1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
//! Developer tools for investigating the cost of a circuit.

use std::{
    cmp,
    collections::{HashMap, HashSet},
    iter,
    marker::PhantomData,
    ops::{Add, Mul},
};

use ff::{Field, PrimeField};
use group::prime::PrimeGroup;

use crate::{
    circuit::{layouter::RegionColumn, Value},
    plonk::{
        Advice, Any, Assigned, Assignment, Circuit, Column, ConstraintSystem, Error, Fixed,
        FloorPlanner, Instance, Selector,
    },
    poly::Rotation,
};

/// Measures a circuit to determine its costs, and explain what contributes to them.
#[derive(Debug)]
pub struct CircuitCost<G: PrimeGroup, ConcreteCircuit: Circuit<G::Scalar>> {
    /// Power-of-2 bound on the number of rows in the circuit.
    k: u32,
    /// Maximum degree of the circuit.
    max_deg: usize,
    /// Number of advice columns.
    advice_columns: usize,
    /// Number of direct queries for each column type.
    instance_queries: usize,
    advice_queries: usize,
    fixed_queries: usize,
    /// Number of lookup arguments.
    lookups: usize,
    /// Number of columns in the global permutation.
    permutation_cols: usize,
    /// Number of distinct sets of points in the multiopening argument.
    point_sets: usize,
    /// Maximum rows used over all columns
    max_rows: usize,
    /// Maximum rows used over all advice columns
    max_advice_rows: usize,
    /// Maximum rows used over all fixed columns
    max_fixed_rows: usize,
    num_fixed_columns: usize,
    num_advice_columns: usize,
    num_instance_columns: usize,
    num_total_columns: usize,

    _marker: PhantomData<(G, ConcreteCircuit)>,
}

/// Region implementation used by Layout
#[derive(Debug)]
pub(crate) struct LayoutRegion {
    /// The name of the region. Not required to be unique.
    pub(crate) name: String,
    /// The columns used by this region.
    pub(crate) columns: HashSet<RegionColumn>,
    /// The row that this region starts on, if known.
    pub(crate) offset: Option<usize>,
    /// The number of rows that this region takes up.
    pub(crate) rows: usize,
    /// The cells assigned in this region.
    pub(crate) cells: Vec<(RegionColumn, usize)>,
}

/// Cost and graphing layouter
#[derive(Default, Debug)]
pub(crate) struct Layout {
    /// k = 1 << n
    pub(crate) k: u32,
    /// Regions of the layout
    pub(crate) regions: Vec<LayoutRegion>,
    current_region: Option<usize>,
    /// Total row count
    pub(crate) total_rows: usize,
    /// Total advice rows
    pub(crate) total_advice_rows: usize,
    /// Total fixed rows
    pub(crate) total_fixed_rows: usize,
    /// Any cells assigned outside of a region.
    pub(crate) loose_cells: Vec<(RegionColumn, usize)>,
    /// Pairs of cells between which we have equality constraints.
    pub(crate) equality: Vec<(Column<Any>, usize, Column<Any>, usize)>,
    /// Selector assignments used for optimization pass
    pub(crate) selectors: Vec<Vec<bool>>,
}

impl Layout {
    /// Creates a empty layout
    pub fn new(k: u32, n: usize, num_selectors: usize) -> Self {
        Layout {
            k,
            regions: vec![],
            current_region: None,
            total_rows: 0,
            total_advice_rows: 0,
            total_fixed_rows: 0,
            /// Any cells assigned outside of a region.
            loose_cells: vec![],
            /// Pairs of cells between which we have equality constraints.
            equality: vec![],
            /// Selector assignments used for optimization pass
            selectors: vec![vec![false; n]; num_selectors],
        }
    }

