sapling-crypto/src/circuit/num.rs

623 lines
17 KiB
Rust

use pairing::{
Engine,
Field,
PrimeField,
PrimeFieldRepr,
BitIterator
};
use bellman::{
SynthesisError,
ConstraintSystem,
LinearCombination,
Variable
};
use super::{
Assignment
};
use super::boolean::{
self,
Boolean,
AllocatedBit
};
pub struct AllocatedNum<E: Engine> {
value: Option<E::Fr>,
variable: Variable
}
impl<E: Engine> Clone for AllocatedNum<E> {
fn clone(&self) -> Self {
AllocatedNum {
value: self.value,
variable: self.variable
}
}
}
impl<E: Engine> AllocatedNum<E> {
pub fn alloc<CS, F>(
mut cs: CS,
value: F,
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>,
F: FnOnce() -> Result<E::Fr, SynthesisError>
{
let mut new_value = None;
let var = cs.alloc(|| "num", || {
let tmp = value()?;
new_value = Some(tmp);
Ok(tmp)
})?;
Ok(AllocatedNum {
value: new_value,
variable: var
})
}
pub fn inputize<CS>(
&self,
mut cs: CS
) -> Result<(), SynthesisError>
where CS: ConstraintSystem<E>
{
let input = cs.alloc_input(
|| "input variable",
|| {
Ok(*self.value.get()?)
}
)?;
cs.enforce(
|| "enforce input is correct",
|lc| lc + input,
|lc| lc + CS::one(),
|lc| lc + self.variable
);
Ok(())
}
/// Deconstructs this allocated number into its
/// boolean representation in little-endian bit
/// order, requiring that the representation
/// strictly exists "in the field" (i.e., a
/// congruency is not allowed.)
pub fn into_bits_le_strict<CS>(
&self,
mut cs: CS
) -> Result<Vec<Boolean>, SynthesisError>
where CS: ConstraintSystem<E>
{
pub fn kary_and<E, CS>(
mut cs: CS,
v: &[AllocatedBit]
) -> Result<AllocatedBit, SynthesisError>
where E: Engine,
CS: ConstraintSystem<E>
{
assert!(v.len() > 0);
// Let's keep this simple for now and just AND them all
// manually
let mut cur = None;
for (i, v) in v.iter().enumerate() {
if cur.is_none() {
cur = Some(v.clone());
} else {
cur = Some(AllocatedBit::and(
cs.namespace(|| format!("and {}", i)),
cur.as_ref().unwrap(),
v
)?);
}
}
Ok(cur.expect("v.len() > 0"))
}
// We want to ensure that the bit representation of a is
// less than or equal to r - 1.
let mut a = self.value.map(|e| BitIterator::new(e.into_repr()));
let mut b = E::Fr::char();
b.sub_noborrow(&1.into());
let mut result = vec![];
// Runs of ones in r
let mut last_run = None;
let mut current_run = vec![];
let mut found_one = false;
let mut i = 0;
for b in BitIterator::new(b) {
let a_bit = a.as_mut().map(|e| e.next().unwrap());
// Skip over unset bits at the beginning
found_one |= b;
if !found_one {
// a_bit should also be false
a_bit.map(|e| assert!(!e));
continue;
}
if b {
// This is part of a run of ones. Let's just
// allocate the boolean with the expected value.
let a_bit = AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
a_bit
)?;
// ... and add it to the current run of ones.
current_run.push(a_bit.clone());
result.push(a_bit);
} else {
if current_run.len() > 0 {
// This is the start of a run of zeros, but we need
// to k-ary AND against `last_run` first.
if last_run.is_some() {
current_run.push(last_run.clone().unwrap());
}
last_run = Some(kary_and(
cs.namespace(|| format!("run ending at {}", i)),
&current_run
)?);
current_run.truncate(0);
}
// If `last_run` is true, `a` must be false, or it would
// not be in the field.
//
// If `last_run` is false, `a` can be true or false.
let a_bit = AllocatedBit::alloc_conditionally(
cs.namespace(|| format!("bit {}", i)),
a_bit,
&last_run.as_ref().expect("char always starts with a one")
)?;
result.push(a_bit);
}
i += 1;
}
// char is prime, so we'll always end on
// a run of zeros.
assert_eq!(current_run.len(), 0);
// Now, we have `result` in big-endian order.
// However, now we have to unpack self!
let mut lc = LinearCombination::zero();
let mut coeff = E::Fr::one();
for bit in result.iter().rev() {
lc = lc + (coeff, bit.get_variable());
coeff.double();
}
lc = lc - self.variable;
cs.enforce(
|| "unpacking constraint",
|lc| lc,
|lc| lc,
|_| lc
);
// Convert into booleans, and reverse for little-endian bit order
Ok(result.into_iter().map(|b| Boolean::from(b)).rev().collect())
}
/// Convert the allocated number into its little-endian representation.
