Merge pull request #198 from zcash/book-sarkar

[book] Add Sarkar sqrt explanation to Fields section
This commit is contained in:
ebfull 2021-02-22 16:39:23 -07:00 committed by GitHub
commit 2e8af8f0ca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 89 additions and 3 deletions

View File

@ -254,11 +254,97 @@ describes the general strategy. (There is another square root algorithm that use
quadratic extension fields, but it doesn't pay off in efficiency until the prime becomes
quite large.)
> TODO: describe more recent algorithms, e.g. Bernstein's table-based method and
> [eprint 2020/1407](https://eprint.iacr.org/2020/1407).
[ts-sqrt]: https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
### Sarkar square-root algorithm (table-based variant)
We use a technique from [Sarkar2020](https://eprint.iacr.org/2020/1407.pdf) to compute
square roots in `halo2`. The intuition behind the algorithm is that we can split the task
into computing square roots in each multiplicative subgroup.
Suppose we want to find the square root of $u$ modulo an odd prime $p$, where $u$ is a
non-zero square in $\mathbb{Z}_p^\times$. We write $p - 1 \equiv 2^{n}m$ with $n \geq 1$
and $m$ odd; $g = z^m$ where $z$ is a non-square in $\mathbb{Z}_p^\times$.
Let $x_3 = uv^2, x_2 = x_3^{2^8}, x_1 = x_2^{2^8}, x_0 = x_1^{2^8}.$
#### Precompute the following tables:
$$
gtab = \begin{bmatrix}
g^0 & g^1 & ... & g^{255} \\
(g^{2^8})^0 & (g^{2^8})^1 & ... & (g^{2^8})^{255} \\
(g^{2^{16}})^0 & (g^{2^{16}})^1 & ... & (g^{2^{16}})^{255} \\
(g^{2^{24}})^0 & (g^{2^{24}})^1 & ... & (g^{2^{24}})^{255}
\end{bmatrix}
$$
$$
invtab = \begin{bmatrix}
(g^{2^{-24}})^0 & (g^{2^{-24}})^1 & ... & (g^{2^{-24}})^{255}
\end{bmatrix}
$$
### i = 0, 1
Using $invtab$, we lookup $t_0$ s.t. $x_0 = (g^{2^{-24}})^{t_0} \implies x_0 \cdot g^{t_0 \cdot 2^{24}} = 1.$
Update global variable: $t = t_0.$
Define $\alpha_1 = x_1 \cdot (g^{2^{16}})^{t}.$
### i = 2
Lookup $t_1$ s.t.
$$
\begin{array}{l}
\alpha_1 = (g^{2^{-24}})^{t_1} &\implies x_1 \cdot (g^{2^{16}})^{t_0} = (g^{2^{-24}})^{t_1} \\
&\implies
x_1 \cdot g^{(t_0 + 2^8 \cdot t_1) \cdot 2^{16}} = 1.
\end{array}
$$
Update global variable:
$t = t_0 + 2^8 \cdot t_1$
Define $\alpha_2 = x_2 \cdot (g^{2^8})^{t}.$
### i = 3
Lookup $t_2$ s.t.
$$
\begin{array}{l}
\alpha_2 = (g^{2^{-24}})^{t_2} &\implies x_2 \cdot (g^{2^8})^{t_0 + 2^8\cdot {t_1}} = (g^{2^{-24}})^{t_2} \\
&\implies x_2 \cdot (g^{2^8})^{t_0 + 2^8 \cdot t_1 + 2^{16} \cdot t_2} = 1.
\end{array}
$$
Update global variable:
$t = t_0 + 2^8 \cdot t_1 + 2^{16} \cdot t_2$
Define $\alpha_3 = x_3 \cdot g^{t}.$
### Final result
Lookup $t_3$ s.t.
$$
\begin{array}{l}
\alpha_3 = (g^{2^{-24}})^{t_3} &\implies x_3 \cdot g^{t_0 + 2^8\cdot {t_1} + 2^{16} \cdot t_2} = (g^{2^{-24}})^{t_3} \\
&\implies x_3 \cdot g^{t_0 + 2^8 \cdot t_1 + 2^{16} \cdot t_2 + 2^{24} \cdot t_3} = 1.
\end{array}
$$
Update global variable:
$t = t_0 + 2^8 \cdot t_1 + 2^{16} \cdot t_2 + 2^{24} \cdot t_3$
We can now write
$$
\begin{array}{l}
x_3 \cdot g^{t} = 1 &\implies x_3 \cdot g^{t + 1} = g \\
&\implies uv^2 \cdot g^{t + 1} = g \\
&\implies uv^2 = g^{-t} \\
&\implies uv \cdot g^{t / 2} = v^{-1} g^{-t / 2}.
\end{array}
$$
Squaring the RHS, we observe that $(v^{-1} g^{-t / 2})^2 = v^{-2}g^{-t} = u.$ Therefore, the square root of $u$ is $v^{-1} g^{-t / 2}.$
## Roots of unity
In the previous sections we wrote $p - 1 = 2^k \cdot t$ with $t$ odd, and stated that an