    /// Update layout metadata
    pub fn update(&mut self, column: RegionColumn, row: usize) {
        self.total_rows = cmp::max(self.total_rows, row + 1);

        if let RegionColumn::Column(col) = column {
            match col.column_type() {
                Any::Advice => self.total_advice_rows = cmp::max(self.total_advice_rows, row + 1),
                Any::Fixed => self.total_fixed_rows = cmp::max(self.total_fixed_rows, row + 1),
                _ => {}
            }
        }

        if let Some(region) = self.current_region {
            let region = &mut self.regions[region];
            region.columns.insert(column);

            // The region offset is the earliest row assigned to.
            let mut offset = region.offset.unwrap_or(row);
            if row < offset {
                // The first row assigned was not at offset 0 within the region.
                region.rows += offset - row;
                offset = row;
            }
            // The number of rows in this region is the gap between the earliest and
            // latest rows assigned.
            region.rows = cmp::max(region.rows, row - offset + 1);
            region.offset = Some(offset);

            region.cells.push((column, row));
        } else {
            self.loose_cells.push((column, row));
        }
    }
}

impl<F: Field> Assignment<F> for Layout {
    fn enter_region<NR, N>(&mut self, name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        assert!(self.current_region.is_none());
        self.current_region = Some(self.regions.len());
        self.regions.push(LayoutRegion {
            name: name_fn().into(),
            columns: HashSet::default(),
            offset: None,
            rows: 0,
            cells: vec![],
        })
    }

    fn exit_region(&mut self) {
        assert!(self.current_region.is_some());
        self.current_region = None;
    }

    fn enable_selector<A, AR>(&mut self, _: A, selector: &Selector, row: usize) -> Result<(), Error>
    where
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        if let Some(cell) = self.selectors[selector.0].get_mut(row) {
            *cell = true;
        } else {
            return Err(Error::not_enough_rows_available(self.k));
        }

        self.update((*selector).into(), row);
        Ok(())
    }

    fn query_instance(&self, _: Column<Instance>, _: usize) -> Result<Value<F>, Error> {
        Ok(Value::unknown())
    }

    fn assign_advice<V, VR, A, AR>(
        &mut self,
        _: A,
        column: Column<Advice>,
        row: usize,
        _: V,
    ) -> Result<(), Error>
    where
        V: FnOnce() -> Value<VR>,
        VR: Into<Assigned<F>>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        self.update(Column::<Any>::from(column).into(), row);
        Ok(())
    }

    fn assign_fixed<V, VR, A, AR>(
        &mut self,
        _: A,
        column: Column<Fixed>,
        row: usize,
        _: V,
    ) -> Result<(), Error>
    where
        V: FnOnce() -> Value<VR>,
        VR: Into<Assigned<F>>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        self.update(Column::<Any>::from(column).into(), row);
        Ok(())
    }

    fn copy(
        &mut self,
        l_col: Column<Any>,
        l_row: usize,
        r_col: Column<Any>,
        r_row: usize,
    ) -> Result<(), crate::plonk::Error> {
        self.equality.push((l_col, l_row, r_col, r_row));
        Ok(())
    }

    fn fill_from_row(
        &mut self,
        _: Column<Fixed>,
        _: usize,
        _: Value<Assigned<F>>,
    ) -> Result<(), Error> {
        Ok(())
    }

    fn push_namespace<NR, N>(&mut self, _: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        // Do nothing; we don't care about namespaces in this context.
    }

    fn pop_namespace(&mut self, _: Option<String>) {
        // Do nothing; we don't care about namespaces in this context.
    }
}

impl<G: PrimeGroup, ConcreteCircuit: Circuit<G::Scalar>> CircuitCost<G, ConcreteCircuit> {
    /// Measures a circuit with parameter constant `k`.
    ///
    /// Panics if `k` is not large enough for the circuit.
    pub fn measure(k: u32, circuit: &ConcreteCircuit) -> Self {
        // Collect the layout details.
        let mut cs = ConstraintSystem::default();
        let config = ConcreteCircuit::configure(&mut cs);
        let mut layout = Layout::new(k, 1 << k, cs.num_selectors);
        ConcreteCircuit::FloorPlanner::synthesize(
            &mut layout,
            circuit,
            config,
            cs.constants.clone(),
        )
        .unwrap();
        let (cs, _) = cs.compress_selectors(layout.selectors);

        assert!((1 << k) >= cs.minimum_rows());

