sapling-crypto/src/circuit/blake2s.rs

432 lines
16 KiB
Rust

use pairing::{
Engine,
};
use bellman::{
SynthesisError,
ConstraintSystem
};
use super::boolean::{
Boolean
};
use super::uint32::{
UInt32
};
/*
2.1. Parameters
The following table summarizes various parameters and their ranges:
| BLAKE2b | BLAKE2s |
--------------+------------------+------------------+
Bits in word | w = 64 | w = 32 |
Rounds in F | r = 12 | r = 10 |
Block bytes | bb = 128 | bb = 64 |
Hash bytes | 1 <= nn <= 64 | 1 <= nn <= 32 |
Key bytes | 0 <= kk <= 64 | 0 <= kk <= 32 |
Input bytes | 0 <= ll < 2**128 | 0 <= ll < 2**64 |
--------------+------------------+------------------+
G Rotation | (R1, R2, R3, R4) | (R1, R2, R3, R4) |
constants = | (32, 24, 16, 63) | (16, 12, 8, 7) |
--------------+------------------+------------------+
*/
const R1: usize = 16;
const R2: usize = 12;
const R3: usize = 8;
const R4: usize = 7;
/*
Round | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
----------+-------------------------------------------------+
SIGMA[0] | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
SIGMA[1] | 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 |
SIGMA[2] | 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 |
SIGMA[3] | 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 |
SIGMA[4] | 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 |
SIGMA[5] | 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 |
SIGMA[6] | 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11 |
SIGMA[7] | 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10 |
SIGMA[8] | 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5 |
SIGMA[9] | 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0 |
----------+-------------------------------------------------+
*/
const SIGMA: [[usize; 16]; 10] = [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
[14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3],
[11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4],
[7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8],
[9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13],
[2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9],
[12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11],
[13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10],
[6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5],
[10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0]
];
/*
3.1. Mixing Function G
The G primitive function mixes two input words, "x" and "y", into
four words indexed by "a", "b", "c", and "d" in the working vector
v[0..15]. The full modified vector is returned. The rotation
constants (R1, R2, R3, R4) are given in Section 2.1.
FUNCTION G( v[0..15], a, b, c, d, x, y )
|
| v[a] := (v[a] + v[b] + x) mod 2**w
| v[d] := (v[d] ^ v[a]) >>> R1
| v[c] := (v[c] + v[d]) mod 2**w
| v[b] := (v[b] ^ v[c]) >>> R2
| v[a] := (v[a] + v[b] + y) mod 2**w
| v[d] := (v[d] ^ v[a]) >>> R3
| v[c] := (v[c] + v[d]) mod 2**w
| v[b] := (v[b] ^ v[c]) >>> R4
|
| RETURN v[0..15]
|
END FUNCTION.
*/
fn mixing_g<E: Engine, CS: ConstraintSystem<E>>(
mut cs: CS,
v: &mut [UInt32],
a: usize,
b: usize,
c: usize,
d: usize,
x: &UInt32,
y: &UInt32
) -> Result<(), SynthesisError>
{
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 1"), &[v[a].clone(), v[b].clone(), x.clone()])?;
v[d] = v[d].xor(cs.namespace(|| "mixing step 2"), &v[a])?.rotr(R1);
v[c] = UInt32::addmany(cs.namespace(|| "mixing step 3"), &[v[c].clone(), v[d].clone()])?;
v[b] = v[b].xor(cs.namespace(|| "mixing step 4"), &v[c])?.rotr(R2);
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 5"), &[v[a].clone(), v[b].clone(), y.clone()])?;
v[d] = v[d].xor(cs.namespace(|| "mixing step 6"), &v[a])?.rotr(R3);
v[c] = UInt32::addmany(cs.namespace(|| "mixing step 7"), &[v[c].clone(), v[d].clone()])?;
v[b] = v[b].xor(cs.namespace(|| "mixing step 8"), &v[c])?.rotr(R4);
Ok(())
}
/*
3.2. Compression Function F
Compression function F takes as an argument the state vector "h",
message block vector "m" (last block is padded with zeros to full
block size, if required), 2w-bit offset counter "t", and final block
indicator flag "f". Local vector v[0..15] is used in processing. F
returns a new state vector. The number of rounds, "r", is 12 for
BLAKE2b and 10 for BLAKE2s. Rounds are numbered from 0 to r - 1.
