1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//! Implementation of Sinsemilla outside the circuit.

use group::{Curve, Wnaf};
use halo2_proofs::arithmetic::{CurveAffine, CurveExt};
use pasta_curves::pallas;
use subtle::CtOption;

mod addition;
use self::addition::IncompletePoint;
mod sinsemilla_s;
pub use sinsemilla_s::SINSEMILLA_S;

/// Number of bits of each message piece in $\mathsf{SinsemillaHashToPoint}$
pub const K: usize = 10;

/// $\frac{1}{2^K}$
pub const INV_TWO_POW_K: [u8; 32] = [
    1, 0, 192, 196, 160, 229, 70, 82, 221, 165, 74, 202, 85, 7, 62, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 240, 63,
];

/// The largest integer such that $2^c \leq (r_P - 1) / 2$, where $r_P$ is the order
/// of Pallas.
pub const C: usize = 253;

// Sinsemilla Q generators

/// SWU hash-to-curve personalization for Sinsemilla $Q$ generators.
pub const Q_PERSONALIZATION: &str = "z.cash:SinsemillaQ";

// Sinsemilla S generators

/// SWU hash-to-curve personalization for Sinsemilla $S$ generators.
pub const S_PERSONALIZATION: &str = "z.cash:SinsemillaS";

pub(crate) fn lebs2ip_k(bits: &[bool]) -> u32 {
    assert!(bits.len() == K);
    bits.iter()
        .enumerate()
        .fold(0u32, |acc, (i, b)| acc + if *b { 1 << i } else { 0 })
}

/// Coordinate extractor for Pallas.
///
/// Defined in [Zcash Protocol Spec § 5.4.9.7: Coordinate Extractor for Pallas][concreteextractorpallas].
///
/// [concreteextractorpallas]: https://zips.z.cash/protocol/nu5.pdf#concreteextractorpallas
fn extract_p_bottom(point: CtOption<pallas::Point>) -> CtOption<pallas::Base> {
    point.map(|p| {
        p.to_affine()
            .coordinates()
            .map(|c| *c.x())
            .unwrap_or_else(pallas::Base::zero)
    })
}

/// Pads the given iterator (which MUST have length $\leq K * C$) with zero-bits to a
/// multiple of $K$ bits.
struct Pad<I: Iterator<Item = bool>> {
    /// The iterator we are padding.
    inner: I,
    /// The measured length of the inner iterator.
    ///
    /// This starts as a lower bound, and will be accurate once `padding_left.is_some()`.
    len: usize,
    /// The amount of padding that remains to be emitted.
    padding_left: Option<usize>,
}

impl<I: Iterator<Item = bool>> Pad<I> {
    fn new(inner: I) -> Self {
        Pad {
            inner,
            len: 0,
            padding_left: None,
        }
    }
}

impl<I: Iterator<Item = bool>> Iterator for Pad<I> {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            // If we have identified the required padding, the inner iterator has ended,
            // and we will never poll it again.
            if let Some(n) = self.padding_left.as_mut() {
                if *n == 0 {
                    // Either we already emitted all necessary padding, or there was no
                    // padding required.
                    break None;
                } else {
                    // Emit the next padding bit.
                    *n -= 1;
                    break Some(false);
                }
            } else if let Some(ret) = self.inner.next() {
                // We haven't reached the end of the inner iterator yet.
                self.len += 1;
                assert!(self.len <= K * C);
                break Some(ret);
            } else {
                // Inner iterator just ended, so we now know its length.
                let rem = self.len % K;
                if rem > 0 {
                    // The inner iterator requires padding in the range [1,K).
                    self.padding_left = Some(K - rem);
                } else {
                    // No padding required.
                    self.padding_left = Some(0);
                }
            }
        }
    }
}

/// A domain in which $\mathsf{SinsemillaHashToPoint}$ and $\mathsf{SinsemillaHash}$ can
/// be used.
#[derive(Debug, Clone)]
#[allow(non_snake_case)]
pub struct HashDomain {
    Q: pallas::Point,
}

impl HashDomain {
    /// Constructs a new `HashDomain` with a specific prefix string.
    pub fn new(domain: &str) -> Self {
        HashDomain {
            Q: pallas::Point::hash_to_curve(Q_PERSONALIZATION)(domain.as_bytes()),
        }
    }

    /// $\mathsf{SinsemillaHashToPoint}$ from [§ 5.4.1.9][concretesinsemillahash].
    ///
    /// [concretesinsemillahash]: https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash
    pub fn hash_to_point(&self, msg: impl Iterator<Item = bool>) -> CtOption<pallas::Point> {
        self.hash_to_point_inner(msg).into()
    }

    #[allow(non_snake_case)]
    fn hash_to_point_inner(&self, msg: impl Iterator<Item = bool>) -> IncompletePoint {
        let padded: Vec<_> = Pad::new(msg).collect();

        padded
            .chunks(K)
            .fold(IncompletePoint::from(self.Q), |acc, chunk| {
                let (S_x, S_y) = SINSEMILLA_S[lebs2ip_k(chunk) as usize];
                let S_chunk = pallas::Affine::from_xy(S_x, S_y).unwrap();
                (acc + S_chunk) + acc
            })
    }

