1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
use core::cmp::max;
use core::ops::{Add, Mul};
use ff::Field;
use std::{
    convert::TryFrom,
    ops::{Neg, Sub},
};

use super::{lookup, permutation, Assigned, Error};
use crate::circuit::Layouter;
use crate::{circuit::Region, poly::Rotation};

mod compress_selectors;

/// A column type
pub trait ColumnType:
    'static + Sized + Copy + std::fmt::Debug + PartialEq + Eq + Into<Any>
{
}

/// A column with an index and type
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Column<C: ColumnType> {
    index: usize,
    column_type: C,
}

impl<C: ColumnType> Column<C> {
    #[cfg(test)]
    pub(crate) fn new(index: usize, column_type: C) -> Self {
        Column { index, column_type }
    }

    pub(crate) fn index(&self) -> usize {
        self.index
    }

    /// Type of this column.
    pub fn column_type(&self) -> &C {
        &self.column_type
    }
}

impl<C: ColumnType> Ord for Column<C> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        // This ordering is consensus-critical! The layouters rely on deterministic column
        // orderings.
        match self.column_type.into().cmp(&other.column_type.into()) {
            // Indices are assigned within column types.
            std::cmp::Ordering::Equal => self.index.cmp(&other.index),
            order => order,
        }
    }
}

impl<C: ColumnType> PartialOrd for Column<C> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

/// An advice column
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Advice;

/// A fixed column
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Fixed;

/// An instance column
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Instance;

/// An enum over the Advice, Fixed, Instance structs
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub enum Any {
    /// An Advice variant
    Advice,
    /// A Fixed variant
    Fixed,
    /// An Instance variant
    Instance,
}

impl Ord for Any {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        // This ordering is consensus-critical! The layouters rely on deterministic column
        // orderings.
        match (self, other) {
            (Any::Instance, Any::Instance)
            | (Any::Advice, Any::Advice)
            | (Any::Fixed, Any::Fixed) => std::cmp::Ordering::Equal,
            // Across column types, sort Instance < Advice < Fixed.
            (Any::Instance, Any::Advice)
            | (Any::Advice, Any::Fixed)
            | (Any::Instance, Any::Fixed) => std::cmp::Ordering::Less,
            (Any::Fixed, Any::Instance)
            | (Any::Fixed, Any::Advice)
            | (Any::Advice, Any::Instance) => std::cmp::Ordering::Greater,
        }
    }
}

impl PartialOrd for Any {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl ColumnType for Advice {}
impl ColumnType for Fixed {}
impl ColumnType for Instance {}
impl ColumnType for Any {}

impl From<Advice> for Any {
    fn from(_: Advice) -> Any {
        Any::Advice
    }
}

impl From<Fixed> for Any {
    fn from(_: Fixed) -> Any {
        Any::Fixed
    }
}

impl From<Instance> for Any {
    fn from(_: Instance) -> Any {
        Any::Instance
    }
}

impl From<Column<Advice>> for Column<Any> {
    fn from(advice: Column<Advice>) -> Column<Any> {
        Column {
            index: advice.index(),
            column_type: Any::Advice,
        }
    }
}

impl From<Column<Fixed>> for Column<Any> {
    fn from(advice: Column<Fixed>) -> Column<Any> {
        Column {
            index: advice.index(),
            column_type: Any::Fixed,
        }
    }
}

impl From<Column<Instance>> for Column<Any> {
    fn from(advice: Column<Instance>) -> Column<Any> {
        Column {
            index: advice.index(),
            column_type: Any::Instance,
        }
    }
}

impl TryFrom<Column<Any>> for Column<Advice> {
    type Error = &'static str;

    fn try_from(any: Column<Any>) -> Result<Self, Self::Error> {
        match any.column_type() {
            Any::Advice => Ok(Column {
                index: any.index(),
                column_type: Advice,
            }),
            _ => Err("Cannot convert into Column<Advice>"),
        }
    }
}

impl TryFrom<Column<Any>> for Column<Fixed> {
    type Error = &'static str;

