Add small set interpolation to tips-and-tricks

This commit is contained in:
therealyingtong 2020-12-17 16:39:36 +08:00
parent 9d8d5fc6d9
commit e8a229fd31
1 changed files with 44 additions and 0 deletions

View File

@ -25,3 +25,47 @@ $$(7 - c) \cdot (13 - c) = 0$$
> higher-degree constraints are more expensive to use.
Note that the roots don't have to be constants; for example $(a - x) \cdot (a - y) \cdot (a - z) = 0$ will constrain $a$ to be equal to one of $\{ x, y, z \}$ where the latter can be arbitrary polynomials, as long as the whole expression stays within the maximum degree bound.
## Small set interpolation
We can use Lagrange interpolation to create a polynomial constraint that maps
$f(X) = Y$ for small sets of $X \in \{x_i\}, Y \in \{y_i\}$.
For instance, say we want to map a 2-bit value to a "spread" version interleaved
with zeros. We first precompute the evaluations at each point:
$$
\begin{array}{cc}
00 &\rightarrow 0000 \implies 0 \rightarrow 0 \\
01 &\rightarrow 0001 \implies 1 \rightarrow 1 \\
10 &\rightarrow 0100 \implies 2 \rightarrow 4 \\
11 &\rightarrow 0101 \implies 3 \rightarrow 5
\end{array}
$$
Then, we construct the Lagrange basis polynomial for each point using the
identity:
$$\mathcal{l}_j(X) = \prod_{0 \leq m \leq k, m \neq j} \frac{x - x_m}{x_j - x_m},$$
where $k + 1$ is the number of data points. ($k = 3$ in our example above.)
Recall that the Lagrange basis polynomial $\mathcal{l}_j(X)$ evaluates to $1$ at
$X = x_j$ and $0$ at all other $x_i, j \neq i.$
Continuing our example, we get four Lagrange basis polynomials:
$$
\begin{array}{ccc}
l_0(X) &=& \frac{(X - 3)(X - 2)(X - 1)}{(-3)(-2)(-1)} \\
l_1(X) &=& \frac{(X - 3)(X - 2)(X)}{(-2)(-1)(1)} \\
l_2(X) &=& \frac{(X - 3)(X - 1)(X)}{(-1)(1)(2)} \\
l_3(X) &=& \frac{(X - 2)(X - 1)(X)}{(1)(2)(3)}
\end{array}
$$
Our polynomial constraint is then
$$
\begin{array}{ccccccccc}
&&f(0)l_0(X) &+& f(1)l_1(X) &+& f(2)l_2(X) &+& f(3)l_3(X) - f(X) &=& 0 \\
&\implies& 0 \cdot l_0(X) &+& 1 \cdot l_1(X) &+& 4 \cdot l_2(X) &+& 5 \cdot l_3(X) - f(X) &=& 0. \\
\end{array}
$$