1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
use ff::Field;
use group::Curve;
use rand_core::RngCore;
use std::iter;
use std::ops::RangeTo;

use super::{
    circuit::{
        Advice, Any, Assignment, Circuit, Column, ConstraintSystem, Fixed, FloorPlanner, Instance,
        Selector,
    },
    lookup, permutation, vanishing, ChallengeBeta, ChallengeGamma, ChallengeTheta, ChallengeX,
    ChallengeY, Error, ProvingKey,
};
use crate::{
    arithmetic::{eval_polynomial, CurveAffine, FieldExt},
    circuit::Value,
    plonk::Assigned,
    poly::{
        self,
        commitment::{Blind, Params},
        multiopen::{self, ProverQuery},
        Coeff, ExtendedLagrangeCoeff, LagrangeCoeff, Polynomial,
    },
};
use crate::{
    poly::batch_invert_assigned,
    transcript::{EncodedChallenge, TranscriptWrite},
};

/// This creates a proof for the provided `circuit` when given the public
/// parameters `params` and the proving key [`ProvingKey`] that was
/// generated previously for the same circuit. The provided `instances`
/// are zero-padded internally.
pub fn create_proof<
    C: CurveAffine,
    E: EncodedChallenge<C>,
    R: RngCore,
    T: TranscriptWrite<C, E>,
    ConcreteCircuit: Circuit<C::Scalar>,
>(
    params: &Params<C>,
    pk: &ProvingKey<C>,
    circuits: &[ConcreteCircuit],
    instances: &[&[&[C::Scalar]]],
    mut rng: R,
    transcript: &mut T,
) -> Result<(), Error> {
    if circuits.len() != instances.len() {
        return Err(Error::InvalidInstances);
    }

    for instance in instances.iter() {
        if instance.len() != pk.vk.cs.num_instance_columns {
            return Err(Error::InvalidInstances);
        }
    }

    // Hash verification key into transcript
    pk.vk.hash_into(transcript)?;

    let domain = &pk.vk.domain;
    let mut meta = ConstraintSystem::default();
    let config = ConcreteCircuit::configure(&mut meta);

    // Selector optimizations cannot be applied here; use the ConstraintSystem
    // from the verification key.
    let meta = &pk.vk.cs;

    struct InstanceSingle<C: CurveAffine> {
        pub instance_values: Vec<Polynomial<C::Scalar, LagrangeCoeff>>,
        pub instance_polys: Vec<Polynomial<C::Scalar, Coeff>>,
        pub instance_cosets: Vec<Polynomial<C::Scalar, ExtendedLagrangeCoeff>>,
    }

    let instance: Vec<InstanceSingle<C>> = instances
        .iter()
        .map(|instance| -> Result<InstanceSingle<C>, Error> {
            let instance_values = instance
                .iter()
                .map(|values| {
                    let mut poly = domain.empty_lagrange();
                    assert_eq!(poly.len(), params.n as usize);
                    if values.len() > (poly.len() - (meta.blinding_factors() + 1)) {
                        return Err(Error::InstanceTooLarge);
                    }
                    for (poly, value) in poly.iter_mut().zip(values.iter()) {
                        *poly = *value;
                    }
                    Ok(poly)
                })
                .collect::<Result<Vec<_>, _>>()?;
            let instance_commitments_projective: Vec<_> = instance_values
                .iter()
                .map(|poly| params.commit_lagrange(poly, Blind::default()))
                .collect();
            let mut instance_commitments =
                vec![C::identity(); instance_commitments_projective.len()];
            C::Curve::batch_normalize(&instance_commitments_projective, &mut instance_commitments);
            let instance_commitments = instance_commitments;
            drop(instance_commitments_projective);

            for commitment in &instance_commitments {
                transcript.common_point(*commitment)?;
            }

            let instance_polys: Vec<_> = instance_values
                .iter()
                .map(|poly| {
                    let lagrange_vec = domain.lagrange_from_vec(poly.to_vec());
                    domain.lagrange_to_coeff(lagrange_vec)
                })
                .collect();

            let instance_cosets: Vec<_> = instance_polys
                .iter()
                .map(|poly| domain.coeff_to_extended(poly.clone()))
                .collect();