    fn try_from(any: Column<Any>) -> Result<Self, Self::Error> {
        match any.column_type() {
            Any::Fixed => Ok(Column {
                index: any.index(),
                column_type: Fixed,
            }),
            _ => Err("Cannot convert into Column<Fixed>"),
        }
    }
}

impl TryFrom<Column<Any>> for Column<Instance> {
    type Error = &'static str;

    fn try_from(any: Column<Any>) -> Result<Self, Self::Error> {
        match any.column_type() {
            Any::Instance => Ok(Column {
                index: any.index(),
                column_type: Instance,
            }),
            _ => Err("Cannot convert into Column<Instance>"),
        }
    }
}

/// A selector, representing a fixed boolean value per row of the circuit.
///
/// Selectors can be used to conditionally enable (portions of) gates:
/// ```
/// use halo2_proofs::poly::Rotation;
/// # use halo2_proofs::pasta::Fp;
/// # use halo2_proofs::plonk::ConstraintSystem;
///
/// # let mut meta = ConstraintSystem::<Fp>::default();
/// let a = meta.advice_column();
/// let b = meta.advice_column();
/// let s = meta.selector();
///
/// meta.create_gate("foo", |meta| {
///     let a = meta.query_advice(a, Rotation::prev());
///     let b = meta.query_advice(b, Rotation::cur());
///     let s = meta.query_selector(s);
///
///     // On rows where the selector is enabled, a is constrained to equal b.
///     // On rows where the selector is disabled, a and b can take any value.
///     vec![s * (a - b)]
/// });
/// ```
///
/// Selectors are disabled on all rows by default, and must be explicitly enabled on each
/// row when required:
/// ```
/// use halo2_proofs::{arithmetic::FieldExt, circuit::{Chip, Layouter}, plonk::{Advice, Column, Error, Selector}};
/// # use ff::Field;
/// # use halo2_proofs::plonk::Fixed;
///
/// struct Config {
///     a: Column<Advice>,
///     b: Column<Advice>,
///     s: Selector,
/// }
///
/// fn circuit_logic<F: FieldExt, C: Chip<F>>(chip: C, mut layouter: impl Layouter<F>) -> Result<(), Error> {
///     let config = chip.config();
///     # let config: Config = todo!();
///     layouter.assign_region(|| "bar", |mut region| {
///         region.assign_advice(|| "a", config.a, 0, || Ok(F::one()))?;
///         region.assign_advice(|| "a", config.b, 1, || Ok(F::one()))?;
///         config.s.enable(&mut region, 1)
///     })?;
///     Ok(())
/// }
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Selector(pub(crate) usize, bool);

impl Selector {
    /// Enable this selector at the given offset within the given region.
    pub fn enable<F: Field>(&self, region: &mut Region<F>, offset: usize) -> Result<(), Error> {
        region.enable_selector(|| "", self, offset)
    }

    /// Is this selector "simple"? Simple selectors can only be multiplied
    /// by expressions that contain no other simple selectors.
    pub fn is_simple(&self) -> bool {
        self.1
    }
}

/// A fixed column of a lookup table.
///
/// A lookup table can be loaded into this column via [`Layouter::assign_table`]. Columns
/// can currently only contain a single table, but they may be used in multiple lookup
/// arguments via [`ConstraintSystem::lookup`].
///
/// Lookup table columns are always "encumbered" by the lookup arguments they are used in;
/// they cannot simultaneously be used as general fixed columns.
///
/// [`Layouter::assign_table`]: crate::circuit::Layouter::assign_table
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct TableColumn {
    /// The fixed column that this table column is stored in.
    ///
    /// # Security
    ///
    /// This inner column MUST NOT be exposed in the public API, or else chip developers
    /// can load lookup tables into their circuits without default-value-filling the
    /// columns, which can cause soundness bugs.
    inner: Column<Fixed>,
}

impl TableColumn {
    pub(crate) fn inner(&self) -> Column<Fixed> {
        self.inner
    }
}

