Implementation of Montgomery point addition in the circuit.

This commit is contained in:
Sean Bowe 2017-12-22 02:57:34 -07:00
parent 041060e5ca
commit 87548f3d1d
No known key found for this signature in database
GPG Key ID: 95684257D8F8B031
2 changed files with 193 additions and 3 deletions

View File

@ -103,6 +103,21 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
Ok(p)
}
/// Interprets an (x, y) pair as a point
/// in Montgomery, does not check that it's
/// on the curve. Useful for constants and
/// window table lookups.
pub fn interpret_unchecked(
x: AllocatedNum<E, Var>,
y: AllocatedNum<E, Var>
) -> Self
{
MontgomeryPoint {
x: x,
y: y
}
}
pub fn interpret<CS>(
mut cs: CS,
x: &AllocatedNum<E, Var>,
@ -131,6 +146,99 @@ impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
})
}
/// Performs an affine point addition, not defined for
/// coincident points.
pub fn add<CS>(
&self,
mut cs: CS,
other: &Self,
params: &E::Params
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E, Variable=Var>
{
// Compute lambda = (y' - y) / (x' - x)
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
let mut n = *other.y.get_value().get()?;
n.sub_assign(self.y.get_value().get()?);
let mut d = *other.x.get_value().get()?;
d.sub_assign(self.x.get_value().get()?);
match d.inverse() {
Some(d) => {
n.mul_assign(&d);
Ok(n)
},
None => {
// TODO: add more descriptive error
Err(SynthesisError::AssignmentMissing)
}
}
})?;
cs.enforce(
|| "evaluate lambda",
LinearCombination::<Var, E>::zero() + other.x.get_variable()
- self.x.get_variable(),
LinearCombination::zero() + lambda.get_variable(),
LinearCombination::<Var, E>::zero() + other.y.get_variable()
- self.y.get_variable()
);
// Compute x'' = lambda^2 - A - x - x'
let xprime = AllocatedNum::alloc(cs.namespace(|| "xprime"), || {
let mut t0 = *lambda.get_value().get()?;
t0.square();
t0.sub_assign(params.montgomery_a());
t0.sub_assign(self.x.get_value().get()?);
t0.sub_assign(other.x.get_value().get()?);
Ok(t0)
})?;
// (lambda) * (lambda) = (A + x + x' + x'')
let one = cs.one();
cs.enforce(
|| "evaluate xprime",
LinearCombination::zero() + lambda.get_variable(),
LinearCombination::zero() + lambda.get_variable(),
LinearCombination::<Var, E>::zero() + (*params.montgomery_a(), one)
+ self.x.get_variable()
+ other.x.get_variable()
+ xprime.get_variable()
);
// Compute y' = -(y + lambda(x' - x))
let yprime = AllocatedNum::alloc(cs.namespace(|| "yprime"), || {
let mut t0 = *xprime.get_value().get()?;
t0.sub_assign(self.x.get_value().get()?);
t0.mul_assign(lambda.get_value().get()?);
t0.add_assign(self.y.get_value().get()?);
t0.negate();
Ok(t0)
})?;
// y' + y = lambda(x - x')
cs.enforce(
|| "evaluate yprime",
LinearCombination::zero() + self.x.get_variable()
- xprime.get_variable(),
LinearCombination::zero() + lambda.get_variable(),
LinearCombination::<Var, E>::zero() + yprime.get_variable()
+ self.y.get_variable()
);
Ok(MontgomeryPoint {
x: xprime,
y: yprime
})
}
/// Performs an affine point doubling, not defined for
/// the point of order two (0, 0).
pub fn double<CS>(
@ -299,7 +407,7 @@ mod test {
num_unsatisfied += 1;
} else {
let p = p.unwrap();
let (x, y) = expected.unwrap();
let (x, y) = expected.unwrap().into_xy().unwrap();
assert_eq!(p.x.get_value().unwrap(), x);
assert_eq!(p.y.get_value().unwrap(), y);
@ -384,6 +492,84 @@ mod test {
assert!(p.double(&mut cs, params).is_err());
}
#[test]
fn test_addition() {
let params = &JubjubBls12::new();
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for _ in 0..100 {
let p1 = loop {
let x: Fr = rng.gen();
let s: bool = rng.gen();
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
break p;
}
};
let p2 = loop {
let x: Fr = rng.gen();
let s: bool = rng.gen();
if let Some(p) = montgomery::Point::<Bls12, _>::get_for_x(x, s, params) {
break p;
}
};
let p3 = p1.add(&p2, params);
let (x0, y0) = p1.into_xy().unwrap();
let (x1, y1) = p2.into_xy().unwrap();
let (x2, y2) = p3.into_xy().unwrap();
let mut cs = TestConstraintSystem::<Bls12>::new();
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
Ok(x0)
}).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
Ok(y0)
}).unwrap();
let num_x1 = AllocatedNum::alloc(cs.namespace(|| "x1"), || {
Ok(x1)
}).unwrap();
let num_y1 = AllocatedNum::alloc(cs.namespace(|| "y1"), || {
Ok(y1)
}).unwrap();
let p1 = MontgomeryPoint {
x: num_x0,
y: num_y0
};
let p2 = MontgomeryPoint {
x: num_x1,
y: num_y1
};
let p3 = p1.add(cs.namespace(|| "addition"), &p2, params).unwrap();
assert!(cs.is_satisfied());
assert!(p3.x.get_value().unwrap() == x2);
assert!(p3.y.get_value().unwrap() == y2);
cs.set("addition/yprime/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate yprime"));
cs.set("addition/yprime/num", y2);
assert!(cs.is_satisfied());
cs.set("addition/xprime/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate xprime"));
cs.set("addition/xprime/num", x2);
assert!(cs.is_satisfied());
cs.set("addition/lambda/num", rng.gen());
assert_eq!(cs.which_is_unsatisfied(), Some("addition/evaluate lambda"));
}
}
#[test]
fn test_doubling() {
let params = &JubjubBls12::new();

View File

@ -10,7 +10,7 @@ use digest::{FixedOutput, Input};
pub fn group_hash<E: JubjubEngine>(
tag: &[u8],
params: &E::Params
) -> Option<(E::Fr, E::Fr)>
) -> Option<montgomery::Point<E, PrimeOrder>>
{
// Check to see that scalar field is 255 bits
assert!(E::Fr::NUM_BITS == 255);
@ -33,7 +33,11 @@ pub fn group_hash<E: JubjubEngine>(
// Enter into the prime order subgroup
let p = p.mul_by_cofactor(params);
p.into_xy()
if p != montgomery::Point::zero() {
Some(p)
} else {
None
}
} else {
None
}