            Ok(InstanceSingle {
                instance_values,
                instance_polys,
                instance_cosets,
            })
        })
        .collect::<Result<Vec<_>, _>>()?;

    struct AdviceSingle<C: CurveAffine> {
        pub advice_values: Vec<Polynomial<C::Scalar, LagrangeCoeff>>,
        pub advice_polys: Vec<Polynomial<C::Scalar, Coeff>>,
        pub advice_cosets: Vec<Polynomial<C::Scalar, ExtendedLagrangeCoeff>>,
        pub advice_blinds: Vec<Blind<C::Scalar>>,
    }

    let advice: Vec<AdviceSingle<C>> = circuits
        .iter()
        .zip(instances.iter())
        .map(|(circuit, instances)| -> Result<AdviceSingle<C>, Error> {
            struct WitnessCollection<'a, F: Field> {
                k: u32,
                pub advice: Vec<Polynomial<Assigned<F>, LagrangeCoeff>>,
                instances: &'a [&'a [F]],
                usable_rows: RangeTo<usize>,
                _marker: std::marker::PhantomData<F>,
            }

            impl<'a, F: Field> Assignment<F> for WitnessCollection<'a, F> {
                fn enter_region<NR, N>(&mut self, _: N)
                where
                    NR: Into<String>,
                    N: FnOnce() -> NR,
                {
                    // Do nothing; we don't care about regions in this context.
                }

                fn exit_region(&mut self) {
                    // Do nothing; we don't care about regions in this context.
                }

                fn enable_selector<A, AR>(
                    &mut self,
                    _: A,
                    _: &Selector,
                    _: usize,
                ) -> Result<(), Error>
                where
                    A: FnOnce() -> AR,
                    AR: Into<String>,
                {
                    // We only care about advice columns here

                    Ok(())
                }

                fn query_instance(
                    &self,
                    column: Column<Instance>,
                    row: usize,
                ) -> Result<Value<F>, Error> {
                    if !self.usable_rows.contains(&row) {
                        return Err(Error::not_enough_rows_available(self.k));
                    }

                    self.instances
                        .get(column.index())
                        .and_then(|column| column.get(row))
                        .map(|v| Value::known(*v))
                        .ok_or(Error::BoundsFailure)
                }

                fn assign_advice<V, VR, A, AR>(
                    &mut self,
                    _: A,
                    column: Column<Advice>,
                    row: usize,
                    to: V,
                ) -> Result<(), Error>
                where
                    V: FnOnce() -> Value<VR>,
                    VR: Into<Assigned<F>>,
                    A: FnOnce() -> AR,
                    AR: Into<String>,
                {
                    if !self.usable_rows.contains(&row) {
                        return Err(Error::not_enough_rows_available(self.k));
                    }

                    *self
                        .advice
                        .get_mut(column.index())
                        .and_then(|v| v.get_mut(row))
                        .ok_or(Error::BoundsFailure)? = to().into_field().assign()?;

                    Ok(())
                }

                fn assign_fixed<V, VR, A, AR>(
                    &mut self,
                    _: A,
                    _: Column<Fixed>,
                    _: usize,
                    _: V,
                ) -> Result<(), Error>
                where
                    V: FnOnce() -> Value<VR>,
                    VR: Into<Assigned<F>>,
                    A: FnOnce() -> AR,
                    AR: Into<String>,
                {
                    // We only care about advice columns here

                    Ok(())
                }

                fn copy(
                    &mut self,
                    _: Column<Any>,
                    _: usize,
                    _: Column<Any>,
                    _: usize,
                ) -> Result<(), Error> {
                    // We only care about advice columns here

