bitcore-node-zcash/deps/boost/graph/graph_traits.hpp

405 lines
13 KiB
C++

//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_TRAITS_HPP
#define BOOST_GRAPH_TRAITS_HPP
#include <boost/config.hpp>
#include <iterator>
#include <utility> /* Primarily for std::pair */
#include <boost/tuple/tuple.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/not.hpp>
#include <boost/mpl/has_xxx.hpp>
#include <boost/mpl/void.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/iterator/iterator_categories.hpp>
#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/pending/property.hpp>
#include <boost/detail/workaround.hpp>
namespace boost {
namespace detail {
#define BOOST_GRAPH_MEMBER_OR_VOID(name) \
BOOST_MPL_HAS_XXX_TRAIT_DEF(name) \
template <typename T> struct BOOST_JOIN(get_member_, name) {typedef typename T::name type;}; \
template <typename T> struct BOOST_JOIN(get_opt_member_, name): \
boost::mpl::eval_if_c< \
BOOST_JOIN(has_, name)<T>::value, \
BOOST_JOIN(get_member_, name)<T>, \
boost::mpl::identity<void> > \
{};
BOOST_GRAPH_MEMBER_OR_VOID(adjacency_iterator)
BOOST_GRAPH_MEMBER_OR_VOID(out_edge_iterator)
BOOST_GRAPH_MEMBER_OR_VOID(in_edge_iterator)
BOOST_GRAPH_MEMBER_OR_VOID(vertex_iterator)
BOOST_GRAPH_MEMBER_OR_VOID(edge_iterator)
BOOST_GRAPH_MEMBER_OR_VOID(vertices_size_type)
BOOST_GRAPH_MEMBER_OR_VOID(edges_size_type)
BOOST_GRAPH_MEMBER_OR_VOID(degree_size_type)
}
template <typename G>
struct graph_traits {
#define BOOST_GRAPH_PULL_OPT_MEMBER(name) \
typedef typename detail::BOOST_JOIN(get_opt_member_, name)<G>::type name;
typedef typename G::vertex_descriptor vertex_descriptor;
typedef typename G::edge_descriptor edge_descriptor;
BOOST_GRAPH_PULL_OPT_MEMBER(adjacency_iterator)
BOOST_GRAPH_PULL_OPT_MEMBER(out_edge_iterator)
BOOST_GRAPH_PULL_OPT_MEMBER(in_edge_iterator)
BOOST_GRAPH_PULL_OPT_MEMBER(vertex_iterator)
BOOST_GRAPH_PULL_OPT_MEMBER(edge_iterator)
typedef typename G::directed_category directed_category;
typedef typename G::edge_parallel_category edge_parallel_category;
typedef typename G::traversal_category traversal_category;
BOOST_GRAPH_PULL_OPT_MEMBER(vertices_size_type)
BOOST_GRAPH_PULL_OPT_MEMBER(edges_size_type)
BOOST_GRAPH_PULL_OPT_MEMBER(degree_size_type)
#undef BOOST_GRAPH_PULL_OPT_MEMBER
static inline vertex_descriptor null_vertex();
};
template <typename G>
inline typename graph_traits<G>::vertex_descriptor
graph_traits<G>::null_vertex()
{ return G::null_vertex(); }
// directed_category tags
struct directed_tag { };
struct undirected_tag { };
struct bidirectional_tag : public directed_tag { };
namespace detail {
inline bool is_directed(directed_tag) { return true; }
inline bool is_directed(undirected_tag) { return false; }
}
/** Return true if the given graph is directed. */
template <typename Graph>
bool is_directed(const Graph&) {
typedef typename graph_traits<Graph>::directed_category Cat;
return detail::is_directed(Cat());
}
/** Return true if the given graph is undirected. */
template <typename Graph>
bool is_undirected(const Graph& g) {
return !is_directed(g);
}
/** @name Directed/Undirected Graph Traits */
//@{
namespace graph_detail {
template <typename Tag>
struct is_directed_tag
: mpl::bool_<is_convertible<Tag, directed_tag>::value>
{ };
} // namespace graph_detail
template <typename Graph>
struct is_directed_graph
: graph_detail::is_directed_tag<
typename graph_traits<Graph>::directed_category
>
{ };
template <typename Graph>
struct is_undirected_graph
: mpl::not_< is_directed_graph<Graph> >
{ };
//@}
// edge_parallel_category tags
struct allow_parallel_edge_tag { };
struct disallow_parallel_edge_tag { };
namespace detail {
inline bool allows_parallel(allow_parallel_edge_tag) { return true; }
inline bool allows_parallel(disallow_parallel_edge_tag) { return false; }
}
template <typename Graph>
bool allows_parallel_edges(const Graph&) {
typedef typename graph_traits<Graph>::edge_parallel_category Cat;
return detail::allows_parallel(Cat());
}
/** @name Parallel Edges Traits */
//@{
/**
* The is_multigraph metafunction returns true if the graph allows
* parallel edges. Technically, a multigraph is a simple graph that
* allows parallel edges, but since there are no traits for the allowance
* or disallowance of loops, this is a moot point.
