bitcore-node-zcash/include/boost/lexical_cast.hpp

2515 lines
100 KiB
C++

#ifndef BOOST_LEXICAL_CAST_INCLUDED
#define BOOST_LEXICAL_CAST_INCLUDED
// MS compatible compilers support #pragma once
#if defined(_MSC_VER)
# pragma once
#endif
// Boost lexical_cast.hpp header -------------------------------------------//
//
// See http://www.boost.org/libs/conversion for documentation.
// See end of this header for rights and permissions.
//
// what: lexical_cast custom keyword cast
// who: contributed by Kevlin Henney,
// enhanced with contributions from Terje Slettebo,
// with additional fixes and suggestions from Gennaro Prota,
// Beman Dawes, Dave Abrahams, Daryle Walker, Peter Dimov,
// Alexander Nasonov, Antony Polukhin, Justin Viiret, Michael Hofmann,
// Cheng Yang, Matthew Bradbury, David W. Birdsall, Pavel Korzh and other Boosters
// when: November 2000, March 2003, June 2005, June 2006, March 2011 - 2014
#include <boost/config.hpp>
#if defined(BOOST_NO_STRINGSTREAM) || defined(BOOST_NO_STD_WSTRING)
#define BOOST_LCAST_NO_WCHAR_T
#endif
#include <climits>
#include <cstddef>
#include <string>
#include <cstring>
#include <cstdio>
#include <typeinfo>
#include <exception>
#include <boost/limits.hpp>
#include <boost/mpl/if.hpp>
#include <boost/throw_exception.hpp>
#include <boost/type_traits/ice.hpp>
#include <boost/type_traits/is_pointer.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/lcast_precision.hpp>
#include <boost/detail/workaround.hpp>
#ifndef BOOST_NO_STD_LOCALE
# include <locale>
#else
# ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
// Getting error at this point means, that your STL library is old/lame/misconfigured.
// If nothing can be done with STL library, define BOOST_LEXICAL_CAST_ASSUME_C_LOCALE,
// but beware: lexical_cast will understand only 'C' locale delimeters and thousands
// separators.
# error "Unable to use <locale> header. Define BOOST_LEXICAL_CAST_ASSUME_C_LOCALE to force "
# error "boost::lexical_cast to use only 'C' locale during conversions."
# endif
#endif
#ifdef BOOST_NO_STRINGSTREAM
#include <strstream>
#else
#include <sstream>
#endif
#ifdef BOOST_NO_TYPEID
#define BOOST_LCAST_THROW_BAD_CAST(S, T) throw_exception(bad_lexical_cast())
#else
#define BOOST_LCAST_THROW_BAD_CAST(Source, Target) \
throw_exception(bad_lexical_cast(typeid(Source), typeid(Target)))
#endif
namespace boost
{
// exception used to indicate runtime lexical_cast failure
class BOOST_SYMBOL_VISIBLE bad_lexical_cast :
// workaround MSVC bug with std::bad_cast when _HAS_EXCEPTIONS == 0
#if defined(BOOST_MSVC) && defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS
public std::exception
#else
public std::bad_cast
#endif
#if defined(__BORLANDC__) && BOOST_WORKAROUND( __BORLANDC__, < 0x560 )
// under bcc32 5.5.1 bad_cast doesn't derive from exception
, public std::exception
#endif
{
public:
bad_lexical_cast() BOOST_NOEXCEPT
#ifndef BOOST_NO_TYPEID
: source(&typeid(void)), target(&typeid(void))
#endif
{}
virtual const char *what() const BOOST_NOEXCEPT_OR_NOTHROW {
return "bad lexical cast: "
"source type value could not be interpreted as target";
}
virtual ~bad_lexical_cast() BOOST_NOEXCEPT_OR_NOTHROW
{}
#ifndef BOOST_NO_TYPEID
bad_lexical_cast(
const std::type_info &source_type_arg,
const std::type_info &target_type_arg) BOOST_NOEXCEPT
: source(&source_type_arg), target(&target_type_arg)
{}
const std::type_info &source_type() const BOOST_NOEXCEPT {
return *source;
}
const std::type_info &target_type() const BOOST_NOEXCEPT {
return *target;
}
private:
const std::type_info *source;
const std::type_info *target;
#endif
};
namespace detail // widest_char
{
template <typename TargetChar, typename SourceChar>
struct widest_char
{
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
(sizeof(TargetChar) > sizeof(SourceChar))
, TargetChar
, SourceChar >::type type;
};
}
} // namespace boost
#if !defined(__SUNPRO_CC) && !defined(__PGIC__)
#include <cmath>
#include <istream>
#ifndef BOOST_NO_CXX11_HDR_ARRAY
#include <array>
#endif
#include <boost/array.hpp>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/type_traits/make_unsigned.hpp>
#include <boost/type_traits/is_signed.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/type_traits/remove_pointer.hpp>
#include <boost/type_traits/has_left_shift.hpp>
#include <boost/type_traits/has_right_shift.hpp>
#include <boost/math/special_functions/sign.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/range/iterator_range_core.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/integer.hpp>
#include <boost/detail/basic_pointerbuf.hpp>
#include <boost/noncopyable.hpp>
#ifndef BOOST_NO_CWCHAR
# include <cwchar>
#endif
namespace boost {
namespace detail // is_character<...>
{
// returns true, if T is one of the character types
template < typename T >
struct is_character
{
typedef boost::type_traits::ice_or<
boost::is_same< T, char >::value,
#ifndef BOOST_LCAST_NO_WCHAR_T
boost::is_same< T, wchar_t >::value,
#endif
#ifndef BOOST_NO_CXX11_CHAR16_T
boost::is_same< T, char16_t >::value,
#endif
#ifndef BOOST_NO_CXX11_CHAR32_T
boost::is_same< T, char32_t >::value,
#endif
boost::is_same< T, unsigned char >::value,
boost::is_same< T, signed char >::value
> result_type;
BOOST_STATIC_CONSTANT(bool, value = (result_type::value) );
};
}
namespace detail // normalize_single_byte_char<Char>
{
// Converts signed/unsigned char to char
template < class Char >
struct normalize_single_byte_char
{
typedef Char type;
};
template <>
struct normalize_single_byte_char< signed char >
{
typedef char type;
};
template <>
struct normalize_single_byte_char< unsigned char >
{
typedef char type;
};
}
namespace detail // deduce_character_type_later<T>
{
// Helper type, meaning that stram character for T must be deduced
// at Stage 2 (See deduce_source_char<T> and deduce_target_char<T>)
template < class T > struct deduce_character_type_later {};
}
namespace detail // stream_char_common<T>
{
// Selectors to choose stream character type (common for Source and Target)
// Returns one of char, wchar_t, char16_t, char32_t or deduce_character_type_later<T> types
// Executed on Stage 1 (See deduce_source_char<T> and deduce_target_char<T>)
template < typename Type >
struct stream_char_common: public boost::mpl::if_c<
boost::detail::is_character< Type >::value,
Type,
boost::detail::deduce_character_type_later< Type >
> {};
template < typename Char >
struct stream_char_common< Char* >: public boost::mpl::if_c<
boost::detail::is_character< Char >::value,
Char,
boost::detail::deduce_character_type_later< Char* >
> {};
template < typename Char >
struct stream_char_common< const Char* >: public boost::mpl::if_c<
boost::detail::is_character< Char >::value,
Char,
boost::detail::deduce_character_type_later< const Char* >
> {};
template < typename Char >
struct stream_char_common< boost::iterator_range< Char* > >: public boost::mpl::if_c<
boost::detail::is_character< Char >::value,
Char,
boost::detail::deduce_character_type_later< boost::iterator_range< Char* > >
> {};
template < typename Char >
struct stream_char_common< boost::iterator_range< const Char* > >: public boost::mpl::if_c<
boost::detail::is_character< Char >::value,
Char,
boost::detail::deduce_character_type_later< boost::iterator_range< const Char* > >
> {};
template < class Char, class Traits, class Alloc >
struct stream_char_common< std::basic_string< Char, Traits, Alloc > >
{
typedef Char type;
};
template < class Char, class Traits, class Alloc >
struct stream_char_common< boost::container::basic_string< Char, Traits, Alloc > >
{
typedef Char type;
};
template < typename Char, std::size_t N >
struct stream_char_common< boost::array< Char, N > >: public boost::mpl::if_c<
boost::detail::is_character< Char >::value,
Char,
boost::detail::deduce_character_type_later< boost::array< Char, N > >
> {};
template < typename Char, std::size_t N >
struct stream_char_common< boost::array< const Char, N > >: public boost::mpl::if_c<
boost::detail::is_character< Char >::value,
Char,
boost::detail::deduce_character_type_later< boost::array< const Char, N > >
> {};
#ifndef BOOST_NO_CXX11_HDR_ARRAY
template < typename Char, std::size_t N >
struct stream_char_common< std::array<Char, N > >: public boost::mpl::if_c<
boost::detail::is_character< Char >::value,
Char,
boost::detail::deduce_character_type_later< std::array< Char, N > >
> {};
template < typename Char, std::size_t N >
struct stream_char_common< std::array< const Char, N > >: public boost::mpl::if_c<
boost::detail::is_character< Char >::value,
Char,
boost::detail::deduce_character_type_later< std::array< const Char, N > >
> {};
#endif
#ifdef BOOST_HAS_INT128
template <> struct stream_char_common< boost::int128_type >: public boost::mpl::identity< char > {};
template <> struct stream_char_common< boost::uint128_type >: public boost::mpl::identity< char > {};
#endif
#if !defined(BOOST_LCAST_NO_WCHAR_T) && defined(BOOST_NO_INTRINSIC_WCHAR_T)
template <>
struct stream_char_common< wchar_t >
{
typedef char type;
};
#endif
}
namespace detail // deduce_source_char_impl<T>
{
// If type T is `deduce_character_type_later` type, then tries to deduce
// character type using boost::has_left_shift<T> metafunction.
// Otherwise supplied type T is a character type, that must be normalized
// using normalize_single_byte_char<Char>.
