->priv_insert, const_iterator, const_iterator) #endif //! Requires: first, last are not iterators into *this. //! //! Effects: inserts each element from the range [first,last) . //! //! Complexity: At most N log(size()+N) (N is the distance from first to last) template void insert(InputIterator first, InputIterator last) { m_tree.insert_equal(first, last); } //! Effects: Erases the element pointed to by p. //! //! Returns: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! Complexity: Amortized constant time iterator erase(const_iterator p) { return m_tree.erase(p); } //! Effects: Erases all elements in the container with key equivalent to x. //! //! Returns: Returns the number of erased elements. //! //! Complexity: log(size()) + count(k) size_type erase(const key_type& x) { return m_tree.erase(x); } //! Effects: Erases all the elements in the range [first, last). //! //! Returns: Returns last. //! //! Complexity: log(size())+N where N is the distance from first to last. iterator erase(const_iterator first, const_iterator last) { return m_tree.erase(first, last); } //! Effects: Swaps the contents of *this and x. //! //! Throws: Nothing. //! //! Complexity: Constant. void swap(multiset& x) { m_tree.swap(x.m_tree); } //! Effects: erase(a.begin(),a.end()). //! //! Postcondition: size() == 0. //! //! Complexity: linear in size(). void clear() { m_tree.clear(); } ////////////////////////////////////////////// // // observers // ////////////////////////////////////////////// //! Effects: Returns the comparison object out //! of which a was constructed. //! //! Complexity: Constant. key_compare key_comp() const { return m_tree.key_comp(); } //! Effects: Returns an object of value_compare constructed out //! of the comparison object. //! //! Complexity: Constant. value_compare value_comp() const { return m_tree.key_comp(); } ////////////////////////////////////////////// // // set operations // ////////////////////////////////////////////// //! Returns: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. iterator find(const key_type& x) { return m_tree.find(x); } //! Returns: Allocator const iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! Complexity: Logarithmic. const_iterator find(const key_type& x) const { return m_tree.find(x); } //! Returns: The number of elements with key equivalent to x. //! //! Complexity: log(size())+count(k) size_type count(const key_type& x) const { return m_tree.count(x); } //! Returns: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic iterator lower_bound(const key_type& x) { return m_tree.lower_bound(x); } //! Returns: Allocator const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_tree.lower_bound(x); } //! Returns: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! Complexity: Logarithmic iterator upper_bound(const key_type& x) { return m_tree.upper_bound(x); } //! Returns: Allocator const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! Complexity: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_tree.upper_bound(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) { return m_tree.equal_range(x); } //! Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! Complexity: Logarithmic std::pair equal_range(const key_type& x) const { return m_tree.equal_range(x); } /// @cond template friend bool operator== (const multiset&, const multiset&); template friend bool operator< (const multiset&, const multiset&); private: template iterator priv_insert(BOOST_FWD_REF(KeyType) x) { return m_tree.insert_equal(::boost::forward(x)); } template iterator priv_insert(const_iterator p, BOOST_FWD_REF(KeyType) x) { return m_tree.insert_equal(p, ::boost::forward(x)); } /// @endcond }; template inline bool operator==(const multiset& x, const multiset& y) { return x.m_tree == y.m_tree; } template inline bool operator<(const multiset& x, const multiset& y) { return x.m_tree < y.m_tree; } template inline bool operator!=(const multiset& x, const multiset& y) { return !(x == y); } template inline bool operator>(const multiset& x, const multiset& y) { return y < x; } template inline bool operator<=(const multiset& x, const multiset& y) { return !(y < x); } template inline bool operator>=(const multiset& x, const multiset& y) { return !(x < y); } template inline void swap(multiset& x, multiset& y) { x.swap(y); } /// @cond } //namespace container { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template struct has_trivial_destructor_after_move > { static const bool value = has_trivial_destructor_after_move::value && has_trivial_destructor_after_move::value; }; namespace container { /// @endcond }} #include #endif /* BOOST_CONTAINER_SET_HPP */