[book] Clarify upper bounds in canonicity shift constraints.

This commit is contained in:
ying tong 2021-07-26 12:05:25 +08:00 committed by GitHub
parent 14b8d9b048
commit 3833d665de
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 22 additions and 22 deletions

View File

@ -148,17 +148,17 @@ $\NullifierKey$).
### $\AuthSignPublic$ with $b_1 = 1 \implies \AuthSignPublic \geq 2^{254}$
In these cases, we check that $\textsf{ak}_{0..=253} < t_\mathbb{P} < 2^{126}$:
In these cases, we check that $\textsf{ak}_{0..=253} < t_\mathbb{P}$:
1. $b_1 = 1 \implies b_0 = 0.$
Since $b_1 = 1 \implies \AuthSignPublic_{0..=253} < 2^{126},$ we know that
Since $b_1 = 1 \implies \AuthSignPublic_{0..=253} < t_\mathbb{P} < 2^{126},$ we know that
$\AuthSignPublic_{126..=253} = 0,$ and in particular
$$b_0 := \AuthSignPublic_{250..=253} = 0.$$
2. $b_1 = 1 \implies 0 \leq a < 2^{126}.$
2. $b_1 = 1 \implies 0 \leq a < t_\mathbb{P}.$
To check that $a < 2^{126}$, we use two constraints:
To check that $a < t_\mathbb{P}$, we use two constraints:
a) $0 \leq a < 2^{130}$. This is expressed in the custom gate as
$$b_1 \cdot z_{a,13} = 0,$$
@ -183,15 +183,15 @@ $$
### $\NullifierKey$ with $d_1 = 1 \implies \NullifierKey \geq 2^{254}$
In these cases, we check that $\textsf{nk}_{0..=253} < t_\mathbb{P} < 2^{126}$:
In these cases, we check that $\textsf{nk}_{0..=253} < t_\mathbb{P}$:
1. $d_1 = 1 \implies d_0 = 0.$
Since $d_1 = 1 \implies \NullifierKey_{0..=253} < 2^{126},$ we know that $\NullifierKey_{126..=253} = 0,$ and in particular $$d_0 := \NullifierKey_{245..=253} = 0.$$
Since $d_1 = 1 \implies \NullifierKey_{0..=253} < t_\mathbb{P} < 2^{126},$ we know that $\NullifierKey_{126..=253} = 0,$ and in particular $$d_0 := \NullifierKey_{245..=253} = 0.$$
2. $d_1 = 1 \implies 0 \leq b_2 + 2^5 \cdot c < 2^{126}.$
2. $d_1 = 1 \implies 0 \leq b_2 + 2^5 \cdot c < t_\mathbb{P}.$
To check that $0 \leq b_2 + 2^5 \cdot c < 2^{126}$, we use two constraints:
To check that $0 \leq b_2 + 2^5 \cdot c < t_\mathbb{P}$, we use two constraints:
a) $0 \leq b_2 + 2^5 \cdot c < 2^{140}$. $b_2$ is already constrained individually to
be a $5$-bit value. $z_{c,13}$ is the index-13 running sum output by