// Executed at Stage 2 (See deduce_source_char<T> and deduce_target_char<T>)
template < class Char >
struct deduce_source_char_impl
{
typedef BOOST_DEDUCED_TYPENAME boost::detail::normalize_single_byte_char< Char >::type type;
};
template < class T >
struct deduce_source_char_impl< deduce_character_type_later< T > >
{
typedef boost::has_left_shift< std::basic_ostream< char >, T > result_t;
#if defined(BOOST_LCAST_NO_WCHAR_T)
BOOST_STATIC_ASSERT_MSG((result_t::value),
"Source type is not std::ostream`able and std::wostream`s are not supported by your STL implementation");
typedef char type;
#else
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
result_t::value, char, wchar_t
>::type type;
BOOST_STATIC_ASSERT_MSG((result_t::value || boost::has_left_shift< std::basic_ostream< type >, T >::value),
"Source type is neither std::ostream`able nor std::wostream`able");
#endif
};
}
namespace detail // deduce_target_char_impl<T>
{
// If type T is `deduce_character_type_later` type, then tries to deduce
// character type using boost::has_right_shift<T> metafunction.
// Otherwise supplied type T is a character type, that must be normalized
// using normalize_single_byte_char<Char>.
// Executed at Stage 2 (See deduce_source_char<T> and deduce_target_char<T>)
template < class Char >
struct deduce_target_char_impl
{
typedef BOOST_DEDUCED_TYPENAME normalize_single_byte_char< Char >::type type;
};
template < class T >
struct deduce_target_char_impl< deduce_character_type_later<T> >
{
typedef boost::has_right_shift<std::basic_istream<char>, T > result_t;
#if defined(BOOST_LCAST_NO_WCHAR_T)
BOOST_STATIC_ASSERT_MSG((result_t::value),
"Target type is not std::istream`able and std::wistream`s are not supported by your STL implementation");
typedef char type;
#else
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
result_t::value, char, wchar_t
>::type type;
BOOST_STATIC_ASSERT_MSG((result_t::value || boost::has_right_shift<std::basic_istream<wchar_t>, T >::value),
"Target type is neither std::istream`able nor std::wistream`able");
#endif
};
}
namespace detail // deduce_target_char<T> and deduce_source_char<T>
{
// We deduce stream character types in two stages.
//
// Stage 1 is common for Target and Source. At Stage 1 we get
// non normalized character type (may contain unsigned/signed char)
// or deduce_character_type_later<T> where T is the original type.
// Stage 1 is executed by stream_char_common<T>
//
// At Stage 2 we normalize character types or try to deduce character
// type using metafunctions.
// Stage 2 is executed by deduce_target_char_impl<T> and
// deduce_source_char_impl<T>
//
// deduce_target_char<T> and deduce_source_char<T> functions combine
// both stages
template < class T >
struct deduce_target_char
{
typedef BOOST_DEDUCED_TYPENAME stream_char_common< T >::type stage1_type;
typedef BOOST_DEDUCED_TYPENAME deduce_target_char_impl< stage1_type >::type stage2_type;
typedef stage2_type type;
};
template < class T >
struct deduce_source_char
{
typedef BOOST_DEDUCED_TYPENAME stream_char_common< T >::type stage1_type;
typedef BOOST_DEDUCED_TYPENAME deduce_source_char_impl< stage1_type >::type stage2_type;
typedef stage2_type type;
};
}
namespace detail // extract_char_traits template
{
// We are attempting to get char_traits<> from T
// template parameter. Otherwise we'll be using std::char_traits<Char>
template < class Char, class T >
struct extract_char_traits
: boost::false_type
{
typedef std::char_traits< Char > trait_t;
};
template < class Char, class Traits, class Alloc >
struct extract_char_traits< Char, std::basic_string< Char, Traits, Alloc > >
: boost::true_type
{
typedef Traits trait_t;
};
template < class Char, class Traits, class Alloc>
struct extract_char_traits< Char, boost::container::basic_string< Char, Traits, Alloc > >
: boost::true_type
{
typedef Traits trait_t;
};
}
namespace detail // array_to_pointer_decay<T>
{
template<class T>
struct array_to_pointer_decay
{
typedef T type;
};
template<class T, std::size_t N>
struct array_to_pointer_decay<T[N]>
{
typedef const T * type;
};
}
namespace detail // is_this_float_conversion_optimized<Float, Char>
{
// this metafunction evaluates to true, if we have optimized comnversion
// from Float type to Char array.
// Must be in sync with lexical_stream_limited_src<Char, ...>::shl_real_type(...)
template <typename Float, typename Char>
struct is_this_float_conversion_optimized
{
typedef boost::type_traits::ice_and<
boost::is_float<Float>::value,
#if !defined(BOOST_LCAST_NO_WCHAR_T) && !defined(BOOST_NO_SWPRINTF) && !defined(__MINGW32__)
boost::type_traits::ice_or<
boost::type_traits::ice_eq<sizeof(Char), sizeof(char) >::value,
boost::is_same<Char, wchar_t>::value
>::value
#else
boost::type_traits::ice_eq<sizeof(Char), sizeof(char) >::value
#endif
> result_type;
BOOST_STATIC_CONSTANT(bool, value = (result_type::value) );
};
}
namespace detail // lcast_src_length
{
// Return max. length of string representation of Source;
template< class Source, // Source type of lexical_cast.
class Enable = void // helper type
>
struct lcast_src_length
{
BOOST_STATIC_CONSTANT(std::size_t, value = 1);
};
// Helper for integral types.
// Notes on length calculation:
// Max length for 32bit int with grouping "\1" and thousands_sep ',':
// "-2,1,4,7,4,8,3,6,4,7"
// ^ - is_signed
// ^ - 1 digit not counted by digits10
// ^^^^^^^^^^^^^^^^^^ - digits10 * 2
//
// Constant is_specialized is used instead of constant 1
// to prevent buffer overflow in a rare case when
// <boost/limits.hpp> doesn't add missing specialization for
// numeric_limits<T> for some integral type T.
// When is_specialized is false, the whole expression is 0.
template <class Source>
struct lcast_src_length<
Source, BOOST_DEDUCED_TYPENAME boost::enable_if<boost::is_integral<Source> >::type
>
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_CONSTANT(std::size_t, value =
std::numeric_limits<Source>::is_signed +
std::numeric_limits<Source>::is_specialized + /* == 1 */
std::numeric_limits<Source>::digits10 * 2
);
#else
BOOST_STATIC_CONSTANT(std::size_t, value = 156);
BOOST_STATIC_ASSERT(sizeof(Source) * CHAR_BIT <= 256);
#endif
};
#ifndef BOOST_LCAST_NO_COMPILE_TIME_PRECISION
// Helper for floating point types.
// -1.23456789e-123456
// ^ sign
// ^ leading digit
// ^ decimal point
// ^^^^^^^^ lcast_precision<Source>::value
// ^ "e"
// ^ exponent sign
// ^^^^^^ exponent (assumed 6 or less digits)
// sign + leading digit + decimal point + "e" + exponent sign == 5
template<class Source>
struct lcast_src_length<
Source, BOOST_DEDUCED_TYPENAME boost::enable_if<boost::is_float<Source> >::type
>
{
BOOST_STATIC_ASSERT(
std::numeric_limits<Source>::max_exponent10 <= 999999L &&
std::numeric_limits<Source>::min_exponent10 >= -999999L
);
BOOST_STATIC_CONSTANT(std::size_t, value =
5 + lcast_precision<Source>::value + 6
);
};
#endif // #ifndef BOOST_LCAST_NO_COMPILE_TIME_PRECISION
}
namespace detail // lexical_cast_stream_traits<Source, Target>
{
template <class Source, class Target>
struct lexical_cast_stream_traits {
typedef BOOST_DEDUCED_TYPENAME boost::detail::array_to_pointer_decay<Source>::type src;
typedef BOOST_DEDUCED_TYPENAME boost::remove_cv<src>::type no_cv_src;
typedef boost::detail::deduce_source_char<no_cv_src> deduce_src_char_metafunc;
typedef BOOST_DEDUCED_TYPENAME deduce_src_char_metafunc::type src_char_t;
typedef BOOST_DEDUCED_TYPENAME boost::detail::deduce_target_char<Target>::type target_char_t;
typedef BOOST_DEDUCED_TYPENAME boost::detail::widest_char<
target_char_t, src_char_t
>::type char_type;
#if !defined(BOOST_NO_CXX11_CHAR16_T) && defined(BOOST_NO_CXX11_UNICODE_LITERALS)
BOOST_STATIC_ASSERT_MSG(( !boost::is_same<char16_t, src_char_t>::value
&& !boost::is_same<char16_t, target_char_t>::value),
"Your compiler does not have full support for char16_t" );
#endif
#if !defined(BOOST_NO_CXX11_CHAR32_T) && defined(BOOST_NO_CXX11_UNICODE_LITERALS)
BOOST_STATIC_ASSERT_MSG(( !boost::is_same<char32_t, src_char_t>::value
&& !boost::is_same<char32_t, target_char_t>::value),
"Your compiler does not have full support for char32_t" );
#endif
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
boost::detail::extract_char_traits<char_type, Target>::value,
BOOST_DEDUCED_TYPENAME boost::detail::extract_char_traits<char_type, Target>,
BOOST_DEDUCED_TYPENAME boost::detail::extract_char_traits<char_type, no_cv_src>
>::type::trait_t traits;
typedef boost::type_traits::ice_and<
boost::is_same<char, src_char_t>::value, // source is not a wide character based type
boost::type_traits::ice_ne<sizeof(char), sizeof(target_char_t) >::value, // target type is based on wide character
boost::type_traits::ice_not<
boost::detail::is_character<no_cv_src>::value // single character widening is optimized
>::value // and does not requires stringbuffer
> is_string_widening_required_t;
typedef boost::type_traits::ice_not< boost::type_traits::ice_or<
boost::is_integral<no_cv_src>::value,
boost::detail::is_this_float_conversion_optimized<no_cv_src, char_type >::value,
boost::detail::is_character<
BOOST_DEDUCED_TYPENAME deduce_src_char_metafunc::stage1_type // if we did not get character type at stage1
>::value // then we have no optimization for that type
>::value > is_source_input_not_optimized_t;
// If we have an optimized conversion for
// Source, we do not need to construct stringbuf.