    /// $\mathsf{SinsemillaHash}$ from [§ 5.4.1.9][concretesinsemillahash].
    ///
    /// [concretesinsemillahash]: https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash
    ///
    /// # Panics
    ///
    /// This panics if the message length is greater than [`K`] * [`C`]
    pub fn hash(&self, msg: impl Iterator<Item = bool>) -> CtOption<pallas::Base> {
        extract_p_bottom(self.hash_to_point(msg))
    }

    /// Constructs a new `HashDomain` from a given `Q`.
    ///
    /// This is only for testing use.
    #[cfg(test)]
    #[allow(non_snake_case)]
    pub(crate) fn from_Q(Q: pallas::Point) -> Self {
        HashDomain { Q }
    }

    /// Returns the Sinsemilla $Q$ constant for this domain.
    #[cfg(any(test, feature = "test-dependencies"))]
    #[cfg_attr(docsrs, doc(cfg(feature = "test-dependencies")))]
    #[allow(non_snake_case)]
    pub fn Q(&self) -> pallas::Point {
        self.Q
    }
}

/// A domain in which $\mathsf{SinsemillaCommit}$ and $\mathsf{SinsemillaShortCommit}$ can
/// be used.
#[derive(Debug)]
#[allow(non_snake_case)]
pub struct CommitDomain {
    M: HashDomain,
    R: pallas::Point,
}

impl CommitDomain {
    /// Constructs a new `CommitDomain` with a specific prefix string.
    pub fn new(domain: &str) -> Self {
        let m_prefix = format!("{}-M", domain);
        let r_prefix = format!("{}-r", domain);
        let hasher_r = pallas::Point::hash_to_curve(&r_prefix);
        CommitDomain {
            M: HashDomain::new(&m_prefix),
            R: hasher_r(&[]),
        }
    }

    /// $\mathsf{SinsemillaCommit}$ from [§ 5.4.8.4][concretesinsemillacommit].
    ///
    /// [concretesinsemillacommit]: https://zips.z.cash/protocol/nu5.pdf#concretesinsemillacommit
    #[allow(non_snake_case)]
    pub fn commit(
        &self,
        msg: impl Iterator<Item = bool>,
        r: &pallas::Scalar,
    ) -> CtOption<pallas::Point> {
        // We use complete addition for the blinding factor.
        CtOption::<pallas::Point>::from(self.M.hash_to_point_inner(msg))
            .map(|p| p + Wnaf::new().scalar(r).base(self.R))
    }

    /// $\mathsf{SinsemillaShortCommit}$ from [§ 5.4.8.4][concretesinsemillacommit].
    ///
    /// [concretesinsemillacommit]: https://zips.z.cash/protocol/nu5.pdf#concretesinsemillacommit
    pub fn short_commit(
        &self,
        msg: impl Iterator<Item = bool>,
        r: &pallas::Scalar,
    ) -> CtOption<pallas::Base> {
        extract_p_bottom(self.commit(msg, r))
    }

    /// Returns the Sinsemilla $R$ constant for this domain.
    #[cfg(any(test, feature = "test-dependencies"))]
    #[cfg_attr(docsrs, doc(cfg(feature = "test-dependencies")))]
    #[allow(non_snake_case)]
    pub fn R(&self) -> pallas::Point {
        self.R
    }

    /// Returns the Sinsemilla $Q$ constant for this domain.
    #[cfg(any(test, feature = "test-dependencies"))]
    #[cfg_attr(docsrs, doc(cfg(feature = "test-dependencies")))]
    #[allow(non_snake_case)]
    pub fn Q(&self) -> pallas::Point {
        self.M.Q
    }
}

#[cfg(test)]
mod tests {
    use super::{Pad, K};
    use pasta_curves::{arithmetic::CurveExt, pallas};

    #[test]
    fn pad() {
        assert_eq!(
            Pad::new([].iter().cloned()).collect::<Vec<_>>(),
            vec![false; 0]
        );
        assert_eq!(
            Pad::new([true].iter().cloned()).collect::<Vec<_>>(),
            vec![true, false, false, false, false, false, false, false, false, false]
        );
        assert_eq!(
            Pad::new([true, true].iter().cloned()).collect::<Vec<_>>(),
            vec![true, true, false, false, false, false, false, false, false, false]
        );
        assert_eq!(
            Pad::new([true, true, true].iter().cloned()).collect::<Vec<_>>(),
            vec![true, true, true, false, false, false, false, false, false, false]
        );
        assert_eq!(
            Pad::new(
                [true, true, false, true, false, true, false, true, false, true]
                    .iter()
                    .cloned()
            )
            .collect::<Vec<_>>(),
            vec![true, true, false, true, false, true, false, true, false, true]
        );
        assert_eq!(
            Pad::new(
                [true, true, false, true, false, true, false, true, false, true, true]
                    .iter()
                    .cloned()
            )
            .collect::<Vec<_>>(),
            vec![
                true, true, false, true, false, true, false, true, false, true, true, false, false,
                false, false, false, false, false, false, false
            ]
        );
    }

    #[test]
    fn sinsemilla_s() {
        use super::sinsemilla_s::SINSEMILLA_S;
        use group::Curve;
        use pasta_curves::arithmetic::CurveAffine;

        let hasher = pallas::Point::hash_to_curve(super::S_PERSONALIZATION);

        for j in 0..(1u32 << K) {
            let computed = {
                let point = hasher(&j.to_le_bytes()).to_affine().coordinates().unwrap();
                (*point.x(), *point.y())
            };
            let actual = SINSEMILLA_S[j as usize];
            assert_eq!(computed, actual);
        }
    }
}