/// This trait allows a [`Circuit`] to direct some backend to assign a witness
/// for a constraint system.
pub trait Assignment<F: Field> {
    /// Creates a new region and enters into it.
    ///
    /// Panics if we are currently in a region (if `exit_region` was not called).
    ///
    /// Not intended for downstream consumption; use [`Layouter::assign_region`] instead.
    ///
    /// [`Layouter::assign_region`]: crate::circuit::Layouter#method.assign_region
    fn enter_region<NR, N>(&mut self, name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR;

    /// Exits the current region.
    ///
    /// Panics if we are not currently in a region (if `enter_region` was not called).
    ///
    /// Not intended for downstream consumption; use [`Layouter::assign_region`] instead.
    ///
    /// [`Layouter::assign_region`]: crate::circuit::Layouter#method.assign_region
    fn exit_region(&mut self);

    /// Enables a selector at the given row.
    fn enable_selector<A, AR>(
        &mut self,
        annotation: A,
        selector: &Selector,
        row: usize,
    ) -> Result<(), Error>
    where
        A: FnOnce() -> AR,
        AR: Into<String>;

    /// Queries the cell of an instance column at a particular absolute row.
    ///
    /// Returns the cell's value, if known.
    fn query_instance(&self, column: Column<Instance>, row: usize) -> Result<Option<F>, Error>;

    /// Assign an advice column value (witness)
    fn assign_advice<V, VR, A, AR>(
        &mut self,
        annotation: A,
        column: Column<Advice>,
        row: usize,
        to: V,
    ) -> Result<(), Error>
    where
        V: FnOnce() -> Result<VR, Error>,
        VR: Into<Assigned<F>>,
        A: FnOnce() -> AR,
        AR: Into<String>;

    /// Assign a fixed value
    fn assign_fixed<V, VR, A, AR>(
        &mut self,
        annotation: A,
        column: Column<Fixed>,
        row: usize,
        to: V,
    ) -> Result<(), Error>
    where
        V: FnOnce() -> Result<VR, Error>,
        VR: Into<Assigned<F>>,
        A: FnOnce() -> AR,
        AR: Into<String>;

    /// Assign two cells to have the same value
    fn copy(
        &mut self,
        left_column: Column<Any>,
        left_row: usize,
        right_column: Column<Any>,
        right_row: usize,
    ) -> Result<(), Error>;

    /// Fills a fixed `column` starting from the given `row` with value `to`.
    fn fill_from_row(
        &mut self,
        column: Column<Fixed>,
        row: usize,
        to: Option<Assigned<F>>,
    ) -> Result<(), Error>;

    /// Creates a new (sub)namespace and enters into it.
    ///
    /// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
    ///
    /// [`Layouter::namespace`]: crate::circuit::Layouter#method.namespace
    fn push_namespace<NR, N>(&mut self, name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR;

    /// Exits out of the existing namespace.
    ///
    /// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
    ///
    /// [`Layouter::namespace`]: crate::circuit::Layouter#method.namespace
    fn pop_namespace(&mut self, gadget_name: Option<String>);
}

/// A floor planning strategy for a circuit.
///
/// The floor planner is chip-agnostic and applies its strategy to the circuit it is used
/// within.
pub trait FloorPlanner {
    /// Given the provided `cs`, synthesize the given circuit.
    ///
    /// `constants` is the list of fixed columns that the layouter may use to assign
    /// global constant values. These columns will all have been equality-enabled.
    ///
    /// Internally, a floor planner will perform the following operations:
    /// - Instantiate a [`Layouter`] for this floor planner.
    /// - Perform any necessary setup or measurement tasks, which may involve one or more
    ///   calls to `Circuit::default().synthesize(config, &mut layouter)`.
    /// - Call `circuit.synthesize(config, &mut layouter)` exactly once.
    fn synthesize<F: Field, CS: Assignment<F>, C: Circuit<F>>(
        cs: &mut CS,
        circuit: &C,
        config: C::Config,
        constants: Vec<Column<Fixed>>,
    ) -> Result<(), Error>;
}