                    Ok(())
                }

                fn fill_from_row(
                    &mut self,
                    _: Column<Fixed>,
                    _: usize,
                    _: Value<Assigned<F>>,
                ) -> Result<(), Error> {
                    Ok(())
                }

                fn push_namespace<NR, N>(&mut self, _: N)
                where
                    NR: Into<String>,
                    N: FnOnce() -> NR,
                {
                    // Do nothing; we don't care about namespaces in this context.
                }

                fn pop_namespace(&mut self, _: Option<String>) {
                    // Do nothing; we don't care about namespaces in this context.
                }
            }

            let unusable_rows_start = params.n as usize - (meta.blinding_factors() + 1);

            let mut witness = WitnessCollection {
                k: params.k,
                advice: vec![domain.empty_lagrange_assigned(); meta.num_advice_columns],
                instances,
                // The prover will not be allowed to assign values to advice
                // cells that exist within inactive rows, which include some
                // number of blinding factors and an extra row for use in the
                // permutation argument.
                usable_rows: ..unusable_rows_start,
                _marker: std::marker::PhantomData,
            };

            // Synthesize the circuit to obtain the witness and other information.
            ConcreteCircuit::FloorPlanner::synthesize(
                &mut witness,
                circuit,
                config.clone(),
                meta.constants.clone(),
            )?;

            let mut advice = batch_invert_assigned(witness.advice);

            // Add blinding factors to advice columns
            for advice in &mut advice {
                for cell in &mut advice[unusable_rows_start..] {
                    *cell = C::Scalar::random(&mut rng);
                }
            }

            // Compute commitments to advice column polynomials
            let advice_blinds: Vec<_> = advice
                .iter()
                .map(|_| Blind(C::Scalar::random(&mut rng)))
                .collect();
            let advice_commitments_projective: Vec<_> = advice
                .iter()
                .zip(advice_blinds.iter())
                .map(|(poly, blind)| params.commit_lagrange(poly, *blind))
                .collect();
            let mut advice_commitments = vec![C::identity(); advice_commitments_projective.len()];
            C::Curve::batch_normalize(&advice_commitments_projective, &mut advice_commitments);
            let advice_commitments = advice_commitments;
            drop(advice_commitments_projective);

            for commitment in &advice_commitments {
                transcript.write_point(*commitment)?;
            }

            let advice_polys: Vec<_> = advice
                .clone()
                .into_iter()
                .map(|poly| domain.lagrange_to_coeff(poly))
                .collect();

            let advice_cosets: Vec<_> = advice_polys
                .iter()
                .map(|poly| domain.coeff_to_extended(poly.clone()))
                .collect();

            Ok(AdviceSingle {
                advice_values: advice,
                advice_polys,
                advice_cosets,
                advice_blinds,
            })
        })
        .collect::<Result<Vec<_>, _>>()?;

    // Create polynomial evaluator context for values.
    let mut value_evaluator = poly::new_evaluator(|| {});

    // Register fixed values with the polynomial evaluator.
    let fixed_values: Vec<_> = pk
        .fixed_values
        .iter()
        .map(|poly| value_evaluator.register_poly(poly.clone()))
        .collect();

    // Register advice values with the polynomial evaluator.
    let advice_values: Vec<_> = advice
        .iter()
        .map(|advice| {
            advice
                .advice_values
                .iter()
                .map(|poly| value_evaluator.register_poly(poly.clone()))
                .collect::<Vec<_>>()
        })
        .collect();

    // Register instance values with the polynomial evaluator.
    let instance_values: Vec<_> = instance
        .iter()
        .map(|instance| {
            instance
                .instance_values
                .iter()
                .map(|poly| value_evaluator.register_poly(poly.clone()))
                .collect::<Vec<_>>()
        })
        .collect();

    // Create polynomial evaluator context for cosets.
    let mut coset_evaluator = poly::new_evaluator(|| {});

    // Register fixed cosets with the polynomial evaluator.
    let fixed_cosets: Vec<_> = pk
        .fixed_cosets
        .iter()
        .map(|poly| coset_evaluator.register_poly(poly.clone()))
        .collect();

    // Register advice cosets with the polynomial evaluator.
    let advice_cosets: Vec<_> = advice
        .iter()
        .map(|advice| {
            advice
                .advice_cosets
                .iter()
                .map(|poly| coset_evaluator.register_poly(poly.clone()))
                .collect::<Vec<_>>()
        })
        .collect();