/// Note that this does not strongly enforce that the commitment is
/// "in the field."
pub fn into_bits_le<CS>(
&self,
mut cs: CS
) -> Result<Vec<Boolean>, SynthesisError>
where CS: ConstraintSystem<E>
{
let bits = boolean::field_into_allocated_bits_le(
&mut cs,
self.value
)?;
let mut lc = LinearCombination::zero();
let mut coeff = E::Fr::one();
for bit in bits.iter() {
lc = lc + (coeff, bit.get_variable());
coeff.double();
}
lc = lc - self.variable;
cs.enforce(
|| "unpacking constraint",
|lc| lc,
|lc| lc,
|_| lc
);
Ok(bits.into_iter().map(|b| Boolean::from(b)).collect())
}
pub fn mul<CS>(
&self,
mut cs: CS,
other: &Self
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>
{
let mut value = None;
let var = cs.alloc(|| "product num", || {
let mut tmp = *self.value.get()?;
tmp.mul_assign(other.value.get()?);
value = Some(tmp);
Ok(tmp)
})?;
// Constrain: a * b = ab
cs.enforce(
|| "multiplication constraint",
|lc| lc + self.variable,
|lc| lc + other.variable,
|lc| lc + var
);
Ok(AllocatedNum {
value: value,
variable: var
})
}
pub fn square<CS>(
&self,
mut cs: CS
) -> Result<Self, SynthesisError>
where CS: ConstraintSystem<E>
{
let mut value = None;
let var = cs.alloc(|| "squared num", || {
let mut tmp = *self.value.get()?;
tmp.square();
value = Some(tmp);
Ok(tmp)
})?;
// Constrain: a * a = aa
cs.enforce(
|| "squaring constraint",
|lc| lc + self.variable,
|lc| lc + self.variable,
|lc| lc + var
);
Ok(AllocatedNum {
value: value,
variable: var
})
}
pub fn assert_nonzero<CS>(
&self,
mut cs: CS
) -> Result<(), SynthesisError>
where CS: ConstraintSystem<E>
{
let inv = cs.alloc(|| "ephemeral inverse", || {
let tmp = *self.value.get()?;
if tmp.is_zero() {
Err(SynthesisError::DivisionByZero)
} else {
Ok(tmp.inverse().unwrap())
}
})?;
// Constrain a * inv = 1, which is only valid
// iff a has a multiplicative inverse, untrue
// for zero.
cs.enforce(
|| "nonzero assertion constraint",
|lc| lc + self.variable,
|lc| lc + inv,
|lc| lc + CS::one()
);
Ok(())
}
/// Takes two allocated numbers (a, b) and returns
/// (b, a) if the condition is true, and (a, b)
/// otherwise.
pub fn conditionally_reverse<CS>(
mut cs: CS,
a: &Self,
b: &Self,
condition: &Boolean
) -> Result<(Self, Self), SynthesisError>
where CS: ConstraintSystem<E>
{
let c = Self::alloc(
cs.namespace(|| "conditional reversal result 1"),
|| {
if *condition.get_value().get()? {
Ok(*b.value.get()?)
} else {
Ok(*a.value.get()?)
}
}
)?;
cs.enforce(
|| "first conditional reversal",
|lc| lc + a.variable - b.variable,
|_| condition.lc(CS::one(), E::Fr::one()),
|lc| lc + a.variable - c.variable
);
let d = Self::alloc(
cs.namespace(|| "conditional reversal result 2"),
|| {
if *condition.get_value().get()? {
Ok(*a.value.get()?)
} else {
Ok(*b.value.get()?)