/// This is a trait that circuits provide implementations for so that the
/// backend prover can ask the circuit to synthesize using some given
/// [`ConstraintSystem`] implementation.
pub trait Circuit<F: Field> {
    /// This is a configuration object that stores things like columns.
    type Config: Clone;
    /// The floor planner used for this circuit. This is an associated type of the
    /// `Circuit` trait because its behaviour is circuit-critical.
    type FloorPlanner: FloorPlanner;

    /// Returns a copy of this circuit with no witness values (i.e. all witnesses set to
    /// `None`). For most circuits, this will be equal to `Self::default()`.
    fn without_witnesses(&self) -> Self;

    /// The circuit is given an opportunity to describe the exact gate
    /// arrangement, column arrangement, etc.
    fn configure(meta: &mut ConstraintSystem<F>) -> Self::Config;

    /// Given the provided `cs`, synthesize the circuit. The concrete type of
    /// the caller will be different depending on the context, and they may or
    /// may not expect to have a witness present.
    fn synthesize(&self, config: Self::Config, layouter: impl Layouter<F>) -> Result<(), Error>;
}

/// Low-degree expression representing an identity that must hold over the committed columns.
#[derive(Clone, Debug)]
pub enum Expression<F> {
    /// This is a constant polynomial
    Constant(F),
    /// This is a virtual selector
    Selector(Selector),
    /// This is a fixed column queried at a certain relative location
    Fixed {
        /// Query index
        query_index: usize,
        /// Column index
        column_index: usize,
        /// Rotation of this query
        rotation: Rotation,
    },
    /// This is an advice (witness) column queried at a certain relative location
    Advice {
        /// Query index
        query_index: usize,
        /// Column index
        column_index: usize,
        /// Rotation of this query
        rotation: Rotation,
    },
    /// This is an instance (external) column queried at a certain relative location
    Instance {
        /// Query index
        query_index: usize,
        /// Column index
        column_index: usize,
        /// Rotation of this query
        rotation: Rotation,
    },
    /// This is a negated polynomial
    Negated(Box<Expression<F>>),
    /// This is the sum of two polynomials
    Sum(Box<Expression<F>>, Box<Expression<F>>),
    /// This is the product of two polynomials
    Product(Box<Expression<F>>, Box<Expression<F>>),
    /// This is a scaled polynomial
    Scaled(Box<Expression<F>>, F),
}

impl<F: Field> Expression<F> {
    /// Evaluate the polynomial using the provided closures to perform the
    /// operations.
    pub fn evaluate<T>(
        &self,
        constant: &impl Fn(F) -> T,
        selector_column: &impl Fn(Selector) -> T,
        fixed_column: &impl Fn(usize, usize, Rotation) -> T,
        advice_column: &impl Fn(usize, usize, Rotation) -> T,
        instance_column: &impl Fn(usize, usize, Rotation) -> T,
        negated: &impl Fn(T) -> T,
        sum: &impl Fn(T, T) -> T,
        product: &impl Fn(T, T) -> T,
        scaled: &impl Fn(T, F) -> T,
    ) -> T {
        match self {
            Expression::Constant(scalar) => constant(*scalar),
            Expression::Selector(selector) => selector_column(*selector),
            Expression::Fixed {
                query_index,
                column_index,
                rotation,
            } => fixed_column(*query_index, *column_index, *rotation),
            Expression::Advice {
                query_index,
                column_index,
                rotation,
            } => advice_column(*query_index, *column_index, *rotation),
            Expression::Instance {
                query_index,
                column_index,
                rotation,
            } => instance_column(*query_index, *column_index, *rotation),
            Expression::Negated(a) => {
                let a = a.evaluate(
                    constant,
                    selector_column,
                    fixed_column,
                    advice_column,
                    instance_column,
                    negated,
                    sum,
                    product,
                    scaled,
                );
                negated(a)
            }
            Expression::Sum(a, b) => {
                let a = a.evaluate(
                    constant,
                    selector_column,
                    fixed_column,
                    advice_column,
                    instance_column,
                    negated,
                    sum,
                    product,
                    scaled,
                );
                let b = b.evaluate(
                    constant,
                    selector_column,
                    fixed_column,
                    advice_column,
                    instance_column,
                    negated,
                    sum,
                    product,
                    scaled,
                );
                sum(a, b)
            }
            Expression::Product(a, b) => {
                let a = a.evaluate(
                    constant,
                    selector_column,
                    fixed_column,
                    advice_column,
                    instance_column,
                    negated,
                    sum,
                    product,
                    scaled,
                );
                let b = b.evaluate(
                    constant,
                    selector_column,
                    fixed_column,
                    advice_column,
                    instance_column,
                    negated,
                    sum,
                    product,
                    scaled,
                );
                product(a, b)
            }
            Expression::Scaled(a, f) => {
                let a = a.evaluate(
                    constant,
                    selector_column,
                    fixed_column,
                    advice_column,
                    instance_column,
                    negated,
                    sum,
                    product,
                    scaled,
                );
                scaled(a, *f)
            }
        }
    }