BOOST_STATIC_CONSTANT(bool, requires_stringbuf =
(boost::type_traits::ice_or<
is_string_widening_required_t::value, is_source_input_not_optimized_t::value
>::value)
);
typedef boost::detail::lcast_src_length<no_cv_src> len_t;
};
}
namespace detail // '0', '-', '+', 'e', 'E' and '.' constants
{
template < typename Char >
struct lcast_char_constants {
// We check in tests assumption that static casted character is
// equal to correctly written C++ literal: U'0' == static_cast<char32_t>('0')
BOOST_STATIC_CONSTANT(Char, zero = static_cast<Char>('0'));
BOOST_STATIC_CONSTANT(Char, minus = static_cast<Char>('-'));
BOOST_STATIC_CONSTANT(Char, plus = static_cast<Char>('+'));
BOOST_STATIC_CONSTANT(Char, lowercase_e = static_cast<Char>('e'));
BOOST_STATIC_CONSTANT(Char, capital_e = static_cast<Char>('E'));
BOOST_STATIC_CONSTANT(Char, c_decimal_separator = static_cast<Char>('.'));
};
}
namespace detail // lcast_to_unsigned
{
template<class T>
inline
BOOST_DEDUCED_TYPENAME boost::make_unsigned<T>::type lcast_to_unsigned(const T value) BOOST_NOEXCEPT {
typedef BOOST_DEDUCED_TYPENAME boost::make_unsigned<T>::type result_type;
return value < 0
? static_cast<result_type>(0u - static_cast<result_type>(value))
: static_cast<result_type>(value);
}
}
namespace detail // lcast_put_unsigned
{
template <class Traits, class T, class CharT>
class lcast_put_unsigned: boost::noncopyable {
typedef BOOST_DEDUCED_TYPENAME Traits::int_type int_type;
BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
(sizeof(int_type) > sizeof(T))
, int_type
, T
>::type m_value;
CharT* m_finish;
CharT const m_czero;
int_type const m_zero;
public:
lcast_put_unsigned(const T n_param, CharT* finish) BOOST_NOEXCEPT
: m_value(n_param), m_finish(finish)
, m_czero(lcast_char_constants<CharT>::zero), m_zero(Traits::to_int_type(m_czero))
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);
#endif
}
CharT* convert() {
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
std::locale loc;
if (loc == std::locale::classic()) {
return main_convert_loop();
}
typedef std::numpunct<CharT> numpunct;
numpunct const& np = BOOST_USE_FACET(numpunct, loc);
std::string const grouping = np.grouping();
std::string::size_type const grouping_size = grouping.size();
if (!grouping_size || grouping[0] <= 0) {
return main_convert_loop();
}
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
// Check that ulimited group is unreachable:
BOOST_STATIC_ASSERT(std::numeric_limits<T>::digits10 < CHAR_MAX);
#endif
CharT const thousands_sep = np.thousands_sep();
std::string::size_type group = 0; // current group number
char last_grp_size = grouping[0];
char left = last_grp_size;
do {
if (left == 0) {
++group;
if (group < grouping_size) {
char const grp_size = grouping[group];
last_grp_size = (grp_size <= 0 ? static_cast<char>(CHAR_MAX) : grp_size);
}
left = last_grp_size;
--m_finish;
Traits::assign(*m_finish, thousands_sep);
}
--left;
} while (main_convert_itaration());
return m_finish;
#else
return main_convert_loop();
#endif
}
private:
inline bool main_convert_itaration() BOOST_NOEXCEPT {
--m_finish;
int_type const digit = static_cast<int_type>(m_value % 10U);
Traits::assign(*m_finish, Traits::to_char_type(m_zero + digit));
m_value /= 10;
return !!m_value; // supressing warnings
}
inline CharT* main_convert_loop() BOOST_NOEXCEPT {
while (main_convert_itaration());
return m_finish;
}
};
}
namespace detail // lcast_ret_unsigned
{
template <class Traits, class T, class CharT>
class lcast_ret_unsigned: boost::noncopyable {
bool m_multiplier_overflowed;
T m_multiplier;
T& m_value;
const CharT* const m_begin;
const CharT* m_end;
public:
lcast_ret_unsigned(T& value, const CharT* const begin, const CharT* end) BOOST_NOEXCEPT
: m_multiplier_overflowed(false), m_multiplier(1), m_value(value), m_begin(begin), m_end(end)
{
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);
// GCC when used with flag -std=c++0x may not have std::numeric_limits
// specializations for __int128 and unsigned __int128 types.
// Try compilation with -std=gnu++0x or -std=gnu++11.
//
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40856
BOOST_STATIC_ASSERT_MSG(std::numeric_limits<T>::is_specialized,
"std::numeric_limits are not specialized for integral type passed to boost::lexical_cast"
);
#endif
}
inline bool convert() {
CharT const czero = lcast_char_constants<CharT>::zero;
--m_end;
m_value = static_cast<T>(0);
if (m_begin > m_end || *m_end < czero || *m_end >= czero + 10)
return false;
m_value = static_cast<T>(*m_end - czero);
--m_end;
#ifdef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
return main_convert_loop();
#else
std::locale loc;
if (loc == std::locale::classic()) {
return main_convert_loop();
}
typedef std::numpunct<CharT> numpunct;
numpunct const& np = BOOST_USE_FACET(numpunct, loc);
std::string const& grouping = np.grouping();
std::string::size_type const grouping_size = grouping.size();
/* According to Programming languages - C++
* we MUST check for correct grouping
*/
if (!grouping_size || grouping[0] <= 0) {
return main_convert_loop();
}
unsigned char current_grouping = 0;
CharT const thousands_sep = np.thousands_sep();
char remained = static_cast<char>(grouping[current_grouping] - 1);
for (;m_end >= m_begin; --m_end)
{
if (remained) {
if (!main_convert_itaration()) {
return false;
}
--remained;
} else {
if ( !Traits::eq(*m_end, thousands_sep) ) //|| begin == end ) return false;
{
/*
* According to Programming languages - C++
* Digit grouping is checked. That is, the positions of discarded
* separators is examined for consistency with
* use_facet<numpunct<charT> >(loc ).grouping()
*
* BUT what if there is no separators at all and grouping()
* is not empty? Well, we have no extraced separators, so we
* won`t check them for consistency. This will allow us to
* work with "C" locale from other locales
*/
return main_convert_loop();
} else {
if (m_begin == m_end) return false;
if (current_grouping < grouping_size - 1) ++current_grouping;
remained = grouping[current_grouping];
}
}
} /*for*/
return true;
#endif
}
private:
// Iteration that does not care about grouping/separators and assumes that all
// input characters are digits
inline bool main_convert_itaration() BOOST_NOEXCEPT {
CharT const czero = lcast_char_constants<CharT>::zero;
T const maxv = (std::numeric_limits<T>::max)();
m_multiplier_overflowed = m_multiplier_overflowed || (maxv/10 < m_multiplier);
m_multiplier = static_cast<T>(m_multiplier * 10);
T const dig_value = static_cast<T>(*m_end - czero);
T const new_sub_value = static_cast<T>(m_multiplier * dig_value);
// We must correctly handle situations like `000000000000000000000000000001`.
// So we take care of overflow only if `dig_value` is not '0'.
if (*m_end < czero || *m_end >= czero + 10 // checking for correct digit
|| (dig_value && ( // checking for overflow of ...
m_multiplier_overflowed // ... multiplier
|| static_cast<T>(maxv / dig_value) < m_multiplier // ... subvalue
|| static_cast<T>(maxv - new_sub_value) < m_value // ... whole expression
))
) return false;
m_value = static_cast<T>(m_value + new_sub_value);
return true;
}
bool main_convert_loop() BOOST_NOEXCEPT {
for ( ; m_end >= m_begin; --m_end) {
if (!main_convert_itaration()) {
return false;
}
}
return true;
}
};
}
namespace detail
{
template <class CharT>
bool lc_iequal(const CharT* val, const CharT* lcase, const CharT* ucase, unsigned int len) BOOST_NOEXCEPT {
for( unsigned int i=0; i < len; ++i ) {
if ( val[i] != lcase[i] && val[i] != ucase[i] ) return false;
}
return true;
}
/* Returns true and sets the correct value if found NaN or Inf. */
template <class CharT, class T>
inline bool parse_inf_nan_impl(const CharT* begin, const CharT* end, T& value
, const CharT* lc_NAN, const CharT* lc_nan
, const CharT* lc_INFINITY, const CharT* lc_infinity
, const CharT opening_brace, const CharT closing_brace) BOOST_NOEXCEPT
{
using namespace std;
if (begin == end) return false;
const CharT minus = lcast_char_constants<CharT>::minus;
const CharT plus = lcast_char_constants<CharT>::plus;
const int inifinity_size = 8; // == sizeof("infinity") - 1
/* Parsing +/- */
bool const has_minus = (*begin == minus);
if (has_minus || *begin == plus) {
++ begin;
}
if (end - begin < 3) return false;
if (lc_iequal(begin, lc_nan, lc_NAN, 3)) {
begin += 3;
if (end != begin) {
/* It is 'nan(...)' or some bad input*/
if (end - begin < 2) return false; // bad input
-- end;
if (*begin != opening_brace || *end != closing_brace) return false; // bad input
}
if( !has_minus ) value = std::numeric_limits<T>::quiet_NaN();
else value = (boost::math::changesign) (std::numeric_limits<T>::quiet_NaN());
return true;
} else if (
( /* 'INF' or 'inf' */
end - begin == 3 // 3 == sizeof('inf') - 1
&& lc_iequal(begin, lc_infinity, lc_INFINITY, 3)
)
||
( /* 'INFINITY' or 'infinity' */
end - begin == inifinity_size
