//! Constants required for the ECC chip. use arrayvec::ArrayVec; use group::{ ff::{Field, PrimeField}, Curve, }; use halo2_proofs::arithmetic::lagrange_interpolate; use pasta_curves::{arithmetic::CurveAffine, pallas}; /// Window size for fixed-base scalar multiplication pub const FIXED_BASE_WINDOW_SIZE: usize = 3; /// $2^{`FIXED_BASE_WINDOW_SIZE`}$ pub const H: usize = 1 << FIXED_BASE_WINDOW_SIZE; /// Number of windows for a full-width scalar pub const NUM_WINDOWS: usize = (pallas::Scalar::NUM_BITS as usize + FIXED_BASE_WINDOW_SIZE - 1) / FIXED_BASE_WINDOW_SIZE; /// Number of windows for a short signed scalar pub const NUM_WINDOWS_SHORT: usize = (L_SCALAR_SHORT + FIXED_BASE_WINDOW_SIZE - 1) / FIXED_BASE_WINDOW_SIZE; /// $\ell_\mathsf{value}$ /// Number of bits in an unsigned short scalar. pub(crate) const L_SCALAR_SHORT: usize = 64; /// The Pallas scalar field modulus is $q = 2^{254} + \mathsf{t_q}$. /// pub(crate) const T_Q: u128 = 45560315531506369815346746415080538113; /// The Pallas base field modulus is $p = 2^{254} + \mathsf{t_p}$. /// pub(crate) const T_P: u128 = 45560315531419706090280762371685220353; /// For each fixed base, we calculate its scalar multiples in three-bit windows. /// Each window will have $2^3 = 8$ points. The tables are computed as described in /// [the Halo 2 book](https://zcash.github.io/halo2/design/gadgets/ecc/fixed-base-scalar-mul.html#load-fixed-base). fn compute_window_table(base: C, num_windows: usize) -> Vec<[C; H]> { let mut window_table: Vec<[C; H]> = Vec::with_capacity(num_windows); // Generate window table entries for all windows but the last. // For these first `num_windows - 1` windows, we compute the multiple [(k+2)*(2^3)^w]B. // Here, w ranges from [0..`num_windows - 1`) for w in 0..(num_windows - 1) { window_table.push( (0..H) .map(|k| { // scalar = (k+2)*(8^w) let scalar = C::Scalar::from(k as u64 + 2) * C::Scalar::from(H as u64).pow(&[w as u64, 0, 0, 0]); (base * scalar).to_affine() }) .collect::>() .into_inner() .unwrap(), ); } // Generate window table entries for the last window, w = `num_windows - 1`. // For the last window, we compute [k * (2^3)^w - sum]B, where sum is defined // as sum = \sum_{j = 0}^{`num_windows - 2`} 2^{3j+1} let sum = (0..(num_windows - 1)).fold(C::Scalar::ZERO, |acc, j| { acc + C::Scalar::from(2).pow(&[FIXED_BASE_WINDOW_SIZE as u64 * j as u64 + 1, 0, 0, 0]) }); window_table.push( (0..H) .map(|k| { // scalar = k * (2^3)^w - sum, where w = `num_windows - 1` let scalar = C::Scalar::from(k as u64) * C::Scalar::from(H as u64).pow(&[(num_windows - 1) as u64, 0, 0, 0]) - sum; (base * scalar).to_affine() }) .collect::>() .into_inner() .unwrap(), ); window_table } /// For each window, we interpolate the $x$-coordinate. /// Here, we pre-compute and store the coefficients of the interpolation polynomial. pub fn compute_lagrange_coeffs(base: C, num_windows: usize) -> Vec<[C::Base; H]> { // We are interpolating over the 3-bit window, k \in [0..8) let points: Vec<_> = (0..H).map(|i| C::Base::from(i as u64)).collect(); let window_table = compute_window_table(base, num_windows); window_table .iter() .map(|window_points| { let x_window_points: Vec<_> = window_points .iter() .map(|point| *point.coordinates().unwrap().x()) .collect(); lagrange_interpolate(&points, &x_window_points) .into_iter() .collect::>() .into_inner() .unwrap() }) .collect() } /// For each window, $z$ is a field element such that for each point $(x, y)$ in the window: /// - $z + y = u^2$ (some square in the field); and /// - $z - y$ is not a square. /// If successful, return a vector of `(z: u64, us: [C::Base; H])` for each window. /// /// This function was used to generate the `z`s and `u`s for the Orchard fixed /// bases. The outputs of this function have been stored as constants, and it /// is not called anywhere in this codebase. However, we keep this function here /// as a utility for those who wish to use it with different parameters. pub fn find_zs_and_us( base: C, num_windows: usize, ) -> Option> { // Closure to find z and u's for one window let find_z_and_us = |window_points: &[C]| { assert_eq!(H, window_points.len()); let ys: Vec<_> = window_points .iter() .map(|point| *point.coordinates().unwrap().y()) .collect(); (0..