bitcore-node-zcash/include/boost/align/aligned_allocator.hpp

288 lines
8.3 KiB
C++

/*
Copyright (c) 2014 Glen Joseph Fernandes
glenfe at live dot com
Distributed under the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt
or copy at http://boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_ALIGN_ALIGNED_ALLOCATOR_HPP
#define BOOST_ALIGN_ALIGNED_ALLOCATOR_HPP
/**
Class template aligned_allocator.
@file
@author Glen Fernandes
*/
#include <boost/config.hpp>
#include <boost/static_assert.hpp>
#include <boost/throw_exception.hpp>
#include <boost/align/aligned_alloc.hpp>
#include <boost/align/aligned_allocator_forward.hpp>
#include <boost/align/alignment_of.hpp>
#include <boost/align/detail/addressof.hpp>
#include <boost/align/detail/is_alignment_const.hpp>
#include <boost/align/detail/max_align.hpp>
#include <boost/align/detail/max_count_of.hpp>
#include <new>
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
#include <utility>
#endif
/**
Boost namespace.
*/
namespace boost {
/**
Alignment namespace.
*/
namespace alignment {
/**
Class template aligned_allocator.
@tparam Alignment Is the minimum alignment to specify
for allocations, if it is larger than the alignment
of the value type. It shall be a power of two.
@remark **Note:** Except for the destructor, member
functions of the aligned allocator shall not
introduce data races as a result of concurrent calls
to those member functions from different threads.
Calls to these functions that allocate or deallocate
a particular unit of storage shall occur in a single
total order, and each such deallocation call shall
happen before the next allocation (if any) in this
order.
@note Specifying minimum alignment is generally only
suitable for containers such as vector and undesirable
with other, node-based, containers. For node-based
containers, such as list, the node object would have
the minimum alignment specified instead of the value
type object.
*/
template<class T, std::size_t Alignment>
class aligned_allocator {
/**
@cond
*/
BOOST_STATIC_ASSERT(detail::
is_alignment_const<Alignment>::value);
/**
@endcond
*/
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef void* void_pointer;
typedef const void* const_void_pointer;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T& reference;
typedef const T& const_reference;
private:
enum {
TypeAlign = alignment_of<value_type>::value,
MaxAlign = detail::
max_align<Alignment, TypeAlign>::value
};
public:
/**
Rebind allocator.
*/
template<class U>
struct rebind {
typedef aligned_allocator<U, Alignment> other;
};
#if !defined(BOOST_NO_CXX11_DEFAULTED_FUNCTIONS)
aligned_allocator()
BOOST_NOEXCEPT = default;
#else
aligned_allocator()
BOOST_NOEXCEPT {
}
#endif
template<class U>
aligned_allocator(const aligned_allocator<U,
Alignment>&) BOOST_NOEXCEPT {
}
/**
@return The actual address of the object referenced
by `value`, even in the presence of an overloaded
operator&.
*/
pointer address(reference value) const
BOOST_NOEXCEPT {
return detail::addressof(value);
}
/**
@return The actual address of the object referenced
by `value`, even in the presence of an overloaded
operator&.
*/
const_pointer address(const_reference value) const
BOOST_NOEXCEPT {
return detail::addressof(value);
}
/**
@return A pointer to the initial element of an array
of storage of size `n * sizeof(T)`, aligned on the
maximum of the minimum alignment specified and the
alignment of objects of type `T`.
@remark **Throw:** Throws `std::bad_alloc` if the
storage cannot be obtained.
@remark **Note:** The storage is obtained by calling
`aligned_alloc(std::size_t, std::size_t)`.
*/
pointer allocate(size_type size, const_void_pointer = 0) {
void* p = aligned_alloc(MaxAlign, sizeof(T) * size);
if (!p && size > 0) {
boost::throw_exception(std::bad_alloc());
}
return static_cast<T*>(p);
}
/**
Deallocates the storage referenced by `ptr`.
@param ptr Shall be a pointer value obtained from
`allocate()`.
@remark **Note:** Uses
`alignment::aligned_free(void*)`.
*/
void deallocate(pointer ptr, size_type) {
alignment::aligned_free(ptr);
}
/**
@return The largest value `N` for which the call
`allocate(N)` might succeed.
*/
BOOST_CONSTEXPR size_type max_size() const
BOOST_NOEXCEPT {
return detail::max_count_of<T>::value;
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
/**
Calls global
`new((void*)ptr) U(std::forward<Args>(args)...)`.
*/
template<class U, class... Args>
void construct(U* ptr, Args&&... args) {
void* p = ptr;
::new(p) U(std::forward<Args>(args)...);
}
#else
/**
Calls global
`new((void*)ptr) U(std::forward<V>(value))`.
*/
template<class U, class V>
void construct(U* ptr, V&& value) {
void* p = ptr;
::new(p) U(std::forward<V>(value));
}
#endif
#else
/**
Calls global `new((void*)ptr) U(value)`.
*/
template<class U, class V>
void construct(U* ptr, const V& value) {
void* p = ptr;
::new(p) U(value);
}
#endif
/**
Calls global `new((void*)ptr) U()`.
*/
template<class U>
void construct(U* ptr) {
void* p = ptr;
::new(p) U();
}
/**
Calls `ptr->~U()`.
*/
template<class U>
void destroy(U* ptr) {
(void)ptr;
ptr->~U();
}
};
/**
Class template aligned_allocator
specialization.
*/
template<std::size_t Alignment>
class aligned_allocator<void, Alignment> {
/**
@cond
*/
BOOST_STATIC_ASSERT(detail::
is_alignment_const<Alignment>::value);
/**
@endcond
*/
public:
typedef void value_type;
typedef void* pointer;
typedef const void* const_pointer;
/**
Rebind allocator.
*/
template<class U>
struct rebind {
typedef aligned_allocator<U, Alignment> other;
};
};
/**
@return `true`.
*/
template<class T1, class T2, std::size_t Alignment>
inline bool operator==(const aligned_allocator<T1,
Alignment>&, const aligned_allocator<T2,
Alignment>&) BOOST_NOEXCEPT
{
return true;
}
/**
@return `false`.
*/
template<class T1, class T2, std::size_t Alignment>
inline bool operator!=(const aligned_allocator<T1,
Alignment>&, const aligned_allocator<T2,
Alignment>&) BOOST_NOEXCEPT
{
return false;
}
}
}
#endif