&& lc_iequal(begin, lc_infinity, lc_INFINITY, inifinity_size)
)
)
{
if( !has_minus ) value = std::numeric_limits<T>::infinity();
else value = (boost::math::changesign) (std::numeric_limits<T>::infinity());
return true;
}
return false;
}
template <class CharT, class T>
bool put_inf_nan_impl(CharT* begin, CharT*& end, const T& value
, const CharT* lc_nan
, const CharT* lc_infinity) BOOST_NOEXCEPT
{
using namespace std;
const CharT minus = lcast_char_constants<CharT>::minus;
if ((boost::math::isnan)(value)) {
if ((boost::math::signbit)(value)) {
*begin = minus;
++ begin;
}
memcpy(begin, lc_nan, 3 * sizeof(CharT));
end = begin + 3;
return true;
} else if ((boost::math::isinf)(value)) {
if ((boost::math::signbit)(value)) {
*begin = minus;
++ begin;
}
memcpy(begin, lc_infinity, 3 * sizeof(CharT));
end = begin + 3;
return true;
}
return false;
}
#ifndef BOOST_LCAST_NO_WCHAR_T
template <class T>
bool parse_inf_nan(const wchar_t* begin, const wchar_t* end, T& value) BOOST_NOEXCEPT {
return parse_inf_nan_impl(begin, end, value
, L"NAN", L"nan"
, L"INFINITY", L"infinity"
, L'(', L')');
}
template <class T>
bool put_inf_nan(wchar_t* begin, wchar_t*& end, const T& value) BOOST_NOEXCEPT {
return put_inf_nan_impl(begin, end, value, L"nan", L"infinity");
}
#endif
#if !defined(BOOST_NO_CXX11_CHAR16_T) && !defined(BOOST_NO_CXX11_UNICODE_LITERALS)
template <class T>
bool parse_inf_nan(const char16_t* begin, const char16_t* end, T& value) BOOST_NOEXCEPT {
return parse_inf_nan_impl(begin, end, value
, u"NAN", u"nan"
, u"INFINITY", u"infinity"
, u'(', u')');
}
template <class T>
bool put_inf_nan(char16_t* begin, char16_t*& end, const T& value) BOOST_NOEXCEPT {
return put_inf_nan_impl(begin, end, value, u"nan", u"infinity");
}
#endif
#if !defined(BOOST_NO_CXX11_CHAR32_T) && !defined(BOOST_NO_CXX11_UNICODE_LITERALS)
template <class T>
bool parse_inf_nan(const char32_t* begin, const char32_t* end, T& value) BOOST_NOEXCEPT {
return parse_inf_nan_impl(begin, end, value
, U"NAN", U"nan"
, U"INFINITY", U"infinity"
, U'(', U')');
}
template <class T>
bool put_inf_nan(char32_t* begin, char32_t*& end, const T& value) BOOST_NOEXCEPT {
return put_inf_nan_impl(begin, end, value, U"nan", U"infinity");
}
#endif
template <class CharT, class T>
bool parse_inf_nan(const CharT* begin, const CharT* end, T& value) BOOST_NOEXCEPT {
return parse_inf_nan_impl(begin, end, value
, "NAN", "nan"
, "INFINITY", "infinity"
, '(', ')');
}
template <class CharT, class T>
bool put_inf_nan(CharT* begin, CharT*& end, const T& value) BOOST_NOEXCEPT {
return put_inf_nan_impl(begin, end, value, "nan", "infinity");
}
}
namespace detail // lcast_ret_float
{
// Silence buggy MS warnings like C4244: '+=' : conversion from 'int' to 'unsigned short', possible loss of data
#if defined(_MSC_VER) && (_MSC_VER == 1400)
# pragma warning(push)
# pragma warning(disable:4244)
#endif
template <class T>
struct mantissa_holder_type
{
/* Can not be used with this type */
};
template <>
struct mantissa_holder_type<float>
{
typedef unsigned int type;
typedef double wide_result_t;
};
template <>
struct mantissa_holder_type<double>
{
#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
typedef long double wide_result_t;
#if defined(BOOST_HAS_LONG_LONG)
typedef boost::ulong_long_type type;
#elif defined(BOOST_HAS_MS_INT64)
typedef unsigned __int64 type;
#endif
#endif
};
template<class Traits, class T, class CharT>
inline bool lcast_ret_float(T& value, const CharT* begin, const CharT* const end)
{
value = static_cast<T>(0);
if (begin == end) return false;
if (parse_inf_nan(begin, end, value)) return true;
CharT const czero = lcast_char_constants<CharT>::zero;
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
CharT const capital_e = lcast_char_constants<CharT>::capital_e;
CharT const lowercase_e = lcast_char_constants<CharT>::lowercase_e;
/* Getting the plus/minus sign */
bool const has_minus = Traits::eq(*begin, minus);
if (has_minus || Traits::eq(*begin, plus)) {
++ begin;
if (begin == end) return false;
}
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
std::locale loc;
typedef std::numpunct<CharT> numpunct;
numpunct const& np = BOOST_USE_FACET(numpunct, loc);
std::string const grouping(
(loc == std::locale::classic())
? std::string()
: np.grouping()
);
std::string::size_type const grouping_size = grouping.size();
CharT const thousands_sep = static_cast<CharT>(grouping_size ? np.thousands_sep() : 0);
CharT const decimal_point = np.decimal_point();
bool found_grouping = false;
std::string::size_type last_grouping_pos = grouping_size - 1;
#else
CharT const decimal_point = lcast_char_constants<CharT>::c_decimal_separator;
#endif
bool found_decimal = false;
bool found_number_before_exp = false;
typedef int pow_of_10_t;
pow_of_10_t pow_of_10 = 0;
typedef BOOST_DEDUCED_TYPENAME mantissa_holder_type<T>::type mantissa_type;
mantissa_type mantissa=0;
bool is_mantissa_full = false;
char length_since_last_delim = 0;
while (begin != end) {
if (found_decimal) {
/* We allow no thousand_separators after decimal point */
const mantissa_type tmp_sub_value = static_cast<mantissa_type>(*begin - czero);
if (Traits::eq(*begin, lowercase_e) || Traits::eq(*begin, capital_e)) break;
if ( *begin < czero || *begin >= czero + 10 ) return false;
if ( is_mantissa_full
|| ((std::numeric_limits<mantissa_type>::max)() - tmp_sub_value) / 10u < mantissa
) {
is_mantissa_full = true;
++ begin;
continue;
}
-- pow_of_10;
mantissa = static_cast<mantissa_type>(mantissa * 10 + tmp_sub_value);
found_number_before_exp = true;
} else {
if (*begin >= czero && *begin < czero + 10) {
/* Checking for mantissa overflow. If overflow will
* occur, them we only increase multiplyer
*/
const mantissa_type tmp_sub_value = static_cast<mantissa_type>(*begin - czero);
if( is_mantissa_full
|| ((std::numeric_limits<mantissa_type>::max)() - tmp_sub_value) / 10u < mantissa
)
{
is_mantissa_full = true;
++ pow_of_10;
} else {
mantissa = static_cast<mantissa_type>(mantissa * 10 + tmp_sub_value);
}
found_number_before_exp = true;
++ length_since_last_delim;
} else if (Traits::eq(*begin, decimal_point) || Traits::eq(*begin, lowercase_e) || Traits::eq(*begin, capital_e)) {
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
/* If ( we need to check grouping
* and ( grouping missmatches
* or grouping position is incorrect
* or we are using the grouping position 0 twice
* )
* ) then return error
*/
if( grouping_size && found_grouping
&& (
length_since_last_delim != grouping[0]
|| last_grouping_pos>1
|| (last_grouping_pos==0 && grouping_size>1)
)
) return false;
#endif
if (Traits::eq(*begin, decimal_point)) {
++ begin;
found_decimal = true;
if (!found_number_before_exp && begin==end) return false;
continue;
} else {
if (!found_number_before_exp) return false;
break;
}
}
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
else if (grouping_size && Traits::eq(*begin, thousands_sep)){
if(found_grouping)
{
/* It is not he first time, when we find thousands separator,
* so we need to chek, is the distance between two groupings
* equal to grouping[last_grouping_pos] */
if (length_since_last_delim != grouping[last_grouping_pos] )
{
if (!last_grouping_pos) return false;
else
{
-- last_grouping_pos;
if (length_since_last_delim != grouping[last_grouping_pos]) return false;
}
} else
/* We are calling the grouping[0] twice, when grouping size is more than 1 */
if (grouping_size>1u && last_grouping_pos+1<grouping_size) return false;
} else {
/* Delimiter at the begining ',000' */
if (!length_since_last_delim) return false;
found_grouping = true;
if (length_since_last_delim > grouping[last_grouping_pos] ) return false;
}
length_since_last_delim = 0;
++ begin;
/* Delimiter at the end '100,' */
if (begin == end) return false;
continue;
}
#endif
else return false;
}
++begin;
}
// Exponent found
if (begin != end && (Traits::eq(*begin, lowercase_e) || Traits::eq(*begin, capital_e))) {
++ begin;
if (begin == end) return false;
bool const exp_has_minus = Traits::eq(*begin, minus);
if (exp_has_minus || Traits::eq(*begin, plus)) {
++ begin;
if (begin == end) return false;
}
pow_of_10_t exp_pow_of_10 = 0;
while (begin != end) {
pow_of_10_t const sub_value = *begin - czero;
if ( *begin < czero || *begin >= czero + 10
|| ((std::numeric_limits<pow_of_10_t>::max)() - sub_value) / 10 < exp_pow_of_10)
return false;
exp_pow_of_10 *= 10;
exp_pow_of_10 += sub_value;
++ begin;
};
if (exp_has_minus) {
if ((std::numeric_limits<pow_of_10_t>::min)() + exp_pow_of_10 > pow_of_10)
return false; // failed overflow check
pow_of_10 -= exp_pow_of_10;
} else {
if ((std::numeric_limits<pow_of_10_t>::max)() - exp_pow_of_10 < pow_of_10)
return false; // failed overflow check
pow_of_10 += exp_pow_of_10;
}
}
/* We need a more accurate algorithm... We can not use current algorithm
* with long doubles (and with doubles if sizeof(double)==sizeof(long double)).