    /// Compute the degree of this polynomial
    pub fn degree(&self) -> usize {
        match self {
            Expression::Constant(_) => 0,
            Expression::Selector(_) => 1,
            Expression::Fixed { .. } => 1,
            Expression::Advice { .. } => 1,
            Expression::Instance { .. } => 1,
            Expression::Negated(poly) => poly.degree(),
            Expression::Sum(a, b) => max(a.degree(), b.degree()),
            Expression::Product(a, b) => a.degree() + b.degree(),
            Expression::Scaled(poly, _) => poly.degree(),
        }
    }

    /// Square this expression.
    pub fn square(self) -> Self {
        self.clone() * self
    }

    /// Returns whether or not this expression contains a simple `Selector`.
    fn contains_simple_selector(&self) -> bool {
        self.evaluate(
            &|_| false,
            &|selector| selector.is_simple(),
            &|_, _, _| false,
            &|_, _, _| false,
            &|_, _, _| false,
            &|a| a,
            &|a, b| a || b,
            &|a, b| a || b,
            &|a, _| a,
        )
    }

    /// Extracts a simple selector from this gate, if present
    fn extract_simple_selector(&self) -> Option<Selector> {
        let op = |a, b| match (a, b) {
            (Some(a), None) | (None, Some(a)) => Some(a),
            (Some(_), Some(_)) => panic!("two simple selectors cannot be in the same expression"),
            _ => None,
        };

        self.evaluate(
            &|_| None,
            &|selector| {
                if selector.is_simple() {
                    Some(selector)
                } else {
                    None
                }
            },
            &|_, _, _| None,
            &|_, _, _| None,
            &|_, _, _| None,
            &|a| a,
            &op,
            &op,
            &|a, _| a,
        )
    }
}

impl<F: Field> Neg for Expression<F> {
    type Output = Expression<F>;
    fn neg(self) -> Self::Output {
        Expression::Negated(Box::new(self))
    }
}

impl<F: Field> Add for Expression<F> {
    type Output = Expression<F>;
    fn add(self, rhs: Expression<F>) -> Expression<F> {
        if self.contains_simple_selector() || rhs.contains_simple_selector() {
            panic!("attempted to use a simple selector in an addition");
        }
        Expression::Sum(Box::new(self), Box::new(rhs))
    }
}

impl<F: Field> Sub for Expression<F> {
    type Output = Expression<F>;
    fn sub(self, rhs: Expression<F>) -> Expression<F> {
        if self.contains_simple_selector() || rhs.contains_simple_selector() {
            panic!("attempted to use a simple selector in a subtraction");
        }
        Expression::Sum(Box::new(self), Box::new(-rhs))
    }
}

impl<F: Field> Mul for Expression<F> {
    type Output = Expression<F>;
    fn mul(self, rhs: Expression<F>) -> Expression<F> {
        if self.contains_simple_selector() && rhs.contains_simple_selector() {
            panic!("attempted to multiply two expressions containing simple selectors");
        }
        Expression::Product(Box::new(self), Box::new(rhs))
    }
}

impl<F: Field> Mul<F> for Expression<F> {
    type Output = Expression<F>;
    fn mul(self, rhs: F) -> Expression<F> {
        Expression::Scaled(Box::new(self), rhs)
    }
}

