[book] Undo selector optimisations in Sinsemilla

- Instead of defining a synthetic q_S3 based on a combination of
  of q_S1, q_S2, we simply create another selector q_S3.
- Instead of using fixed_y_q as a nonbinary selector, replace it
  with q_S4 and copy the fixed value into a row above.

Co-authored-by: Daira Hopwood <daira@jacaranda.org>
This commit is contained in:
therealyingtong 2021-07-22 22:19:01 +08:00
parent bd28b46163
commit c5cda9481d
1 changed files with 43 additions and 32 deletions

View File

@ -80,59 +80,70 @@ In other words, $z_{n-i} = \sum\limits_{h=0}^{i-1} 2^{kh} \cdot m_{h+1}$.
>
> In order to support chaining multiple field elements without a gap, we will use a slightly more complicated expression for $m_{i+1}$ that effectively forces $\mathbf{z}_n$ to zero for the last step of each element, as indicated by $q_{S2}$. This allows the cell that would have been $\mathbf{z}_n$ to be used to reinitialize the running sum for the next element.
### Layout
Note: $q_{S3}$ is synthesized from $q_{S1}$ and $q_{S2}$; it is shown here only for clarity.
### Generator lookup table
The
$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\begin{array}{|c|c|c|}
\hline
\text{Step} & x_A & x_P & bits & \lambda_1 & \lambda_2 & q_{S1} & q_{S2} & q_{S3} & fixed\_y_Q & table_{idx} & table_x & table_y \\\hline
0 & x_Q & x_{P[m_1]} & z_0 & \lambda_{1,0} & \lambda_{2,0} & 1 & 1 & 0 & y_Q & 0 & x_{P[0]} & y_{P[0]} \\\hline
1 & x_{A,1} & x_{P[m_2]} & z_1 & \lambda_{1,1} & \lambda_{2,1} & 1 & 1 & 0 & 0 & 1 & x_{P[1]} & y_{P[1]} \\\hline
2 & x_{A,2} & x_{P[m_3]} & z_2 & \lambda_{1,2} & \lambda_{2,2} & 1 & 1 & 0 & 0 & 2 & x_{P[2]} & y_{P[2]} \\\hline
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 1 & 1 & 0 & 0 & \vdots & \vdots & \vdots \\\hline
n-1 & x_{A,n-1} & x_{P[m_n]} & z_{n-1} & \lambda_{1,n-1} & \lambda_{2,n-1} & 1 & 0 & 0 & 0 & \vdots & \vdots & \vdots \\\hline
0' & x'_{A,0} & x_{P[m'_1]} & z'_0 & \lambda'_{1,0} & \lambda'_{2,0} & 1 & 1 & 0 & 0 & \vdots & \vdots & \vdots \\\hline
1' & x'_{A,1} & x_{P[m'_2]} & z'_1 & \lambda'_{1,1} & \lambda'_{2,1} & 1 & 1 & 0 & 0 & \vdots & \vdots & \vdots \\\hline
2' & x'_{A,2} & x_{P[m'_3]} & z'_2 & \lambda'_{1,2} & \lambda'_{2,2} & 1 & 1 & 0 & 0 & \vdots & \vdots & \vdots \\\hline
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 1 & 1 & 0 & 0 & \vdots & \vdots & \vdots \\\hline
n-1' & x'_{A,n-1} & x_{P[m'_n]} & z'_{n-1} & \lambda'_{1,n-1} & \lambda'_{2,n-1} & 1 & 2 & 2 & 0 & \vdots & \vdots & \vdots \\\hline
n' & x'_{A,n} & & & y_{A,n} & & 0 & 0 & 0 & 0 & \vdots & \vdots & \vdots \\\hline
table_{idx} & table_x & table_y \\\hline
0 & x_{P[0]} & y_{P[0]} \\\hline
1 & x_{P[1]} & y_{P[1]} \\\hline
2 & x_{P[2]} & y_{P[2]} \\\hline
\vdots & \vdots & \vdots \\\hline
2^{10} - 1 & x_{P[2^{10}-1]} & y_{P[2^{10}-1]} \\\hline
\end{array}
$$
$x_Q$, $z_0$, $z'_0$, etc. would be copied in using equality constraints.
### Layout
$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{Step} & x_A & x_P & bits & \lambda_1 & \lambda_2 & q_{S1} & q_{S2} & q_{S3} & q_{S4} \\\hline
-1 & y_Q & & & & & 0 & 0 & 0 & 1 \\\hline
0 & x_Q & x_{P[m_1]} & z_0 & \lambda_{1,0} & \lambda_{2,0} & 1 & 1 & 0 & 0 \\\hline