*/
typedef BOOST_DEDUCED_TYPENAME mantissa_holder_type<T>::wide_result_t wide_result_t;
const wide_result_t result = std::pow(static_cast<wide_result_t>(10.0), pow_of_10) * mantissa;
value = static_cast<T>( has_minus ? (boost::math::changesign)(result) : result);
return !((boost::math::isinf)(value) || (boost::math::isnan)(value));
}
// Unsilence buggy MS warnings like C4244: '+=' : conversion from 'int' to 'unsigned short', possible loss of data
#if defined(_MSC_VER) && (_MSC_VER == 1400)
# pragma warning(pop)
#endif
}
namespace detail // basic_unlockedbuf
{
// acts as a stream buffer which wraps around a pair of pointers
// and gives acces to internals
template <class BufferType, class CharT>
class basic_unlockedbuf : public basic_pointerbuf<CharT, BufferType> {
public:
typedef basic_pointerbuf<CharT, BufferType> base_type;
typedef BOOST_DEDUCED_TYPENAME base_type::streamsize streamsize;
#ifndef BOOST_NO_USING_TEMPLATE
using base_type::pptr;
using base_type::pbase;
using base_type::setbuf;
#else
charT* pptr() const { return base_type::pptr(); }
charT* pbase() const { return base_type::pbase(); }
BufferType* setbuf(char_type* s, streamsize n) { return base_type::setbuf(s, n); }
#endif
};
}
namespace detail
{
struct do_not_construct_out_stream_t{};
template <class CharT, class Traits>
struct out_stream_helper_trait {
#if defined(BOOST_NO_STRINGSTREAM)
typedef std::ostrstream out_stream_t;
typedef void buffer_t;
#elif defined(BOOST_NO_STD_LOCALE)
typedef std::ostringstream out_stream_t;
typedef basic_unlockedbuf<std::streambuf, char> buffer_t;
#else
typedef std::basic_ostringstream<CharT, Traits>
out_stream_t;
typedef basic_unlockedbuf<std::basic_streambuf<CharT, Traits>, CharT>
buffer_t;
#endif
};
}
namespace detail // optimized stream wrappers
{
template< class CharT // a result of widest_char transformation
, class Traits
, bool RequiresStringbuffer
, std::size_t CharacterBufferSize
>
class lexical_istream_limited_src: boost::noncopyable {
typedef BOOST_DEDUCED_TYPENAME out_stream_helper_trait<CharT, Traits>::buffer_t
buffer_t;
typedef BOOST_DEDUCED_TYPENAME out_stream_helper_trait<CharT, Traits>::out_stream_t
out_stream_t;
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
RequiresStringbuffer,
out_stream_t,
do_not_construct_out_stream_t
>::type deduced_out_stream_t;
// A string representation of Source is written to `buffer`.
deduced_out_stream_t out_stream;
CharT buffer[CharacterBufferSize];
// After the `operator <<` finishes, `[start, finish)` is
// the range to output by `operator >>`
const CharT* start;
const CharT* finish;
public:
lexical_istream_limited_src() BOOST_NOEXCEPT
: start(buffer)
, finish(buffer + CharacterBufferSize)
{}
const CharT* cbegin() const BOOST_NOEXCEPT {
return start;
}
const CharT* cend() const BOOST_NOEXCEPT {
return finish;
}
private:
// Undefined:
lexical_istream_limited_src(lexical_istream_limited_src const&);
void operator=(lexical_istream_limited_src const&);
/************************************ HELPER FUNCTIONS FOR OPERATORS << ( ... ) ********************************/
bool shl_char(CharT ch) BOOST_NOEXCEPT {
Traits::assign(buffer[0], ch);
finish = start + 1;
return true;
}
#ifndef BOOST_LCAST_NO_WCHAR_T
template <class T>
bool shl_char(T ch) {
BOOST_STATIC_ASSERT_MSG(( sizeof(T) <= sizeof(CharT)) ,
"boost::lexical_cast does not support narrowing of char types."
"Use boost::locale instead" );
#ifndef BOOST_LEXICAL_CAST_ASSUME_C_LOCALE
std::locale loc;
CharT const w = BOOST_USE_FACET(std::ctype<CharT>, loc).widen(ch);
#else
CharT const w = static_cast<CharT>(ch);
#endif
Traits::assign(buffer[0], w);
finish = start + 1;
return true;
}
#endif
bool shl_char_array(CharT const* str) BOOST_NOEXCEPT {
start = str;
finish = start + Traits::length(str);
return true;
}
template <class T>
bool shl_char_array(T const* str) {
BOOST_STATIC_ASSERT_MSG(( sizeof(T) <= sizeof(CharT)),
"boost::lexical_cast does not support narrowing of char types."
"Use boost::locale instead" );
return shl_input_streamable(str);
}
bool shl_char_array_limited(CharT const* str, std::size_t max_size) BOOST_NOEXCEPT {
start = str;
finish = std::find(start, start + max_size, Traits::to_char_type(0));
return true;
}
template<typename InputStreamable>
bool shl_input_streamable(InputStreamable& input) {
#if defined(BOOST_NO_STRINGSTREAM) || defined(BOOST_NO_STD_LOCALE)
// If you have compilation error at this point, than your STL library
// does not support such conversions. Try updating it.
BOOST_STATIC_ASSERT((boost::is_same<char, CharT>::value));
#endif
#ifndef BOOST_NO_EXCEPTIONS
out_stream.exceptions(std::ios::badbit);
try {
#endif
bool const result = !(out_stream << input).fail();
const buffer_t* const p = static_cast<buffer_t*>(
static_cast<std::basic_streambuf<CharT, Traits>*>(out_stream.rdbuf())
);
start = p->pbase();
finish = p->pptr();
return result;
#ifndef BOOST_NO_EXCEPTIONS
} catch (const ::std::ios_base::failure& /*f*/) {
return false;
}
#endif
}
template <class T>
inline bool shl_unsigned(const T n) {
CharT* tmp_finish = buffer + CharacterBufferSize;
start = lcast_put_unsigned<Traits, T, CharT>(n, tmp_finish).convert();
finish = tmp_finish;
return true;
}
template <class T>
inline bool shl_signed(const T n) {
CharT* tmp_finish = buffer + CharacterBufferSize;
typedef BOOST_DEDUCED_TYPENAME boost::make_unsigned<T>::type utype;
CharT* tmp_start = lcast_put_unsigned<Traits, utype, CharT>(lcast_to_unsigned(n), tmp_finish).convert();
if (n < 0) {
--tmp_start;
CharT const minus = lcast_char_constants<CharT>::minus;
Traits::assign(*tmp_start, minus);
}
start = tmp_start;
finish = tmp_finish;
return true;
}
template <class T, class SomeCharT>
bool shl_real_type(const T& val, SomeCharT* /*begin*/) {
lcast_set_precision(out_stream, &val);
return shl_input_streamable(val);
}
bool shl_real_type(float val, char* begin) {
using namespace std;
const double val_as_double = val;
finish = start +
#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__SGI_STL_PORT) && !defined(_STLPORT_VERSION)
sprintf_s(begin, CharacterBufferSize,
#else
sprintf(begin,
#endif
"%.*g", static_cast<int>(boost::detail::lcast_get_precision<float>()), val_as_double);
return finish > start;
}
bool shl_real_type(double val, char* begin) {
using namespace std;
finish = start +
#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__SGI_STL_PORT) && !defined(_STLPORT_VERSION)
sprintf_s(begin, CharacterBufferSize,
#else
sprintf(begin,
#endif
"%.*g", static_cast<int>(boost::detail::lcast_get_precision<double>()), val);
return finish > start;
}
#ifndef __MINGW32__
bool shl_real_type(long double val, char* begin) {
using namespace std;
finish = start +
#if defined(_MSC_VER) && (_MSC_VER >= 1400) && !defined(__SGI_STL_PORT) && !defined(_STLPORT_VERSION)
sprintf_s(begin, CharacterBufferSize,
#else
sprintf(begin,
#endif
"%.*Lg", static_cast<int>(boost::detail::lcast_get_precision<long double>()), val );
return finish > start;
}
#endif
#if !defined(BOOST_LCAST_NO_WCHAR_T) && !defined(BOOST_NO_SWPRINTF) && !defined(__MINGW32__)
bool shl_real_type(float val, wchar_t* begin) {
using namespace std;
const double val_as_double = val;
finish = start + swprintf(begin, CharacterBufferSize,
L"%.*g",
static_cast<int>(boost::detail::lcast_get_precision<float >()),
val_as_double );
return finish > start;
}
bool shl_real_type(double val, wchar_t* begin) {
using namespace std;
finish = start + swprintf(begin, CharacterBufferSize,
L"%.*g", static_cast<int>(boost::detail::lcast_get_precision<double >()), val );
return finish > start;
}
bool shl_real_type(long double val, wchar_t* begin) {
using namespace std;
finish = start + swprintf(begin, CharacterBufferSize,
L"%.*Lg", static_cast<int>(boost::detail::lcast_get_precision<long double >()), val );
return finish > start;
}
#endif
template <class T>
bool shl_real(T val) {
CharT* tmp_finish = buffer + CharacterBufferSize;
if (put_inf_nan(buffer, tmp_finish, val)) {
finish = tmp_finish;
return true;
}
return shl_real_type(val, static_cast<CharT*>(buffer));
}
/************************************ OPERATORS << ( ... ) ********************************/
public:
template<class Alloc>
bool operator<<(std::basic_string<CharT,Traits,Alloc> const& str) BOOST_NOEXCEPT {
start = str.data();
finish = start + str.length();
return true;
}
template<class Alloc>
bool operator<<(boost::container::basic_string<CharT,Traits,Alloc> const& str) BOOST_NOEXCEPT {
start = str.data();
finish = start + str.length();
return true;
}
bool operator<<(bool value) BOOST_NOEXCEPT {