View File

@ -232,17 +232,17 @@ below are enforced if and only if the corresponding top bit is set to 1.
### $\mathsf{x(g_d)}$ with $b_1 = 1 \implies \mathsf{x(g_d)} \geq 2^{254}$
In these cases, we check that $\mathsf{x(g_d)}_{0..=253} < t_\mathbb{P} < 2^{126}$:
In these cases, we check that $\mathsf{x(g_d)}_{0..=253} < t_\mathbb{P}$:
1. $b_1 = 1 \implies b_0 = 0.$
Since $b_1 = 1 \implies \mathsf{x(g_d)}_{0..=253} < 2^{126},$ we know that
Since $b_1 = 1 \implies \mathsf{x(g_d)}_{0..=253} < t_\mathbb{P} < 2^{126},$ we know that
$\mathsf{x(g_d)}_{126..=253} = 0,$ and in particular
$$b_0 := \mathsf{x(g_d)}_{250..=253} = 0.$$
2. $b_1 = 1 \implies 0 \leq a < 2^{126}.$
2. $b_1 = 1 \implies 0 \leq a < t_\mathbb{P}.$
To check that $a < 2^{126}$, we use two constraints:
To check that $a < t_\mathbb{P}$, we use two constraints:
a) $0 \leq a < 2^{130}$. This is expressed in the custom gate as
$$b_1 \cdot z_{a,13} = 0,$$
@ -267,11 +267,11 @@ $$
### $\mathsf{x(pk_d)}$ with $d_0 = 1 \implies \mathsf{x(pk_d)} \geq 2^{254}$
In these cases, we check that $\mathsf{x(pk_d)}_{0..=253} < t_\mathbb{P} < 2^{126}$:
In these cases, we check that $\mathsf{x(pk_d)}_{0..=253} < t_\mathbb{P}$:
1. $d_0 = 1 \implies 0 \leq b_3 + 2^{4} \cdot c < 2^{126}.$
1. $d_0 = 1 \implies 0 \leq b_3 + 2^{4} \cdot c < t_\mathbb{P}.$
To check that $0 \leq b_3 + 2^{4} \cdot c < 2^{126},$ we use two constraints:
To check that $0 \leq b_3 + 2^{4} \cdot c < t_\mathbb{P},$ we use two constraints:
a) $0 \leq b_3 + 2^{4} \cdot c < 2^{140}.$ $b_3$ is already constrained individually
to be a $4$-bit value. $z_{c,13}$ is the index-13 running sum output by
@ -296,11 +296,11 @@ $$
### $\rho$ with $g_0 = 1 \implies \rho \geq 2^{254}$
In these cases, we check that $\rho_{0..=253} < t_\mathbb{P} < 2^{126}$:
In these cases, we check that $\rho_{0..=253} < t_\mathbb{P}$:
1. $g_0 = 1 \implies 0 \leq e_1 + 2^{4} \cdot f < 2^{126}.$
1. $g_0 = 1 \implies 0 \leq e_1 + 2^{4} \cdot f < t_\mathbb{P}.$
To check that $0 \leq e_1 + 2^{4} \cdot f < 2^{126},$ we use two constraints:
To check that $0 \leq e_1 + 2^{4} \cdot f < t_\mathbb{P},$ we use two constraints:
a) $0 \leq e_1 + 2^{4} \cdot f < 2^{140}.$ $e_1$ is already constrained individually
to be a $4$-bit value. $z_{f,13}$ is the index-13 running sum output by
@ -325,16 +325,16 @@ $$
### $\psi$ with $h_1 = 1 \implies \psi \geq 2^{254}$
In these cases, we check that $\psi_{0..=253} < t_\mathbb{P} < 2^{126}$:
In these cases, we check that $\psi_{0..=253} < t_\mathbb{P}$:
1. $h_1 = 1 \implies h_0 = 0.$
Since $h_1 = 1 \implies \psi_{0..=253} < 2^{126},$ we know that $\psi_{126..=253} = 0,$
Since $h_1 = 1 \implies \psi_{0..=253} < t_\mathbb{P} < 2^{126},$ we know that $\psi_{126..=253} = 0,$
and in particular $h_0 := \psi_{249..=253} = 0.$
2. $h_1 = 1 \implies 0 \leq g_1 + 2^{9} \cdot g_2 < 2^{126}.$
2. $h_1 = 1 \implies 0 \leq g_1 + 2^{9} \cdot g_2 < t_\mathbb{P}.$
To check that $0 \leq g_1 + 2^{9} \cdot g_2 < 2^{126},$ we use two constraints:
To check that $0 \leq g_1 + 2^{9} \cdot g_2 < t_\mathbb{P},$ we use two constraints:
a) $0 \leq g_1 + 2^{9} \cdot g_2 < 2^{140}.$ $g_1$ is already constrained individually
to be a $9$-bit value. $z_{g,13}$ is the index-13 running sum output by