        // Figure out how many point sets we have due to queried cells.
        let mut column_queries: HashMap<Column<Any>, HashSet<i32>> = HashMap::new();
        for (c, r) in iter::empty()
            .chain(
                cs.advice_queries
                    .iter()
                    .map(|(c, r)| (Column::<Any>::from(*c), *r)),
            )
            .chain(cs.instance_queries.iter().map(|(c, r)| ((*c).into(), *r)))
            .chain(cs.fixed_queries.iter().map(|(c, r)| ((*c).into(), *r)))
            .chain(
                cs.permutation
                    .get_columns()
                    .into_iter()
                    .map(|c| (c, Rotation::cur())),
            )
        {
            column_queries.entry(c).or_default().insert(r.0);
        }
        let mut point_sets: HashSet<Vec<i32>> = HashSet::new();
        for (_, r) in column_queries {
            // Sort the query sets so we merge duplicates.
            let mut query_set: Vec<_> = r.into_iter().collect();
            query_set.sort_unstable();
            point_sets.insert(query_set);
        }

        // Include lookup polynomials in point sets:
        point_sets.insert(vec![0, 1]); // product_poly
        point_sets.insert(vec![-1, 0]); // permuted_input_poly
        point_sets.insert(vec![0]); // permuted_table_poly

        // Include permutation polynomials in point sets.
        point_sets.insert(vec![0, 1]); // permutation_product_poly
        let max_deg = cs.degree();
        let permutation_cols = cs.permutation.get_columns().len();
        if permutation_cols > max_deg - 2 {
            // permutation_product_poly for chaining chunks.
            point_sets.insert(vec![-((cs.blinding_factors() + 1) as i32), 0, 1]);
        }

        CircuitCost {
            k,
            max_deg,
            advice_columns: cs.num_advice_columns,
            instance_queries: cs.instance_queries.len(),
            advice_queries: cs.advice_queries.len(),
            fixed_queries: cs.fixed_queries.len(),
            lookups: cs.lookups.len(),
            permutation_cols,
            point_sets: point_sets.len(),
            _marker: PhantomData::default(),
            max_rows: layout.total_rows,
            max_advice_rows: layout.total_advice_rows,
            max_fixed_rows: layout.total_fixed_rows,
            num_advice_columns: cs.num_advice_columns,
            num_fixed_columns: cs.num_fixed_columns,
            num_instance_columns: cs.num_instance_columns,
            num_total_columns: cs.num_instance_columns
                + cs.num_advice_columns
                + cs.num_fixed_columns,
        }
    }

    fn permutation_chunks(&self) -> usize {
        let chunk_size = self.max_deg - 2;
        (self.permutation_cols + chunk_size - 1) / chunk_size
    }

    /// Returns the marginal proof size per instance of this circuit.
    pub fn marginal_proof_size(&self) -> MarginalProofSize<G> {
        let chunks = self.permutation_chunks();

        MarginalProofSize {
            // Cells:
            // - 1 commitment per advice column per instance
            // - 1 eval per instance column query per instance
            // - 1 eval per advice column query per instance
            instance: ProofContribution::new(0, self.instance_queries),
            advice: ProofContribution::new(self.advice_columns, self.advice_queries),

            // Lookup arguments:
            // - 3 commitments per lookup argument per instance
            // - 5 evals per lookup argument per instance
            lookups: ProofContribution::new(3 * self.lookups, 5 * self.lookups),

            // Global permutation argument:
            // - chunks commitments per instance
            // - 2*chunks + (chunks - 1) evals per instance
            equality: ProofContribution::new(chunks, 3 * chunks - 1),

            _marker: PhantomData::default(),
        }
    }

    /// Returns the proof size for the given number of instances of this circuit.
    pub fn proof_size(&self, instances: usize) -> ProofSize<G> {
        let marginal = self.marginal_proof_size();