CharT const czero = lcast_char_constants<CharT>::zero;
Traits::assign(buffer[0], Traits::to_char_type(czero + value));
finish = start + 1;
return true;
}
template <class C>
BOOST_DEDUCED_TYPENAME boost::disable_if<boost::is_const<C>, bool>::type
operator<<(const iterator_range<C*>& rng) BOOST_NOEXCEPT {
return (*this) << iterator_range<const C*>(rng.begin(), rng.end());
}
bool operator<<(const iterator_range<const CharT*>& rng) BOOST_NOEXCEPT {
start = rng.begin();
finish = rng.end();
return true;
}
bool operator<<(const iterator_range<const signed char*>& rng) BOOST_NOEXCEPT {
return (*this) << iterator_range<const char*>(
reinterpret_cast<const char*>(rng.begin()),
reinterpret_cast<const char*>(rng.end())
);
}
bool operator<<(const iterator_range<const unsigned char*>& rng) BOOST_NOEXCEPT {
return (*this) << iterator_range<const char*>(
reinterpret_cast<const char*>(rng.begin()),
reinterpret_cast<const char*>(rng.end())
);
}
bool operator<<(char ch) { return shl_char(ch); }
bool operator<<(unsigned char ch) { return ((*this) << static_cast<char>(ch)); }
bool operator<<(signed char ch) { return ((*this) << static_cast<char>(ch)); }
#if !defined(BOOST_LCAST_NO_WCHAR_T)
bool operator<<(wchar_t const* str) { return shl_char_array(str); }
bool operator<<(wchar_t * str) { return shl_char_array(str); }
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
bool operator<<(wchar_t ch) { return shl_char(ch); }
#endif
#endif
#if !defined(BOOST_NO_CXX11_CHAR16_T) && !defined(BOOST_NO_CXX11_UNICODE_LITERALS)
bool operator<<(char16_t ch) { return shl_char(ch); }
bool operator<<(char16_t * str) { return shl_char_array(str); }
bool operator<<(char16_t const * str) { return shl_char_array(str); }
#endif
#if !defined(BOOST_NO_CXX11_CHAR32_T) && !defined(BOOST_NO_CXX11_UNICODE_LITERALS)
bool operator<<(char32_t ch) { return shl_char(ch); }
bool operator<<(char32_t * str) { return shl_char_array(str); }
bool operator<<(char32_t const * str) { return shl_char_array(str); }
#endif
bool operator<<(unsigned char const* ch) { return ((*this) << reinterpret_cast<char const*>(ch)); }
bool operator<<(unsigned char * ch) { return ((*this) << reinterpret_cast<char *>(ch)); }
bool operator<<(signed char const* ch) { return ((*this) << reinterpret_cast<char const*>(ch)); }
bool operator<<(signed char * ch) { return ((*this) << reinterpret_cast<char *>(ch)); }
bool operator<<(char const* str) { return shl_char_array(str); }
bool operator<<(char* str) { return shl_char_array(str); }
bool operator<<(short n) { return shl_signed(n); }
bool operator<<(int n) { return shl_signed(n); }
bool operator<<(long n) { return shl_signed(n); }
bool operator<<(unsigned short n) { return shl_unsigned(n); }
bool operator<<(unsigned int n) { return shl_unsigned(n); }
bool operator<<(unsigned long n) { return shl_unsigned(n); }
#if defined(BOOST_HAS_LONG_LONG)
bool operator<<(boost::ulong_long_type n) { return shl_unsigned(n); }
bool operator<<(boost::long_long_type n) { return shl_signed(n); }
#elif defined(BOOST_HAS_MS_INT64)
bool operator<<(unsigned __int64 n) { return shl_unsigned(n); }
bool operator<<( __int64 n) { return shl_signed(n); }
#endif
#ifdef BOOST_HAS_INT128
bool operator<<(const boost::uint128_type& n) { return shl_unsigned(n); }
bool operator<<(const boost::int128_type& n) { return shl_signed(n); }
#endif
bool operator<<(float val) { return shl_real(val); }
bool operator<<(double val) { return shl_real(val); }
bool operator<<(long double val) {
#ifndef __MINGW32__
return shl_real(val);
#else
return shl_real(static_cast<double>(val));
#endif
}
// Adding constness to characters. Constness does not change layout
template <class C, std::size_t N>
BOOST_DEDUCED_TYPENAME boost::disable_if<boost::is_const<C>, bool>::type
operator<<(boost::array<C, N> const& input) BOOST_NOEXCEPT {
BOOST_STATIC_ASSERT_MSG(
(sizeof(boost::array<const C, N>) == sizeof(boost::array<C, N>)),
"boost::array<C, N> and boost::array<const C, N> must have exactly the same layout."
);
return ((*this) << reinterpret_cast<boost::array<const C, N> const& >(input));
}
template <std::size_t N>
bool operator<<(boost::array<const CharT, N> const& input) BOOST_NOEXCEPT {
return shl_char_array_limited(input.begin(), N);
}
template <std::size_t N>
bool operator<<(boost::array<const unsigned char, N> const& input) BOOST_NOEXCEPT {
return ((*this) << reinterpret_cast<boost::array<const char, N> const& >(input));
}
template <std::size_t N>
bool operator<<(boost::array<const signed char, N> const& input) BOOST_NOEXCEPT {
return ((*this) << reinterpret_cast<boost::array<const char, N> const& >(input));
}
#ifndef BOOST_NO_CXX11_HDR_ARRAY
// Making a Boost.Array from std::array
template <class C, std::size_t N>
bool operator<<(std::array<C, N> const& input) BOOST_NOEXCEPT {
BOOST_STATIC_ASSERT_MSG(
(sizeof(std::array<C, N>) == sizeof(boost::array<C, N>)),
"std::array and boost::array must have exactly the same layout. "
"Bug in implementation of std::array or boost::array."
);
return ((*this) << reinterpret_cast<boost::array<C, N> const& >(input));
}
#endif
template <class InStreamable>
bool operator<<(const InStreamable& input) { return shl_input_streamable(input); }
};
template <class CharT, class Traits>
class lexical_ostream_limited_src: boost::noncopyable {
//`[start, finish)` is the range to output by `operator >>`
const CharT* start;
const CharT* const finish;
public:
lexical_ostream_limited_src(const CharT* begin, const CharT* end) BOOST_NOEXCEPT
: start(begin)
, finish(end)
{}
/************************************ HELPER FUNCTIONS FOR OPERATORS >> ( ... ) ********************************/
private:
template <typename Type>
bool shr_unsigned(Type& output) {
if (start == finish) return false;
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
bool const has_minus = Traits::eq(minus, *start);
/* We won`t use `start' any more, so no need in decrementing it after */
if (has_minus || Traits::eq(plus, *start)) {
++start;
}
bool const succeed = lcast_ret_unsigned<Traits, Type, CharT>(output, start, finish).convert();
if (has_minus) {
output = static_cast<Type>(0u - output);
}
return succeed;
}
template <typename Type>
bool shr_signed(Type& output) {
if (start == finish) return false;
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
typedef BOOST_DEDUCED_TYPENAME make_unsigned<Type>::type utype;
utype out_tmp = 0;
bool const has_minus = Traits::eq(minus, *start);
/* We won`t use `start' any more, so no need in decrementing it after */
if (has_minus || Traits::eq(plus, *start)) {
++start;
}
bool succeed = lcast_ret_unsigned<Traits, utype, CharT>(out_tmp, start, finish).convert();
if (has_minus) {
utype const comp_val = (static_cast<utype>(1) << std::numeric_limits<Type>::digits);
succeed = succeed && out_tmp<=comp_val;
output = static_cast<Type>(0u - out_tmp);
} else {
utype const comp_val = static_cast<utype>((std::numeric_limits<Type>::max)());
succeed = succeed && out_tmp<=comp_val;
output = static_cast<Type>(out_tmp);
}
return succeed;
}
template<typename InputStreamable>
bool shr_using_base_class(InputStreamable& output)
{
BOOST_STATIC_ASSERT_MSG(
(!boost::is_pointer<InputStreamable>::value),
"boost::lexical_cast can not convert to pointers"
);
#if defined(BOOST_NO_STRINGSTREAM) || defined(BOOST_NO_STD_LOCALE)
BOOST_STATIC_ASSERT_MSG((boost::is_same<char, CharT>::value),
"boost::lexical_cast can not convert, because your STL library does not "
"support such conversions. Try updating it."
);
#endif
typedef BOOST_DEDUCED_TYPENAME out_stream_helper_trait<CharT, Traits>::buffer_t
buffer_t;
#if defined(BOOST_NO_STRINGSTREAM)
std::istrstream stream(start, finish - start);
#else
buffer_t buf;
// Usually `istream` and `basic_istream` do not modify
// content of buffer; `buffer_t` assures that this is true
buf.setbuf(const_cast<CharT*>(start), finish - start);
#if defined(BOOST_NO_STD_LOCALE)
std::istream stream(&buf);
#else
std::basic_istream<CharT, Traits> stream(&buf);
#endif // BOOST_NO_STD_LOCALE
#endif // BOOST_NO_STRINGSTREAM
#ifndef BOOST_NO_EXCEPTIONS
stream.exceptions(std::ios::badbit);
try {
#endif
stream.unsetf(std::ios::skipws);
lcast_set_precision(stream, static_cast<InputStreamable*>(0));
return (stream >> output)
&& (stream.get() == Traits::eof());
#ifndef BOOST_NO_EXCEPTIONS
} catch (const ::std::ios_base::failure& /*f*/) {
return false;
}
#endif
}
template<class T>
inline bool shr_xchar(T& output) BOOST_NOEXCEPT {
BOOST_STATIC_ASSERT_MSG(( sizeof(CharT) == sizeof(T) ),
"boost::lexical_cast does not support narrowing of character types."