1 & x_{A,1} & x_{P[m_2]} & z_1 & \lambda_{1,1} & \lambda_{2,1} & 1 & 1 & 0 & 0 \\\hline
2 & x_{A,2} & x_{P[m_3]} & z_2 & \lambda_{1,2} & \lambda_{2,2} & 1 & 1 & 0 & 0 \\\hline
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 1 & 1 & 0 & 0 \\\hline
n-1 & x_{A,n-1} & x_{P[m_n]} & z_{n-1} & \lambda_{1,n-1} & \lambda_{2,n-1} & 1 & 0 & 0 & 0 \\\hline
0' & x'_{A,0} & x_{P[m'_1]} & z'_0 & \lambda'_{1,0} & \lambda'_{2,0} & 1 & 1 & 0 & 0 \\\hline
1' & x'_{A,1} & x_{P[m'_2]} & z'_1 & \lambda'_{1,1} & \lambda'_{2,1} & 1 & 1 & 0 & 0 \\\hline
2' & x'_{A,2} & x_{P[m'_3]} & z'_2 & \lambda'_{1,2} & \lambda'_{2,2} & 1 & 1 & 0 & 0 \\\hline
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 1 & 1 & 0 & 0 \\\hline
n-1' & x'_{A,n-1} & x_{P[m'_n]} & z'_{n-1} & \lambda'_{1,n-1} & \lambda'_{2,n-1} & 1 & 0 & 1 & 0 \\\hline
\end{array}
$$
$x_Q$, $y_Q$, $z_0$, $z'_0$, etc. would be copied in using equality constraints.
### Optimized Sinsemilla gate
$\begin{array}{lrcl}
$$
\begin{array}{lrcl}
\text{For } i \in [0, n), \text{ let} &x_{R,i} &=& \lambda_{1,i}^2 - x_{A,i} - x_{P,i} \\
&Y_{A,i} &=& (\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - x_{R,i}) \\
&y_{P,i} &=& Y_{A,i}/2 - \lambda_{1,i} \cdot (x_{A,i} - x_{P,i}) \\
&m_{i+1} &=& z_{i} - 2^k \cdot (q_{S2,i} - q_{S3,i}) \cdot z_{i+1} \\
&q_{S3} &=& q_{S2} \cdot (q_{S2} - 1)
\end{array}$
&m_{i+1} &=& z_{i} - 2^k \cdot q_{S2,i} \cdot z_{i+1}
\end{array}
$$
The Halo 2 circuit API can automatically substitute $y_{P,i}$, $x_{R,i}$, $y_{A,i}$, and $y_{A,i+1}$, so we don't need to do that manually.
- $x_{A,0} = x_Q$
- $2 \cdot y_Q = Y_{A,0}$
- for $i$ from $0$ up to $n-1$:
- $(m_{i+1},\, x_{P,i},\, y_{P,i}) \in \mathcal{P}$
- $\lambda_{2,i}^2 = x_{A,i+1} + x_{R,i} + x_{A,i}$
- $4 \cdot \lambda_{2,i} \cdot (x_{A,i} - x_{A,i+1}) = 2 \cdot Y_{A,i} + (2 - q_{S3}) \cdot Y_{A,i+1} + 2 q_{S3} \cdot y_{A,n}$
$x_{A,0} = x_Q$
$2 \cdot y_Q = Y_{A,0}$
for $i$ from $0$ up to $n-1$:
$(m_{i+1},\, x_{P,i},\, y_{P,i}) \in \mathcal{P}$
$\lambda_{2,i}^2 = x_{A,i+1} + x_{R,i} + x_{A,i}$
$2 \cdot \lambda_{2,i} \cdot (x_{A,i} - x_{A,i+1}) = Y_{A,i} + (1 - q_{S3}) \cdot Y_{A,i+1} + 2 \cdot q_{S3} \cdot y_{A,n}$
Note that each term of the last constraint is multiplied by $4$ relative to the constraint program given earlier. This is a small optimization that avoids divisions by $2$.
Note that each term of the last constraint is multiplied by $2$ relative to the constraint program given earlier. This is a small optimization that avoids divisions by $2$.
$$
\begin{array}{|c|l|}
\hline
\text{Degree} & \text{Constraint} \\\hline
4 & fixed\rule{0.4em}{0.02ex}y_Q \cdot (2 \cdot fixed\rule{0.4em}{0.02ex}y_Q - Y_{A,0}) = 0 \\\hline
4 & q_{S4} \cdot (2 \cdot y_Q - Y_{A,0}) = 0 \\\hline
5 & q_{S1,i} \Rightarrow (m_{i+1},\, x_{P,i},\, y_{P,i}) \in \mathcal{P} \\\hline
3 & q_{S1,i} \cdot \big(\lambda_{2,i}^2 - (x_{A,i+1} + x_{R,i} + x_{A,i})\big) \\\hline
6 & q_{S1,i} \cdot \left(4 \cdot \lambda_{2,i} \cdot (x_{A,i} - x_{A,i+1}) - (2 \cdot Y_{A,i} + (2 - q_{S3,i}) \cdot Y_{A,i+1} + 2 \cdot q_{S3,i} \cdot y_{A,n})\right) = 0 \\\hline
6 & q_{S1,i} \cdot \left(2 \cdot \lambda_{2,i} \cdot (x_{A,i} - x_{A,i+1}) - (Y_{A,i} + (1 - q_{S3,i}) \cdot Y_{A,i+1} + 2 \cdot q_{S3,i} \cdot y_{A,n})\right) = 0 \\\hline
\end{array}
$$