FUNCTION F( h[0..7], m[0..15], t, f )
|
| // Initialize local work vector v[0..15]
| v[0..7] := h[0..7] // First half from state.
| v[8..15] := IV[0..7] // Second half from IV.
|
| v[12] := v[12] ^ (t mod 2**w) // Low word of the offset.
| v[13] := v[13] ^ (t >> w) // High word.
|
| IF f = TRUE THEN // last block flag?
| | v[14] := v[14] ^ 0xFF..FF // Invert all bits.
| END IF.
|
| // Cryptographic mixing
| FOR i = 0 TO r - 1 DO // Ten or twelve rounds.
| |
| | // Message word selection permutation for this round.
| | s[0..15] := SIGMA[i mod 10][0..15]
| |
| | v := G( v, 0, 4, 8, 12, m[s[ 0]], m[s[ 1]] )
| | v := G( v, 1, 5, 9, 13, m[s[ 2]], m[s[ 3]] )
| | v := G( v, 2, 6, 10, 14, m[s[ 4]], m[s[ 5]] )
| | v := G( v, 3, 7, 11, 15, m[s[ 6]], m[s[ 7]] )
| |
| | v := G( v, 0, 5, 10, 15, m[s[ 8]], m[s[ 9]] )
| | v := G( v, 1, 6, 11, 12, m[s[10]], m[s[11]] )
| | v := G( v, 2, 7, 8, 13, m[s[12]], m[s[13]] )
| | v := G( v, 3, 4, 9, 14, m[s[14]], m[s[15]] )
| |
| END FOR
|
| FOR i = 0 TO 7 DO // XOR the two halves.
| | h[i] := h[i] ^ v[i] ^ v[i + 8]
| END FOR.
|
| RETURN h[0..7] // New state.
|
END FUNCTION.
*/
fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
mut cs: CS,
h: &mut [UInt32],
m: &[UInt32],
t: u64,
f: bool
) -> Result<(), SynthesisError>
{
assert_eq!(h.len(), 8);
assert_eq!(m.len(), 16);
/*
static const uint32_t blake2s_iv[8] =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
*/
let mut v = Vec::with_capacity(16);
v.extend_from_slice(h);
v.push(UInt32::constant(0x6A09E667));
v.push(UInt32::constant(0xBB67AE85));
v.push(UInt32::constant(0x3C6EF372));
v.push(UInt32::constant(0xA54FF53A));
v.push(UInt32::constant(0x510E527F));
v.push(UInt32::constant(0x9B05688C));
v.push(UInt32::constant(0x1F83D9AB));
v.push(UInt32::constant(0x5BE0CD19));
assert_eq!(v.len(), 16);
v[12] = v[12].xor(cs.namespace(|| "first xor"), &UInt32::constant(t as u32))?;
v[13] = v[13].xor(cs.namespace(|| "second xor"), &UInt32::constant((t >> 32) as u32))?;
if f {
v[14] = v[14].xor(cs.namespace(|| "third xor"), &UInt32::constant(u32::max_value()))?;
}
for i in 0..10 {
let mut cs = cs.namespace(|| format!("round {}", i));
let s = SIGMA[i % 10];
mixing_g(cs.namespace(|| "mixing invocation 1"), &mut v, 0, 4, 8, 12, &m[s[ 0]], &m[s[ 1]])?;
mixing_g(cs.namespace(|| "mixing invocation 2"), &mut v, 1, 5, 9, 13, &m[s[ 2]], &m[s[ 3]])?;
mixing_g(cs.namespace(|| "mixing invocation 3"), &mut v, 2, 6, 10, 14, &m[s[ 4]], &m[s[ 5]])?;
mixing_g(cs.namespace(|| "mixing invocation 4"), &mut v, 3, 7, 11, 15, &m[s[ 6]], &m[s[ 7]])?;
mixing_g(cs.namespace(|| "mixing invocation 5"), &mut v, 0, 5, 10, 15, &m[s[ 8]], &m[s[ 9]])?;
mixing_g(cs.namespace(|| "mixing invocation 6"), &mut v, 1, 6, 11, 12, &m[s[10]], &m[s[11]])?;
mixing_g(cs.namespace(|| "mixing invocation 7"), &mut v, 2, 7, 8, 13, &m[s[12]], &m[s[13]])?;
mixing_g(cs.namespace(|| "mixing invocation 8"), &mut v, 3, 4, 9, 14, &m[s[14]], &m[s[15]])?;
}
for i in 0..8 {
let mut cs = cs.namespace(|| format!("h[{i}] ^ v[{i}] ^ v[{i} + 8]", i=i));
h[i] = h[i].xor(cs.namespace(|| "first xor"), &v[i])?;
h[i] = h[i].xor(cs.namespace(|| "second xor"), &v[i + 8])?;
}
Ok(())
}
/*
FUNCTION BLAKE2( d[0..dd-1], ll, kk, nn )
|
| h[0..7] := IV[0..7] // Initialization Vector.
|
| // Parameter block p[0]
| h[0] := h[0] ^ 0x01010000 ^ (kk << 8) ^ nn
|
| // Process padded key and data blocks
| IF dd > 1 THEN
| | FOR i = 0 TO dd - 2 DO
| | | h := F( h, d[i], (i + 1) * bb, FALSE )
| | END FOR.
| END IF.
|
| // Final block.
| IF kk = 0 THEN
| | h := F( h, d[dd - 1], ll, TRUE )
| ELSE
| | h := F( h, d[dd - 1], ll + bb, TRUE )
| END IF.
|
| RETURN first "nn" bytes from little-endian word array h[].
|
END FUNCTION.