    // Register instance cosets with the polynomial evaluator.
    let instance_cosets: Vec<_> = instance
        .iter()
        .map(|instance| {
            instance
                .instance_cosets
                .iter()
                .map(|poly| coset_evaluator.register_poly(poly.clone()))
                .collect::<Vec<_>>()
        })
        .collect();

    // Register permutation cosets with the polynomial evaluator.
    let permutation_cosets: Vec<_> = pk
        .permutation
        .cosets
        .iter()
        .map(|poly| coset_evaluator.register_poly(poly.clone()))
        .collect();

    // Register boundary polynomials used in the lookup and permutation arguments.
    let l0 = coset_evaluator.register_poly(pk.l0.clone());
    let l_blind = coset_evaluator.register_poly(pk.l_blind.clone());
    let l_last = coset_evaluator.register_poly(pk.l_last.clone());

    // Sample theta challenge for keeping lookup columns linearly independent
    let theta: ChallengeTheta<_> = transcript.squeeze_challenge_scalar();

    let lookups: Vec<Vec<lookup::prover::Permuted<C, _>>> = instance_values
        .iter()
        .zip(instance_cosets.iter())
        .zip(advice_values.iter())
        .zip(advice_cosets.iter())
        .map(|(((instance_values, instance_cosets), advice_values), advice_cosets)| -> Result<Vec<_>, Error> {
            // Construct and commit to permuted values for each lookup
            pk.vk
                .cs
                .lookups
                .iter()
                .map(|lookup| {
                    lookup.commit_permuted(
                        pk,
                        params,
                        domain,
                        &value_evaluator,
                        &mut coset_evaluator,
                        theta,
                        advice_values,
                        &fixed_values,
                        instance_values,
                        advice_cosets,
                        &fixed_cosets,
                        instance_cosets,
                        &mut rng,
                        transcript,
                    )
                })
                .collect()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // Sample beta challenge
    let beta: ChallengeBeta<_> = transcript.squeeze_challenge_scalar();

    // Sample gamma challenge
    let gamma: ChallengeGamma<_> = transcript.squeeze_challenge_scalar();

    // Commit to permutations.
    let permutations: Vec<permutation::prover::Committed<C, _>> = instance
        .iter()
        .zip(advice.iter())
        .map(|(instance, advice)| {
            pk.vk.cs.permutation.commit(
                params,
                pk,
                &pk.permutation,
                &advice.advice_values,
                &pk.fixed_values,
                &instance.instance_values,
                beta,
                gamma,
                &mut coset_evaluator,
                &mut rng,
                transcript,
            )
        })
        .collect::<Result<Vec<_>, _>>()?;

    let lookups: Vec<Vec<lookup::prover::Committed<C, _>>> = lookups
        .into_iter()
        .map(|lookups| -> Result<Vec<_>, _> {
            // Construct and commit to products for each lookup
            lookups
                .into_iter()
                .map(|lookup| {
                    lookup.commit_product(
                        pk,
                        params,
                        beta,
                        gamma,
                        &mut coset_evaluator,
                        &mut rng,
                        transcript,
                    )
                })
                .collect::<Result<Vec<_>, _>>()
        })
        .collect::<Result<Vec<_>, _>>()?;

    // Commit to the vanishing argument's random polynomial for blinding h(x_3)
    let vanishing = vanishing::Argument::commit(params, domain, &mut rng, transcript)?;

    // Obtain challenge for keeping all separate gates linearly independent
    let y: ChallengeY<_> = transcript.squeeze_challenge_scalar();

