Remove query allocations from Proof::verify

multiopen::Proof::verify takes `queries: IntoIterator`, so we can just
pass it an iterator directly.
This commit is contained in:
Jack Grigg 2020-10-21 17:10:57 +01:00
parent 7f29ab913d
commit 6360da1f4e
1 changed files with 91 additions and 88 deletions

View File

@ -1,3 +1,5 @@
use std::iter;
use super::{Error, Proof, VerifyingKey};
use crate::arithmetic::{get_challenge_scalar, Challenge, CurveAffine, Field};
use crate::poly::{
@ -69,6 +71,7 @@ impl<'a, C: CurveAffine> Proof<C> {
// Sample x_3 challenge, which is used to ensure the circuit is
// satisfied with high probability.
let x_3: C::Scalar = get_challenge_scalar(Challenge(transcript.squeeze().get_lower_128()));
let x_3_inv = vk.domain.rotate_omega(x_3, Rotation(-1));
// This check ensures the circuit is satisfied so long as the polynomial
// commitments open to the correct values.
@ -87,100 +90,100 @@ impl<'a, C: CurveAffine> Proof<C> {
transcript.absorb_scalar(*eval);
}
let mut queries: Vec<VerifierQuery<'a, C>> = Vec::new();
for (query_index, &(column, at)) in vk.cs.advice_queries.iter().enumerate() {
let point = vk.domain.rotate_omega(x_3, at);
queries.push(VerifierQuery {
point,
commitment: &self.advice_commitments[column.index()],
eval: self.advice_evals[query_index],
});
}
for (query_index, &(column, at)) in vk.cs.aux_queries.iter().enumerate() {
let point = vk.domain.rotate_omega(x_3, at);
queries.push(VerifierQuery {
point,
commitment: &aux_commitments[column.index()],
eval: self.aux_evals[query_index],
});
}
for (query_index, &(column, at)) in vk.cs.fixed_queries.iter().enumerate() {
let point = vk.domain.rotate_omega(x_3, at);
queries.push(VerifierQuery {
point,
commitment: &vk.fixed_commitments[column.index()],
eval: self.fixed_evals[query_index],
});
}
for ((idx, _), &eval) in self
.h_commitments
.iter()
.enumerate()
.zip(self.h_evals.iter())
{
let commitment = &self.h_commitments[idx];
queries.push(VerifierQuery {
point: x_3,
commitment,
eval,
});
}
let queries =
iter::empty()
.chain(vk.cs.advice_queries.iter().enumerate().map(
|(query_index, &(column, at))| VerifierQuery {
point: vk.domain.rotate_omega(x_3, at),
commitment: &self.advice_commitments[column.index()],
eval: self.advice_evals[query_index],
},
))
.chain(
vk.cs
.aux_queries
.iter()
.enumerate()
.map(|(query_index, &(column, at))| VerifierQuery {
point: vk.domain.rotate_omega(x_3, at),
commitment: &aux_commitments[column.index()],
eval: self.aux_evals[query_index],
}),
)
.chain(vk.cs.fixed_queries.iter().enumerate().map(
|(query_index, &(column, at))| VerifierQuery {
point: vk.domain.rotate_omega(x_3, at),
commitment: &vk.fixed_commitments[column.index()],
eval: self.fixed_evals[query_index],
},
))
.chain(
self.h_commitments
.iter()
.enumerate()
.zip(self.h_evals.iter())
.map(|((idx, _), &eval)| VerifierQuery {
point: x_3,
commitment: &self.h_commitments[idx],
eval,
}),
);
// Handle permutation arguments, if any exist
if !vk.cs.permutations.is_empty() {
// Open permutation product commitments at x_3
for ((idx, _), &eval) in self
.permutation_product_commitments
.iter()
.enumerate()
.zip(self.permutation_product_evals.iter())
{
let commitment = &self.permutation_product_commitments[idx];
queries.push(VerifierQuery {
point: x_3,
commitment,
eval,
});
}
// Open permutation commitments for each permutation argument at x_3
for outer_idx in 0..vk.permutation_commitments.len() {
let inner_len = vk.permutation_commitments[outer_idx].len();
for inner_idx in 0..inner_len {
let commitment = &vk.permutation_commitments[outer_idx][inner_idx];
let eval = self.permutation_evals[outer_idx][inner_idx];
queries.push(VerifierQuery {
point: x_3,
commitment,
eval,
});
}
}
// Open permutation product commitments at \omega^{-1} x_3
let x_3_inv = vk.domain.rotate_omega(x_3, Rotation(-1));
for ((idx, _), &eval) in self
.permutation_product_commitments
.iter()
.enumerate()
.zip(self.permutation_product_inv_evals.iter())
{
let commitment = &self.permutation_product_commitments[idx];
queries.push(VerifierQuery {
point: x_3_inv,
commitment,
eval,
});
}
}
let permutation_queries = if !vk.cs.permutations.is_empty() {
Some(
iter::empty()
// Open permutation product commitments at x_3
.chain(
self.permutation_product_commitments
.iter()
.enumerate()
.zip(self.permutation_product_evals.iter())
.map(|((idx, _), &eval)| VerifierQuery {
point: x_3,
commitment: &self.permutation_product_commitments[idx],
eval,
}),
)
// Open permutation commitments for each permutation argument at x_3
.chain(
(0..vk.permutation_commitments.len())
.map(|outer_idx| {
let inner_len = vk.permutation_commitments[outer_idx].len();
(0..inner_len).map(move |inner_idx| VerifierQuery {
point: x_3,
commitment: &vk.permutation_commitments[outer_idx][inner_idx],
eval: self.permutation_evals[outer_idx][inner_idx],
})
})
.flatten(),
)
// Open permutation product commitments at \omega^{-1} x_3
.chain(
self.permutation_product_commitments
.iter()
.enumerate()
.zip(self.permutation_product_inv_evals.iter())
.map(|((idx, _), &eval)| VerifierQuery {
point: x_3_inv,
commitment: &self.permutation_product_commitments[idx],
eval,
}),
),
)
} else {
None
};
// We are now convinced the circuit is satisfied so long as the
// polynomial commitments open to the correct values.
self.multiopening
.verify(params, &mut transcript, queries, msm)
.verify(
params,
&mut transcript,
queries.chain(permutation_queries.into_iter().flatten()),
msm,
)
.map_err(|_| Error::OpeningError)
}