}
}
)?;
cs.enforce(
|| "second conditional reversal",
|lc| lc + b.variable - a.variable,
|_| condition.lc(CS::one(), E::Fr::one()),
|lc| lc + b.variable - d.variable
);
Ok((c, d))
}
pub fn get_value(&self) -> Option<E::Fr> {
self.value
}
pub fn get_variable(&self) -> Variable {
self.variable
}
}
pub struct Num<E: Engine> {
value: Option<E::Fr>,
lc: LinearCombination<E>
}
impl<E: Engine> From<AllocatedNum<E>> for Num<E> {
fn from(num: AllocatedNum<E>) -> Num<E> {
Num {
value: num.value,
lc: LinearCombination::<E>::zero() + num.variable
}
}
}
impl<E: Engine> Num<E> {
pub fn zero() -> Self {
Num {
value: Some(E::Fr::zero()),
lc: LinearCombination::zero()
}
}
pub fn get_value(&self) -> Option<E::Fr> {
self.value
}
pub fn lc(&self, coeff: E::Fr) -> LinearCombination<E> {
LinearCombination::zero() + (coeff, &self.lc)
}
pub fn add_bool_with_coeff(
self,
one: Variable,
bit: &Boolean,
coeff: E::Fr
) -> Self
{
let newval = match (self.value, bit.get_value()) {
(Some(mut curval), Some(bval)) => {
if bval {
curval.add_assign(&coeff);
}
Some(curval)
},
_ => None
};
Num {
value: newval,
lc: self.lc + &bit.lc(one, coeff)
}
}
}
#[cfg(test)]
mod test {
use rand::{SeedableRng, Rand, Rng, XorShiftRng};
use bellman::{ConstraintSystem};
use pairing::bls12_381::{Bls12, Fr};
use pairing::{Field, PrimeField, BitIterator};
use ::circuit::test::*;
use super::{AllocatedNum, Boolean};
#[test]
fn test_allocated_num() {
let mut cs = TestConstraintSystem::<Bls12>::new();
AllocatedNum::alloc(&mut cs, || Ok(Fr::one())).unwrap();
assert!(cs.get("num") == Fr::one());
}
#[test]
fn test_num_squaring() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::from_str("3").unwrap())).unwrap();
let n2 = n.square(&mut cs).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("squared num") == Fr::from_str("9").unwrap());
assert!(n2.value.unwrap() == Fr::from_str("9").unwrap());
cs.set("squared num", Fr::from_str("10").unwrap());
assert!(!cs.is_satisfied());
}
#[test]
fn test_num_multiplication() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::from_str("12").unwrap())).unwrap();
let n2 = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::from_str("10").unwrap())).unwrap();
let n3 = n.mul(&mut cs, &n2).unwrap();
assert!(cs.is_satisfied());
assert!(cs.get("product num") == Fr::from_str("120").unwrap());
assert!(n3.value.unwrap() == Fr::from_str("120").unwrap());
cs.set("product num", Fr::from_str("121").unwrap());
assert!(!cs.is_satisfied());
}
#[test]
fn test_num_conditional_reversal() {
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let a = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(rng.gen())).unwrap();
let b = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(rng.gen())).unwrap();
let condition = Boolean::constant(false);
let (c, d) = AllocatedNum::conditionally_reverse(&mut cs, &a, &b, &condition).unwrap();
assert!(cs.is_satisfied());
assert_eq!(a.value.unwrap(), c.value.unwrap());
assert_eq!(b.value.unwrap(), d.value.unwrap());
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let a = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(rng.gen())).unwrap();
let b = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(rng.gen())).unwrap();
let condition = Boolean::constant(true);
let (c, d) = AllocatedNum::conditionally_reverse(&mut cs, &a, &b, &condition).unwrap();
assert!(cs.is_satisfied());
assert_eq!(a.value.unwrap(), d.value.unwrap());
assert_eq!(b.value.unwrap(), c.value.unwrap());
}
}
#[test]
fn test_num_nonzero() {
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::from_str("3").unwrap())).unwrap();
n.assert_nonzero(&mut cs).unwrap();
assert!(cs.is_satisfied());
cs.set("ephemeral inverse", Fr::from_str("3").unwrap());
assert!(cs.which_is_unsatisfied() == Some("nonzero assertion constraint"));
}
{
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::zero())).unwrap();
assert!(n.assert_nonzero(&mut cs).is_err());
}
}
#[test]
fn test_into_bits_strict() {
let mut negone = Fr::one();
negone.negate();
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(negone)).unwrap();
n.into_bits_le_strict(&mut cs).unwrap();
assert!(cs.is_satisfied());
// make the bit representation the characteristic
cs.set("bit 254/boolean", Fr::one());
// this makes the conditional boolean constraint fail
assert_eq!(cs.which_is_unsatisfied().unwrap(), "bit 254/boolean constraint");
}
#[test]
fn test_into_bits() {
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for i in 0..200 {
let r = Fr::rand(&mut rng);
let mut cs = TestConstraintSystem::<Bls12>::new();
let n = AllocatedNum::alloc(&mut cs, || Ok(r)).unwrap();
let bits = if i % 2 == 0 {
n.into_bits_le(&mut cs).unwrap()
} else {
n.into_bits_le_strict(&mut cs).unwrap()
};
assert!(cs.is_satisfied());
for (b, a) in BitIterator::new(r.into_repr()).skip(1).zip(bits.iter().rev()) {
if let &Boolean::Is(ref a) = a {
assert_eq!(b, a.get_value().unwrap());
} else {
unreachable!()
}
}
cs.set("num", Fr::rand(&mut rng));
assert!(!cs.is_satisfied());
cs.set("num", r);
assert!(cs.is_satisfied());
for i in 0..Fr::NUM_BITS {
let name = format!("bit {}/boolean", i);
let cur = cs.get(&name);
let mut tmp = Fr::one();
tmp.sub_assign(&cur);
cs.set(&name, tmp);
assert!(!cs.is_satisfied());
cs.set(&name, cur);
assert!(cs.is_satisfied());
}
}
}
}