(1000 * (1 << (2 * H)))).find_map(|z| { ys.iter() .map(|&y| { if (-y + C::Base::from(z)).sqrt().is_none().into() { (y + C::Base::from(z)).sqrt().into() } else { None } }) .collect::>>() .map(|us| (z, us.into_inner().unwrap())) }) }; let window_table = compute_window_table(base, num_windows); window_table .iter() .map(|window_points| find_z_and_us(window_points)) .collect() } /// Test that the z-values and u-values satisfy the conditions: /// 1. z + y = u^2, /// 2. z - y is not a square /// for the y-coordinate of each fixed-base multiple in each window. #[cfg(any(test, feature = "test-dependencies"))] #[cfg_attr(docsrs, doc(cfg(feature = "test-dependencies")))] pub fn test_zs_and_us(base: C, z: &[u64], u: &[[[u8; 32]; H]], num_windows: usize) { let window_table = compute_window_table(base, num_windows); for ((u, z), window_points) in u.iter().zip(z.iter()).zip(window_table) { for (u, point) in u.iter().zip(window_points.iter()) { let y = *point.coordinates().unwrap().y(); let mut u_repr = ::Repr::default(); u_repr.as_mut().copy_from_slice(u); let u = C::Base::from_repr(u_repr).unwrap(); assert_eq!(C::Base::from(*z) + y, u * u); // allow either square root assert!(bool::from((C::Base::from(*z) - y).sqrt().is_none())); } } } /// Test that Lagrange interpolation coefficients reproduce the correct x-coordinate /// for each fixed-base multiple in each window. #[cfg(any(test, feature = "test-dependencies"))] #[cfg_attr(docsrs, doc(cfg(feature = "test-dependencies")))] pub fn test_lagrange_coeffs(base: C, num_windows: usize) { /// Evaluate y = f(x) given the coefficients of f(x) fn evaluate(x: u8, coeffs: &[C::Base]) -> C::Base { let x = C::Base::from(x as u64); coeffs .iter() .rev() .cloned() .reduce(|acc, coeff| acc * x + coeff) .unwrap_or(C::Base::ZERO) } let lagrange_coeffs = compute_lagrange_coeffs(base, num_windows); // Check first 84 windows, i.e. `k_0, k_1, ..., k_83` for (idx, coeffs) in lagrange_coeffs[0..(num_windows - 1)].iter().enumerate() { // Test each three-bit chunk in this window. for bits in 0..(H as u8) { { // Interpolate the x-coordinate using this window's coefficients let interpolated_x = evaluate::(bits, coeffs); // Compute the actual x-coordinate of the multiple [(k+2)*(8^w)]B. let point = base * C::Scalar::from(bits as u64 + 2) * C::Scalar::from(H as u64).pow(&[idx as u64, 0, 0, 0]); let x = *point.to_affine().coordinates().unwrap().x(); // Check that the interpolated x-coordinate matches the actual one. assert_eq!(x, interpolated_x); } } } // Check last window. for bits in 0..(H as u8) { // Interpolate the x-coordinate using the last window's coefficients let interpolated_x = evaluate::(bits, &lagrange_coeffs[num_windows - 1]); // Compute the actual x-coordinate of the multiple [k * (8^84) - offset]B, // where offset = \sum_{j = 0}^{83} 2^{3j+1} let offset = (0..(num_windows - 1)).fold(C::Scalar::ZERO, |acc, w| { acc + C::Scalar::from(2).pow(&[FIXED_BASE_WINDOW_SIZE as u64 * w as u64 + 1, 0, 0, 0]) }); let scalar = C::Scalar::from(bits as u64) * C::Scalar::from(H as u64).pow(&[(num_windows - 1) as u64, 0, 0, 0]) - offset; let point = base * scalar; let x = *point.to_affine().coordinates().unwrap().x(); // Check that the interpolated x-coordinate matches the actual one. assert_eq!(x, interpolated_x); } } #[cfg(test)] mod tests { use ff::FromUniformBytes; use group::{ff::Field, Curve, Group}; use pasta_curves::{arithmetic::CurveAffine, pallas}; use proptest::prelude::*; use super::{compute_window_table, find_zs_and_us, test_lagrange_coeffs, H, NUM_WINDOWS}; prop_compose! { /// Generate an arbitrary Pallas point. pub fn arb_point()(bytes in prop::array::uniform32(0u8..)) -> pallas::Point { // Instead of rejecting out-of-range bytes, let's reduce them. let mut buf = [0; 64]; buf[..32].copy_from_slice(&bytes); let scalar = pallas::Scalar::from_uniform_bytes(&buf); pallas::Point::generator() * scalar } } proptest! { #[test] fn lagrange_coeffs( base in arb_point(), ) { test_lagrange_coeffs(base.to_affine(), NUM_WINDOWS); } } #[test] fn zs_and_us() { let base = pallas::Point::random(rand::rngs::OsRng); let (z, u): (Vec, Vec<[pallas::Base; H]>) = find_zs_and_us(base.to_affine(), NUM_WINDOWS) .unwrap() .into_iter() .unzip(); let window_table = compute_window_table(base.to_affine(), NUM_WINDOWS); for ((u, z), window_points) in u.iter().zip(z.iter()).zip(window_table) { for (u, point) in u.iter().zip(window_points.iter()) { let y = *point.coordinates().unwrap().y(); assert_eq!(pallas::Base::from(*z) + y, u * u); // allow either square root assert!(bool::from((pallas::Base::from(*z) - y).sqrt().is_none())); } } } }