*/
template <typename Graph>
struct is_multigraph
: mpl::bool_<
is_same<
typename graph_traits<Graph>::edge_parallel_category,
allow_parallel_edge_tag
>::value
>
{ };
//@}
// traversal_category tags
struct incidence_graph_tag { };
struct adjacency_graph_tag { };
struct bidirectional_graph_tag : virtual incidence_graph_tag { };
struct vertex_list_graph_tag { };
struct edge_list_graph_tag { };
struct adjacency_matrix_tag { };
// Parallel traversal_category tags
struct distributed_graph_tag { };
struct distributed_vertex_list_graph_tag { };
struct distributed_edge_list_graph_tag { };
#define BOOST_GRAPH_SEQUENTIAL_TRAITS_DEFINES_DISTRIBUTED_TAGS // Disable these from external versions of PBGL
/** @name Traversal Category Traits
* These traits classify graph types by their supported methods of
* vertex and edge traversal.
*/
//@{
template <typename Graph>
struct is_incidence_graph
: mpl::bool_<
is_convertible<
typename graph_traits<Graph>::traversal_category,
incidence_graph_tag
>::value
>
{ };
template <typename Graph>
struct is_bidirectional_graph
: mpl::bool_<
is_convertible<
typename graph_traits<Graph>::traversal_category,
bidirectional_graph_tag
>::value
>
{ };
template <typename Graph>
struct is_vertex_list_graph
: mpl::bool_<
is_convertible<
typename graph_traits<Graph>::traversal_category,
vertex_list_graph_tag
>::value
>
{ };
template <typename Graph>
struct is_edge_list_graph
: mpl::bool_<
is_convertible<
typename graph_traits<Graph>::traversal_category,
edge_list_graph_tag
>::value
>
{ };
template <typename Graph>
struct is_adjacency_matrix
: mpl::bool_<
is_convertible<
typename graph_traits<Graph>::traversal_category,
adjacency_matrix_tag
>::value
>
{ };
//@}
/** @name Directed Graph Traits
* These metafunctions are used to fully classify directed vs. undirected
* graphs. Recall that an undirected graph is also bidirectional, but it
* cannot be both undirected and directed at the same time.