    // Evaluate the h(X) polynomial's constraint system expressions for the permutation constraints.
    let (permutations, permutation_expressions): (Vec<_>, Vec<_>) = permutations
        .into_iter()
        .zip(advice_cosets.iter())
        .zip(instance_cosets.iter())
        .map(|((permutation, advice), instance)| {
            permutation.construct(
                pk,
                &pk.vk.cs.permutation,
                advice,
                &fixed_cosets,
                instance,
                &permutation_cosets,
                l0,
                l_blind,
                l_last,
                beta,
                gamma,
            )
        })
        .unzip();

    let (lookups, lookup_expressions): (Vec<Vec<_>>, Vec<Vec<_>>) = lookups
        .into_iter()
        .map(|lookups| {
            // Evaluate the h(X) polynomial's constraint system expressions for the lookup constraints, if any.
            lookups
                .into_iter()
                .map(|p| p.construct(beta, gamma, l0, l_blind, l_last))
                .unzip()
        })
        .unzip();

    let expressions = advice_cosets
        .iter()
        .zip(instance_cosets.iter())
        .zip(permutation_expressions.into_iter())
        .zip(lookup_expressions.into_iter())
        .flat_map(
            |(((advice_cosets, instance_cosets), permutation_expressions), lookup_expressions)| {
                let fixed_cosets = &fixed_cosets;
                iter::empty()
                    // Custom constraints
                    .chain(meta.gates.iter().flat_map(move |gate| {
                        gate.polynomials().iter().map(move |expr| {
                            expr.evaluate(
                                &poly::Ast::ConstantTerm,
                                &|_| panic!("virtual selectors are removed during optimization"),
                                &|query| {
                                    fixed_cosets[query.column_index]
                                        .with_rotation(query.rotation)
                                        .into()
                                },
                                &|query| {
                                    advice_cosets[query.column_index]
                                        .with_rotation(query.rotation)
                                        .into()
                                },
                                &|query| {
                                    instance_cosets[query.column_index]
                                        .with_rotation(query.rotation)
                                        .into()
                                },
                                &|a| -a,
                                &|a, b| a + b,
                                &|a, b| a * b,
                                &|a, scalar| a * scalar,
                            )
                        })
                    }))
                    // Permutation constraints, if any.
                    .chain(permutation_expressions.into_iter())
                    // Lookup constraints, if any.
                    .chain(lookup_expressions.into_iter().flatten())
            },
        );

    // Construct the vanishing argument's h(X) commitments
    let vanishing = vanishing.construct(
        params,
        domain,
        coset_evaluator,
        expressions,
        y,
        &mut rng,
        transcript,
    )?;

    let x: ChallengeX<_> = transcript.squeeze_challenge_scalar();
    let xn = x.pow(&[params.n as u64, 0, 0, 0]);

    // Compute and hash instance evals for each circuit instance
    for instance in instance.iter() {
        // Evaluate polynomials at omega^i x
        let instance_evals: Vec<_> = meta
            .instance_queries
            .iter()
            .map(|&(column, at)| {
                eval_polynomial(
                    &instance.instance_polys[column.index()],
                    domain.rotate_omega(*x, at),
                )
            })
            .collect();

        // Hash each instance column evaluation
        for eval in instance_evals.iter() {
            transcript.write_scalar(*eval)?;
        }
    }

    // Compute and hash advice evals for each circuit instance
    for advice in advice.iter() {
        // Evaluate polynomials at omega^i x
        let advice_evals: Vec<_> = meta
            .advice_queries
            .iter()
            .map(|&(column, at)| {
                eval_polynomial(
                    &advice.advice_polys[column.index()],
                    domain.rotate_omega(*x, at),
                )
            })
            .collect();

        // Hash each advice column evaluation
        for eval in advice_evals.iter() {
            transcript.write_scalar(*eval)?;
        }
    }

    // Compute and hash fixed evals (shared across all circuit instances)
    let fixed_evals: Vec<_> = meta
        .fixed_queries
        .iter()
        .map(|&(column, at)| {
            eval_polynomial(&pk.fixed_polys[column.index()], domain.rotate_omega(*x, at))
        })
        .collect();

    // Hash each fixed column evaluation
    for eval in fixed_evals.iter() {
        transcript.write_scalar(*eval)?;
    }

    let vanishing = vanishing.evaluate(x, xn, domain, transcript)?;