*/
pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
mut cs: CS,
input: &[Boolean],
personalization: &[u8]
) -> Result<Vec<Boolean>, SynthesisError>
{
use byteorder::{ByteOrder, LittleEndian};
assert_eq!(personalization.len(), 8);
assert!(input.len() % 8 == 0);
let mut h = Vec::with_capacity(8);
h.push(UInt32::constant(0x6A09E667 ^ 0x01010000 ^ 32));
h.push(UInt32::constant(0xBB67AE85));
h.push(UInt32::constant(0x3C6EF372));
h.push(UInt32::constant(0xA54FF53A));
h.push(UInt32::constant(0x510E527F));
h.push(UInt32::constant(0x9B05688C));
// Personalization is stored here
h.push(UInt32::constant(0x1F83D9AB ^ LittleEndian::read_u32(&personalization[0..4])));
h.push(UInt32::constant(0x5BE0CD19 ^ LittleEndian::read_u32(&personalization[4..8])));
let mut blocks: Vec<Vec<UInt32>> = vec![];
for block in input.chunks(512) {
let mut this_block = Vec::with_capacity(16);
for word in block.chunks(32) {
let mut tmp = word.to_vec();
while tmp.len() < 32 {
tmp.push(Boolean::constant(false));
}
this_block.push(UInt32::from_bits(&tmp));
}
while this_block.len() < 16 {
this_block.push(UInt32::constant(0));
}
blocks.push(this_block);
}
if blocks.len() == 0 {
blocks.push((0..16).map(|_| UInt32::constant(0)).collect());
}
for (i, block) in blocks[0..blocks.len() - 1].iter().enumerate() {
let cs = cs.namespace(|| format!("block {}", i));
blake2s_compression(cs, &mut h, block, ((i as u64) + 1) * 64, false)?;
}
{
let cs = cs.namespace(|| "final block");
blake2s_compression(cs, &mut h, &blocks[blocks.len() - 1], (input.len() / 8) as u64, true)?;
}
Ok(h.iter().flat_map(|b| b.into_bits()).collect())
}
#[cfg(test)]
mod test {
use rand::{XorShiftRng, SeedableRng, Rng};
use pairing::bls12_381::{Bls12};
use ::circuit::boolean::{Boolean, AllocatedBit};
use ::circuit::test::TestConstraintSystem;
use super::blake2s;
use bellman::{ConstraintSystem};
use blake2_rfc::blake2s::Blake2s;
#[test]
fn test_blank_hash() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let input_bits = vec![];
let out = blake2s(&mut cs, &input_bits, b"12345678").unwrap();
assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 0);
// >>> import blake2s from hashlib
// >>> h = blake2s(digest_size=32, person=b'12345678')
// >>> h.hexdigest()
let expected = hex!("c59f682376d137f3f255e671e207d1f2374ebe504e9314208a52d9f88d69e8c8");
let mut out = out.into_iter();
for b in expected.into_iter() {
for i in (0..8).rev() {
let c = out.next().unwrap().get_value().unwrap();
assert_eq!(c, (b >> i) & 1u8 == 1u8);
}
}
}
#[test]
fn test_blake2s_constraints() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let input_bits: Vec<_> = (0..512).map(|i| AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true)).unwrap().into()).collect();
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 21792);
}
#[test]
fn test_blake2s_precomp_constraints() {
// Test that 512 fixed leading bits (constants)
// doesn't result in more constraints.
let mut cs = TestConstraintSystem::<Bls12>::new();
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
let input_bits: Vec<_> = (0..512)
.map(|_| Boolean::constant(rng.gen()))
.chain((0..512)
.map(|i| AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true)).unwrap().into()))
.collect();
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 21792);
}
#[test]
fn test_blake2s_constant_constraints() {
let mut cs = TestConstraintSystem::<Bls12>::new();
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
let input_bits: Vec<_> = (0..512).map(|_| Boolean::constant(rng.gen())).collect();
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
assert_eq!(cs.num_constraints(), 0);
}
#[test]
fn test_blake2s() {
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0))
{
let mut h = Blake2s::with_params(32, &[], &[], b"12345678");
let data: Vec<u8> = (0..input_len).map(|_| rng.gen()).collect();
h.update(&data);
let hash_result = h.finalize();
let mut cs = TestConstraintSystem::<Bls12>::new();
let mut input_bits = vec![];
for (byte_i, input_byte) in data.into_iter().enumerate() {
for bit_i in (0..8).rev() {
let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i));
input_bits.push(AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8)).unwrap().into());
}
}
let r = blake2s(&mut cs, &input_bits, b"12345678").unwrap();
assert!(cs.is_satisfied());
let mut s = hash_result.as_ref().iter()
.flat_map(|&byte| (0..8).rev().map(move |i| (byte >> i) & 1u8 == 1u8));
for b in r {
match b {
Boolean::Is(b) => {
assert!(s.next().unwrap() == b.get_value().unwrap());
},
Boolean::Not(b) => {
assert!(s.next().unwrap() != b.get_value().unwrap());
},
Boolean::Constant(b) => {
assert!(input_len == 0);
assert!(s.next().unwrap() == b);
}
}
}
}
}
}