"Use boost::locale instead" );
bool const ok = (finish - start == 1);
if (ok) {
CharT out;
Traits::assign(out, *start);
output = static_cast<T>(out);
}
return ok;
}
template <std::size_t N, class ArrayT>
bool shr_std_array(ArrayT& output) BOOST_NOEXCEPT {
using namespace std;
const std::size_t size = static_cast<std::size_t>(finish - start);
if (size > N - 1) { // `-1` because we need to store \0 at the end
return false;
}
memcpy(&output[0], start, size * sizeof(CharT));
output[size] = Traits::to_char_type(0);
return true;
}
/************************************ OPERATORS >> ( ... ) ********************************/
public:
bool operator>>(unsigned short& output) { return shr_unsigned(output); }
bool operator>>(unsigned int& output) { return shr_unsigned(output); }
bool operator>>(unsigned long int& output) { return shr_unsigned(output); }
bool operator>>(short& output) { return shr_signed(output); }
bool operator>>(int& output) { return shr_signed(output); }
bool operator>>(long int& output) { return shr_signed(output); }
#if defined(BOOST_HAS_LONG_LONG)
bool operator>>(boost::ulong_long_type& output) { return shr_unsigned(output); }
bool operator>>(boost::long_long_type& output) { return shr_signed(output); }
#elif defined(BOOST_HAS_MS_INT64)
bool operator>>(unsigned __int64& output) { return shr_unsigned(output); }
bool operator>>(__int64& output) { return shr_signed(output); }
#endif
#ifdef BOOST_HAS_INT128
bool operator>>(boost::uint128_type& output) { return shr_unsigned(output); }
bool operator>>(boost::int128_type& output) { return shr_signed(output); }
#endif
bool operator>>(char& output) { return shr_xchar(output); }
bool operator>>(unsigned char& output) { return shr_xchar(output); }
bool operator>>(signed char& output) { return shr_xchar(output); }
#if !defined(BOOST_LCAST_NO_WCHAR_T) && !defined(BOOST_NO_INTRINSIC_WCHAR_T)
bool operator>>(wchar_t& output) { return shr_xchar(output); }
#endif
#if !defined(BOOST_NO_CXX11_CHAR16_T) && !defined(BOOST_NO_CXX11_UNICODE_LITERALS)
bool operator>>(char16_t& output) { return shr_xchar(output); }
#endif
#if !defined(BOOST_NO_CXX11_CHAR32_T) && !defined(BOOST_NO_CXX11_UNICODE_LITERALS)
bool operator>>(char32_t& output) { return shr_xchar(output); }
#endif
template<class Alloc>
bool operator>>(std::basic_string<CharT,Traits,Alloc>& str) {
str.assign(start, finish); return true;
}
template<class Alloc>
bool operator>>(boost::container::basic_string<CharT,Traits,Alloc>& str) {
str.assign(start, finish); return true;
}
template <std::size_t N>
bool operator>>(boost::array<CharT, N>& output) BOOST_NOEXCEPT {
return shr_std_array<N>(output);
}
template <std::size_t N>
bool operator>>(boost::array<unsigned char, N>& output) BOOST_NOEXCEPT {
return ((*this) >> reinterpret_cast<boost::array<char, N>& >(output));
}
template <std::size_t N>
bool operator>>(boost::array<signed char, N>& output) BOOST_NOEXCEPT {
return ((*this) >> reinterpret_cast<boost::array<char, N>& >(output));
}
#ifndef BOOST_NO_CXX11_HDR_ARRAY
template <class C, std::size_t N>
bool operator>>(std::array<C, N>& output) BOOST_NOEXCEPT {
BOOST_STATIC_ASSERT_MSG(
(sizeof(boost::array<C, N>) == sizeof(boost::array<C, N>)),
"std::array<C, N> and boost::array<C, N> must have exactly the same layout."
);
return ((*this) >> reinterpret_cast<boost::array<C, N>& >(output));
}
#endif
bool operator>>(bool& output) BOOST_NOEXCEPT {
output = false; // Suppress warning about uninitalized variable
if (start == finish) return false;
CharT const zero = lcast_char_constants<CharT>::zero;
CharT const plus = lcast_char_constants<CharT>::plus;
CharT const minus = lcast_char_constants<CharT>::minus;
const CharT* const dec_finish = finish - 1;
output = Traits::eq(*dec_finish, zero + 1);
if (!output && !Traits::eq(*dec_finish, zero)) {
return false; // Does not ends on '0' or '1'
}
if (start == dec_finish) return true;
// We may have sign at the beginning
if (Traits::eq(plus, *start) || (Traits::eq(minus, *start) && !output)) {
++ start;
}
// Skipping zeros
while (start != dec_finish) {
if (!Traits::eq(zero, *start)) {
return false; // Not a zero => error
}
++ start;
}
return true;
}
bool operator>>(float& output) { return lcast_ret_float<Traits>(output,start,finish); }
private:
// Not optimised converter
template <class T>
bool float_types_converter_internal(T& output, int /*tag*/) {
if (parse_inf_nan(start, finish, output)) return true;
bool const return_value = shr_using_base_class(output);
/* Some compilers and libraries successfully
* parse 'inf', 'INFINITY', '1.0E', '1.0E-'...
* We are trying to provide a unified behaviour,
* so we just forbid such conversions (as some
* of the most popular compilers/libraries do)
* */
CharT const minus = lcast_char_constants<CharT>::minus;
CharT const plus = lcast_char_constants<CharT>::plus;
CharT const capital_e = lcast_char_constants<CharT>::capital_e;
CharT const lowercase_e = lcast_char_constants<CharT>::lowercase_e;
if ( return_value &&
(
Traits::eq(*(finish-1), lowercase_e) // 1.0e
|| Traits::eq(*(finish-1), capital_e) // 1.0E
|| Traits::eq(*(finish-1), minus) // 1.0e- or 1.0E-
|| Traits::eq(*(finish-1), plus) // 1.0e+ or 1.0E+
)
) return false;
return return_value;
}
// Optimised converter
bool float_types_converter_internal(double& output, char /*tag*/) {
return lcast_ret_float<Traits>(output, start, finish);
}
public:
bool operator>>(double& output) {
/*
* Some compilers implement long double as double. In that case these types have
* same size, same precision, same max and min values... And it means,
* that current implementation of lcast_ret_float cannot be used for type
* double, because it will give a big precision loss.
* */
boost::mpl::if_c<
#if (defined(BOOST_HAS_LONG_LONG) || defined(BOOST_HAS_MS_INT64)) && !defined(BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS)
boost::type_traits::ice_eq< sizeof(double), sizeof(long double) >::value,
#else
1,
#endif
int,
char
>::type tag = 0;
return float_types_converter_internal(output, tag);
}
bool operator>>(long double& output) {
int tag = 0;
return float_types_converter_internal(output, tag);
}
// Generic istream-based algorithm.
// lcast_streambuf_for_target<InputStreamable>::value is true.
template <typename InputStreamable>
bool operator>>(InputStreamable& output) {
return shr_using_base_class(output);
}
};
}
namespace detail
{
template<typename T>
struct is_stdstring
: boost::false_type
{};
template<typename CharT, typename Traits, typename Alloc>
struct is_stdstring< std::basic_string<CharT, Traits, Alloc> >
: boost::true_type
{};
template<typename CharT, typename Traits, typename Alloc>
struct is_stdstring< boost::container::basic_string<CharT, Traits, Alloc> >
: boost::true_type
{};
template<typename Target, typename Source>
struct is_arithmetic_and_not_xchars
{
BOOST_STATIC_CONSTANT(bool, value = (
boost::type_traits::ice_and<
boost::type_traits::ice_not<
boost::detail::is_character<Target>::value
>::value,
boost::type_traits::ice_not<
boost::detail::is_character<Source>::value
>::value,
boost::is_arithmetic<Source>::value,
boost::is_arithmetic<Target>::value
>::value
));
};
/*
* is_xchar_to_xchar<Target, Source>::value is true,
* Target and Souce are char types of the same size 1 (char, signed char, unsigned char).
*/
template<typename Target, typename Source>
struct is_xchar_to_xchar
{
BOOST_STATIC_CONSTANT(bool, value = (
boost::type_traits::ice_and<
boost::type_traits::ice_eq<sizeof(Source), sizeof(Target)>::value,
boost::type_traits::ice_eq<sizeof(Source), sizeof(char)>::value,
boost::detail::is_character<Target>::value,
boost::detail::is_character<Source>::value
>::value
));
};
template<typename Target, typename Source>
struct is_char_array_to_stdstring
: boost::false_type
{};
template<typename CharT, typename Traits, typename Alloc>
struct is_char_array_to_stdstring< std::basic_string<CharT, Traits, Alloc>, CharT* >
: boost::true_type
{};
template<typename CharT, typename Traits, typename Alloc>
struct is_char_array_to_stdstring< std::basic_string<CharT, Traits, Alloc>, const CharT* >
: boost::true_type
{};
template<typename CharT, typename Traits, typename Alloc>
struct is_char_array_to_stdstring< boost::container::basic_string<CharT, Traits, Alloc>, CharT* >
: boost::true_type
{};
template<typename CharT, typename Traits, typename Alloc>
struct is_char_array_to_stdstring< boost::container::basic_string<CharT, Traits, Alloc>, const CharT* >
: boost::true_type
{};
template<typename Target, typename Source>
struct lexical_converter_impl
{
typedef lexical_cast_stream_traits<Source, Target> stream_trait;
typedef detail::lexical_istream_limited_src<
BOOST_DEDUCED_TYPENAME stream_trait::char_type,
BOOST_DEDUCED_TYPENAME stream_trait::traits,
stream_trait::requires_stringbuf,
stream_trait::len_t::value + 1
> i_interpreter_type;
typedef detail::lexical_ostream_limited_src<
BOOST_DEDUCED_TYPENAME stream_trait::char_type,
BOOST_DEDUCED_TYPENAME stream_trait::traits
> o_interpreter_type;
static inline bool try_convert(const Source& arg, Target& result) {
i_interpreter_type i_interpreter;
// Disabling ADL, by directly specifying operators.
if (!(i_interpreter.operator <<(arg)))
return false;
o_interpreter_type out(i_interpreter.cbegin(), i_interpreter.cend());
// Disabling ADL, by directly specifying operators.
if(!(out.operator >>(result)))
return false;
return true;
}
};
template <typename Target, typename Source>
struct copy_converter_impl
{
// MSVC fail to forward an array (DevDiv#555157 "SILENT BAD CODEGEN triggered by perfect forwarding",
// fixed in 2013 RTM).