    // Evaluate common permutation data
    pk.permutation.evaluate(x, transcript)?;

    // Evaluate the permutations, if any, at omega^i x.
    let permutations: Vec<permutation::prover::Evaluated<C>> = permutations
        .into_iter()
        .map(|permutation| -> Result<_, _> { permutation.evaluate(pk, x, transcript) })
        .collect::<Result<Vec<_>, _>>()?;

    // Evaluate the lookups, if any, at omega^i x.
    let lookups: Vec<Vec<lookup::prover::Evaluated<C>>> = lookups
        .into_iter()
        .map(|lookups| -> Result<Vec<_>, _> {
            lookups
                .into_iter()
                .map(|p| p.evaluate(pk, x, transcript))
                .collect::<Result<Vec<_>, _>>()
        })
        .collect::<Result<Vec<_>, _>>()?;

    let instances = instance
        .iter()
        .zip(advice.iter())
        .zip(permutations.iter())
        .zip(lookups.iter())
        .flat_map(|(((instance, advice), permutation), lookups)| {
            iter::empty()
                .chain(
                    pk.vk
                        .cs
                        .instance_queries
                        .iter()
                        .map(move |&(column, at)| ProverQuery {
                            point: domain.rotate_omega(*x, at),
                            poly: &instance.instance_polys[column.index()],
                            blind: Blind::default(),
                        }),
                )
                .chain(
                    pk.vk
                        .cs
                        .advice_queries
                        .iter()
                        .map(move |&(column, at)| ProverQuery {
                            point: domain.rotate_omega(*x, at),
                            poly: &advice.advice_polys[column.index()],
                            blind: advice.advice_blinds[column.index()],
                        }),
                )
                .chain(permutation.open(pk, x))
                .chain(lookups.iter().flat_map(move |p| p.open(pk, x)).into_iter())
        })
        .chain(
            pk.vk
                .cs
                .fixed_queries
                .iter()
                .map(|&(column, at)| ProverQuery {
                    point: domain.rotate_omega(*x, at),
                    poly: &pk.fixed_polys[column.index()],
                    blind: Blind::default(),
                }),
        )
        .chain(pk.permutation.open(x))
        // We query the h(X) polynomial at x
        .chain(vanishing.open(x));

    multiopen::create_proof(params, rng, transcript, instances).map_err(|_| Error::Opening)
}

#[test]
fn test_create_proof() {
    use crate::{
        circuit::SimpleFloorPlanner,
        plonk::{keygen_pk, keygen_vk},
        transcript::{Blake2bWrite, Challenge255},
    };
    use pasta_curves::EqAffine;
    use rand_core::OsRng;

    #[derive(Clone, Copy)]
    struct MyCircuit;

    impl<F: Field> Circuit<F> for MyCircuit {
        type Config = ();

        type FloorPlanner = SimpleFloorPlanner;

        fn without_witnesses(&self) -> Self {
            *self
        }

        fn configure(_meta: &mut ConstraintSystem<F>) -> Self::Config {}

        fn synthesize(
            &self,
            _config: Self::Config,
            _layouter: impl crate::circuit::Layouter<F>,
        ) -> Result<(), Error> {
            Ok(())
        }
    }

    let params: Params<EqAffine> = Params::new(3);
    let vk = keygen_vk(&params, &MyCircuit).expect("keygen_vk should not fail");
    let pk = keygen_pk(&params, vk, &MyCircuit).expect("keygen_pk should not fail");
    let mut transcript = Blake2bWrite::<_, _, Challenge255<_>>::init(vec![]);

    // Create proof with wrong number of instances
    let proof = create_proof(
        &params,
        &pk,
        &[MyCircuit, MyCircuit],
        &[],
        OsRng,
        &mut transcript,
    );
    assert!(matches!(proof.unwrap_err(), Error::InvalidInstances));

    // Create proof with correct number of instances
    create_proof(
        &params,
        &pk,
        &[MyCircuit, MyCircuit],
        &[&[], &[]],
        OsRng,
        &mut transcript,
    )
    .expect("proof generation should not fail");
}