        ProofSize {
            // Cells:
            // - marginal cost per instance
            // - 1 eval per fixed column query
            instance: marginal.instance * instances,
            advice: marginal.advice * instances,
            fixed: ProofContribution::new(0, self.fixed_queries),

            // Lookup arguments:
            // - marginal cost per instance
            lookups: marginal.lookups * instances,

            // Global permutation argument:
            // - marginal cost per instance
            // - 1 eval per column
            equality: marginal.equality * instances
                + ProofContribution::new(0, self.permutation_cols),

            // Vanishing argument:
            // - 1 + (max_deg - 1) commitments
            // - 1 random_poly eval
            vanishing: ProofContribution::new(self.max_deg, 1),

            // Multiopening argument:
            // - f_commitment
            // - 1 eval per set of points in multiopen argument
            multiopen: ProofContribution::new(1, self.point_sets),

            // Polycommit:
            // - s_poly commitment
            // - inner product argument (2 * k round commitments)
            // - a
            // - xi
            polycomm: ProofContribution::new((1 + 2 * self.k).try_into().unwrap(), 2),

            _marker: PhantomData::default(),
        }
    }
}

/// (commitments, evaluations)
#[derive(Debug)]
struct ProofContribution {
    commitments: usize,
    evaluations: usize,
}

impl ProofContribution {
    fn new(commitments: usize, evaluations: usize) -> Self {
        ProofContribution {
            commitments,
            evaluations,
        }
    }

    fn len(&self, point: usize, scalar: usize) -> usize {
        self.commitments * point + self.evaluations * scalar
    }
}

impl Add for ProofContribution {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self {
            commitments: self.commitments + rhs.commitments,
            evaluations: self.evaluations + rhs.evaluations,
        }
    }
}

impl Mul<usize> for ProofContribution {
    type Output = Self;

    fn mul(self, instances: usize) -> Self::Output {
        Self {
            commitments: self.commitments * instances,
            evaluations: self.evaluations * instances,
        }
    }
}

/// The marginal size of a Halo 2 proof, broken down into its contributing factors.
#[derive(Debug)]
pub struct MarginalProofSize<G: PrimeGroup> {
    instance: ProofContribution,
    advice: ProofContribution,
    lookups: ProofContribution,
    equality: ProofContribution,
    _marker: PhantomData<G>,
}

impl<G: PrimeGroup> From<MarginalProofSize<G>> for usize {
    fn from(proof: MarginalProofSize<G>) -> Self {
        let point = G::Repr::default().as_ref().len();
        let scalar = <G::Scalar as PrimeField>::Repr::default().as_ref().len();

        proof.instance.len(point, scalar)
            + proof.advice.len(point, scalar)
            + proof.lookups.len(point, scalar)
            + proof.equality.len(point, scalar)
    }
}

/// The size of a Halo 2 proof, broken down into its contributing factors.
#[derive(Debug)]
pub struct ProofSize<G: PrimeGroup> {
    instance: ProofContribution,
    advice: ProofContribution,
    fixed: ProofContribution,
    lookups: ProofContribution,
    equality: ProofContribution,
    vanishing: ProofContribution,
    multiopen: ProofContribution,
    polycomm: ProofContribution,
    _marker: PhantomData<G>,
}

impl<G: PrimeGroup> From<ProofSize<G>> for usize {
    fn from(proof: ProofSize<G>) -> Self {
        let point = G::Repr::default().as_ref().len();
        let scalar = <G::Scalar as PrimeField>::Repr::default().as_ref().len();

        proof.instance.len(point, scalar)
            + proof.advice.len(point, scalar)
            + proof.fixed.len(point, scalar)
            + proof.lookups.len(point, scalar)
            + proof.equality.len(point, scalar)
            + proof.vanishing.len(point, scalar)
            + proof.multiopen.len(point, scalar)
            + proof.polycomm.len(point, scalar)
    }
}