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && (!defined(BOOST_MSVC) || BOOST_MSVC >= 1800)
template <class T>
static inline bool try_convert(T&& arg, Target& result) {
result = static_cast<T&&>(arg); // eqaul to `result = std::forward<T>(arg);`
return true;
}
#else
static inline bool try_convert(const Source& arg, Target& result) {
result = arg;
return true;
}
#endif
};
template <class Source >
struct detect_precision_loss
{
typedef Source source_type;
typedef boost::numeric::Trunc<Source> Rounder;
typedef BOOST_DEDUCED_TYPENAME mpl::if_<
boost::is_arithmetic<Source>, Source, Source const&
>::type argument_type ;
static inline source_type nearbyint(argument_type s, bool& is_ok) BOOST_NOEXCEPT {
const source_type near_int = Rounder::nearbyint(s);
if (near_int && is_ok) {
const source_type orig_div_round = s / near_int;
const source_type eps = std::numeric_limits<source_type>::epsilon();
is_ok = !((orig_div_round > 1 ? orig_div_round - 1 : 1 - orig_div_round) > eps);
}
return s;
}
typedef typename Rounder::round_style round_style;
};
template <typename Base, class Source>
struct fake_precision_loss: public Base
{
typedef Source source_type ;
typedef BOOST_DEDUCED_TYPENAME mpl::if_<
boost::is_arithmetic<Source>, Source, Source const&
>::type argument_type ;
static inline source_type nearbyint(argument_type s, bool& /*is_ok*/) BOOST_NOEXCEPT {
return s;
}
};
struct nothrow_overflow_handler
{
inline bool operator() ( boost::numeric::range_check_result r ) const BOOST_NOEXCEPT {
return (r == boost::numeric::cInRange);
}
};
template <typename Target, typename Source>
inline bool noexcept_numeric_convert(const Source& arg, Target& result) BOOST_NOEXCEPT {
typedef boost::numeric::converter<
Target,
Source,
boost::numeric::conversion_traits<Target, Source >,
nothrow_overflow_handler,
detect_precision_loss<Source >
> converter_orig_t;
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
boost::is_base_of< detect_precision_loss<Source >, converter_orig_t >::value,
converter_orig_t,
fake_precision_loss<converter_orig_t, Source>
>::type converter_t;
bool res = nothrow_overflow_handler()(converter_t::out_of_range(arg));
result = converter_t::low_level_convert(converter_t::nearbyint(arg, res));
return res;
}
template <typename Target, typename Source>
struct lexical_cast_dynamic_num_not_ignoring_minus
{
static inline bool try_convert(const Source &arg, Target& result) BOOST_NOEXCEPT {
return noexcept_numeric_convert<Target, Source >(arg, result);
}
};
template <typename Target, typename Source>
struct lexical_cast_dynamic_num_ignoring_minus
{
static inline bool try_convert(const Source &arg, Target& result) BOOST_NOEXCEPT {
typedef BOOST_DEDUCED_TYPENAME boost::mpl::eval_if_c<
boost::is_float<Source>::value,
boost::mpl::identity<Source>,
boost::make_unsigned<Source>
>::type usource_t;
if (arg < 0) {
const bool res = noexcept_numeric_convert<Target, usource_t>(0u - arg, result);
result = static_cast<Target>(0u - result);
return res;
} else {
return noexcept_numeric_convert<Target, usource_t>(arg, result);
}
}
};
/*
* lexical_cast_dynamic_num follows the rules:
* 1) If Source can be converted to Target without precision loss and
* without overflows, then assign Source to Target and return
*
* 2) If Source is less than 0 and Target is an unsigned integer,
* then negate Source, check the requirements of rule 1) and if
* successful, assign static_casted Source to Target and return
*
* 3) Otherwise throw a bad_lexical_cast exception
*
*
* Rule 2) required because boost::lexical_cast has the behavior of
* stringstream, which uses the rules of scanf for conversions. And
* in the C99 standard for unsigned input value minus sign is
* optional, so if a negative number is read, no errors will arise
* and the result will be the two's complement.
*/
template <typename Target, typename Source>
struct dynamic_num_converter_impl
{
static inline bool try_convert(const Source &arg, Target& result) BOOST_NOEXCEPT {
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
boost::type_traits::ice_and<
boost::is_unsigned<Target>::value,
boost::type_traits::ice_or<
boost::is_signed<Source>::value,
boost::is_float<Source>::value
>::value,
boost::type_traits::ice_not<
boost::is_same<Source, bool>::value
>::value,
boost::type_traits::ice_not<
boost::is_same<Target, bool>::value
>::value
>::value,
lexical_cast_dynamic_num_ignoring_minus<Target, Source>,
lexical_cast_dynamic_num_not_ignoring_minus<Target, Source>
>::type caster_type;
return caster_type::try_convert(arg, result);
}
};
}
namespace conversion { namespace detail {
template <typename Target, typename Source>
inline bool try_lexical_convert(const Source& arg, Target& result)
{
typedef BOOST_DEDUCED_TYPENAME boost::detail::array_to_pointer_decay<Source>::type src;
typedef BOOST_DEDUCED_TYPENAME boost::type_traits::ice_or<
boost::detail::is_xchar_to_xchar<Target, src >::value,
boost::detail::is_char_array_to_stdstring<Target, src >::value,
boost::type_traits::ice_and<
boost::is_same<Target, src >::value,
boost::detail::is_stdstring<Target >::value
>::value,
boost::type_traits::ice_and<
boost::is_same<Target, src >::value,
boost::detail::is_character<Target >::value
>::value
> shall_we_copy_t;
typedef boost::detail::is_arithmetic_and_not_xchars<Target, src >
shall_we_copy_with_dynamic_check_t;
// We do evaluate second `if_` lazily to avoid unnecessary instantiations
// of `shall_we_copy_with_dynamic_check_t` and improve compilation times.
typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_c<
shall_we_copy_t::value,
boost::mpl::identity<boost::detail::copy_converter_impl<Target, src > >,
boost::mpl::if_<
shall_we_copy_with_dynamic_check_t,
boost::detail::dynamic_num_converter_impl<Target, src >,
boost::detail::lexical_converter_impl<Target, src >
>
>::type caster_type_lazy;
typedef BOOST_DEDUCED_TYPENAME caster_type_lazy::type caster_type;
return caster_type::try_convert(arg, result);
}
template <typename Target, typename CharacterT>
inline bool try_lexical_convert(const CharacterT* chars, std::size_t count, Target& result)
{
BOOST_STATIC_ASSERT_MSG(
boost::detail::is_character<CharacterT>::value,
"This overload of try_lexical_convert is meant to be used only with arrays of characters."
);
return ::boost::conversion::detail::try_lexical_convert(
::boost::iterator_range<const CharacterT*>(chars, chars + count), result
);
}
}} // namespace conversion::detail
namespace conversion {
// ADL barrier
using ::boost::conversion::detail::try_lexical_convert;
}
template <typename Target, typename Source>
inline Target lexical_cast(const Source &arg)
{
Target result;
if (!boost::conversion::detail::try_lexical_convert(arg, result))
BOOST_LCAST_THROW_BAD_CAST(Source, Target);
return result;
}
template <typename Target>
inline Target lexical_cast(const char* chars, std::size_t count)
{
return ::boost::lexical_cast<Target>(
::boost::iterator_range<const char*>(chars, chars + count)
);
}
template <typename Target>
inline Target lexical_cast(const unsigned char* chars, std::size_t count)
{
return ::boost::lexical_cast<Target>(
::boost::iterator_range<const unsigned char*>(chars, chars + count)
);
}
template <typename Target>
inline Target lexical_cast(const signed char* chars, std::size_t count)
{
return ::boost::lexical_cast<Target>(
::boost::iterator_range<const signed char*>(chars, chars + count)
);
}
#ifndef BOOST_LCAST_NO_WCHAR_T
template <typename Target>
inline Target lexical_cast(const wchar_t* chars, std::size_t count)
{
return ::boost::lexical_cast<Target>(
::boost::iterator_range<const wchar_t*>(chars, chars + count)
);
}
#endif
#ifndef BOOST_NO_CXX11_CHAR16_T
template <typename Target>
inline Target lexical_cast(const char16_t* chars, std::size_t count)
{
return ::boost::lexical_cast<Target>(
::boost::iterator_range<const char16_t*>(chars, chars + count)
);
}
#endif
#ifndef BOOST_NO_CXX11_CHAR32_T
template <typename Target>
inline Target lexical_cast(const char32_t* chars, std::size_t count)
{
return ::boost::lexical_cast<Target>(
::boost::iterator_range<const char32_t*>(chars, chars + count)
);
}
#endif
} // namespace boost
#else
namespace boost {
namespace detail
{
// selectors for choosing stream character type
template<typename Type>
struct stream_char
{
typedef char type;
};
#ifndef BOOST_LCAST_NO_WCHAR_T
#ifndef BOOST_NO_INTRINSIC_WCHAR_T
template<>
struct stream_char<wchar_t>
{
typedef wchar_t type;
};
#endif
template<>
struct stream_char<wchar_t *>
{
typedef wchar_t type;
};
template<>
struct stream_char<const wchar_t *>
{
typedef wchar_t type;
};
template<>
struct stream_char<std::wstring>
{
typedef wchar_t type;
};
#endif
// stream wrapper for handling lexical conversions
template<typename Target, typename Source, typename Traits>
class lexical_stream
{
private:
typedef typename widest_char<
typename stream_char<Target>::type,
typename stream_char<Source>::type>::type char_type;
typedef Traits traits_type;
public:
lexical_stream(char_type* = 0, char_type* = 0)
{
stream.unsetf(std::ios::skipws);
lcast_set_precision(stream, static_cast<Source*>(0), static_cast<Target*>(0) );
}
~lexical_stream()
{
#if defined(BOOST_NO_STRINGSTREAM)
stream.freeze(false);
#endif
}
bool operator<<(const Source &input)
{
return !(stream << input).fail();
}
template<typename InputStreamable>
bool operator>>(InputStreamable &output)
{
return !is_pointer<InputStreamable>::value &&
stream >> output &&
stream.get() == traits_type::eof();
}
bool operator>>(std::string &output)
{
#if defined(BOOST_NO_STRINGSTREAM)
stream << '\0';
#endif
stream.str().swap(output);
return true;
}
#ifndef BOOST_LCAST_NO_WCHAR_T
bool operator>>(std::wstring &output)
{
stream.str().swap(output);
return true;
}
#endif
private:
#if defined(BOOST_NO_STRINGSTREAM)
std::strstream stream;
#elif defined(BOOST_NO_STD_LOCALE)
std::stringstream stream;
#else
std::basic_stringstream<char_type,traits_type> stream;
#endif
};
}
// call-by-value fallback version (deprecated)
template<typename Target, typename Source>
Target lexical_cast(Source arg)
{
typedef typename detail::widest_char<
BOOST_DEDUCED_TYPENAME detail::stream_char<Target>::type
, BOOST_DEDUCED_TYPENAME detail::stream_char<Source>::type
>::type char_type;
typedef std::char_traits<char_type> traits;
detail::lexical_stream<Target, Source, traits> interpreter;
Target result;
if(!(interpreter << arg && interpreter >> result))
BOOST_LCAST_THROW_BAD_CAST(Source, Target);
return result;
}
} // namespace boost
#endif
// Copyright Kevlin Henney, 2000-2005.
// Copyright Alexander Nasonov, 2006-2010.
// Copyright Antony Polukhin, 2011-2014.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#undef BOOST_LCAST_THROW_BAD_CAST
#undef BOOST_LCAST_NO_WCHAR_T
#endif // BOOST_LEXICAL_CAST_INCLUDED