*/
//@{
template <typename Graph>
struct is_directed_unidirectional_graph
: mpl::and_<
is_directed_graph<Graph>, mpl::not_< is_bidirectional_graph<Graph> >
>
{ };
template <typename Graph>
struct is_directed_bidirectional_graph
: mpl::and_<
is_directed_graph<Graph>, is_bidirectional_graph<Graph>
>
{ };
//@}
//?? not the right place ?? Lee
typedef boost::forward_traversal_tag multi_pass_input_iterator_tag;
namespace detail {
BOOST_MPL_HAS_XXX_TRAIT_DEF(graph_property_type)
BOOST_MPL_HAS_XXX_TRAIT_DEF(edge_property_type)
BOOST_MPL_HAS_XXX_TRAIT_DEF(vertex_property_type)
template <typename G> struct get_graph_property_type {typedef typename G::graph_property_type type;};
template <typename G> struct get_edge_property_type {typedef typename G::edge_property_type type;};
template <typename G> struct get_vertex_property_type {typedef typename G::vertex_property_type type;};
}
template <typename G>
struct graph_property_type
: boost::mpl::eval_if<detail::has_graph_property_type<G>,
detail::get_graph_property_type<G>,
no_property> {};
template <typename G>
struct edge_property_type
: boost::mpl::eval_if<detail::has_edge_property_type<G>,
detail::get_edge_property_type<G>,
no_property> {};
template <typename G>
struct vertex_property_type
: boost::mpl::eval_if<detail::has_vertex_property_type<G>,
detail::get_vertex_property_type<G>,
no_property> {};
template<typename G>
struct graph_bundle_type {
typedef typename G::graph_bundled type;
};
template<typename G>
struct vertex_bundle_type {
typedef typename G::vertex_bundled type;
};
template<typename G>
struct edge_bundle_type {
typedef typename G::edge_bundled type;
};
namespace graph { namespace detail {
template<typename Graph, typename Descriptor>
class bundled_result {
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename mpl::if_c<(is_same<Descriptor, Vertex>::value),
vertex_bundle_type<Graph>,
edge_bundle_type<Graph> >::type bundler;
public:
typedef typename bundler::type type;
};
template<typename Graph>
class bundled_result<Graph, graph_bundle_t> {
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef graph_bundle_type<Graph> bundler;
public:
typedef typename bundler::type type;
};
} } // namespace graph::detail
namespace graph_detail {
// A helper metafunction for determining whether or not a type is
// bundled.
template <typename T>
struct is_no_bundle : mpl::bool_<is_same<T, no_property>::value>
{ };
} // namespace graph_detail
/** @name Graph Property Traits
* These metafunctions (along with those above), can be used to access the
* vertex and edge properties (bundled or otherwise) of vertices and
* edges.
*/
//@{
template<typename Graph>
struct has_graph_property
: mpl::not_<
typename detail::is_no_property<
typename graph_property_type<Graph>::type
>::type
>::type
{ };
template<typename Graph>
struct has_bundled_graph_property
: mpl::not_<
graph_detail::is_no_bundle<typename graph_bundle_type<Graph>::type>
>
{ };
template <typename Graph>
struct has_vertex_property
: mpl::not_<
typename detail::is_no_property<typename vertex_property_type<Graph>::type>
>::type
{ };
template <typename Graph>
struct has_bundled_vertex_property
: mpl::not_<
graph_detail::is_no_bundle<typename vertex_bundle_type<Graph>::type>
>
{ };
template <typename Graph>
struct has_edge_property
: mpl::not_<
typename detail::is_no_property<typename edge_property_type<Graph>::type>
>::type
{ };
template <typename Graph>
struct has_bundled_edge_property
: mpl::not_<
graph_detail::is_no_bundle<typename edge_bundle_type<Graph>::type>
>
{ };
//@}
} // namespace boost
// Since pair is in namespace std, Koenig lookup will find source and
// target if they are also defined in namespace std. This is illegal,
// but the alternative is to put source and target in the global
// namespace which causes name conflicts with other libraries (like
// SUIF).
namespace std {
/* Some helper functions for dealing with pairs as edges */
template <class T, class G>
T source(pair<T,T> p, const G&) { return p.first; }
template <class T, class G>
T target(pair<T,T> p, const G&) { return p.second; }
}
#if defined(__GNUC__) && defined(__SGI_STL_PORT)
// For some reason g++ with STLport does not see the above definition
// of source() and target() unless we bring them into the boost
// namespace.
namespace boost {
using std::source;
using std::target;
}
#endif
#endif // BOOST_GRAPH_TRAITS_HPP