/// Represents an index into a vector where each entry corresponds to a distinct
/// point that polynomials are queried at.
#[derive(Copy, Clone, Debug)]
pub(crate) struct PointIndex(pub usize);

/// A "virtual cell" is a PLONK cell that has been queried at a particular relative offset
/// within a custom gate.
#[derive(Clone, Debug)]
pub(crate) struct VirtualCell {
    pub(crate) column: Column<Any>,
    pub(crate) rotation: Rotation,
}

impl<Col: Into<Column<Any>>> From<(Col, Rotation)> for VirtualCell {
    fn from((column, rotation): (Col, Rotation)) -> Self {
        VirtualCell {
            column: column.into(),
            rotation,
        }
    }
}

/// An individual polynomial constraint.
///
/// These are returned by the closures passed to `ConstraintSystem::create_gate`.
#[derive(Debug)]
pub struct Constraint<F: Field> {
    name: &'static str,
    poly: Expression<F>,
}

impl<F: Field> From<Expression<F>> for Constraint<F> {
    fn from(poly: Expression<F>) -> Self {
        Constraint { name: "", poly }
    }
}

impl<F: Field> From<(&'static str, Expression<F>)> for Constraint<F> {
    fn from((name, poly): (&'static str, Expression<F>)) -> Self {
        Constraint { name, poly }
    }
}

impl<F: Field> From<Expression<F>> for Vec<Constraint<F>> {
    fn from(poly: Expression<F>) -> Self {
        vec![Constraint { name: "", poly }]
    }
}

#[derive(Clone, Debug)]
pub(crate) struct Gate<F: Field> {
    name: &'static str,
    constraint_names: Vec<&'static str>,
    polys: Vec<Expression<F>>,
    /// We track queried selectors separately from other cells, so that we can use them to
    /// trigger debug checks on gates.
    queried_selectors: Vec<Selector>,
    queried_cells: Vec<VirtualCell>,
}

impl<F: Field> Gate<F> {
    pub(crate) fn name(&self) -> &'static str {
        self.name
    }

    pub(crate) fn constraint_name(&self, constraint_index: usize) -> &'static str {
        self.constraint_names[constraint_index]
    }

    pub(crate) fn polynomials(&self) -> &[Expression<F>] {
        &self.polys
    }

    pub(crate) fn queried_selectors(&self) -> &[Selector] {
        &self.queried_selectors
    }

    pub(crate) fn queried_cells(&self) -> &[VirtualCell] {
        &self.queried_cells
    }
}

/// This is a description of the circuit environment, such as the gate, column and
/// permutation arrangements.
#[derive(Debug, Clone)]
pub struct ConstraintSystem<F: Field> {
    pub(crate) num_fixed_columns: usize,
    pub(crate) num_advice_columns: usize,
    pub(crate) num_instance_columns: usize,
    pub(crate) num_selectors: usize,
    pub(crate) selector_map: Vec<Column<Fixed>>,
    pub(crate) gates: Vec<Gate<F>>,
    pub(crate) advice_queries: Vec<(Column<Advice>, Rotation)>,
    // Contains an integer for each advice column
    // identifying how many distinct queries it has
    // so far; should be same length as num_advice_columns.
    num_advice_queries: Vec<usize>,
    pub(crate) instance_queries: Vec<(Column<Instance>, Rotation)>,
    pub(crate) fixed_queries: Vec<(Column<Fixed>, Rotation)>,

    // Permutation argument for performing equality constraints
    pub(crate) permutation: permutation::Argument,

    // Vector of lookup arguments, where each corresponds to a sequence of
    // input expressions and a sequence of table expressions involved in the lookup.
    pub(crate) lookups: Vec<lookup::Argument<F>>,

    // Vector of fixed columns, which can be used to store constant values
    // that are copied into advice columns.
    pub(crate) constants: Vec<Column<Fixed>>,

    pub(crate) minimum_degree: Option<usize>,
}

/// Represents the minimal parameters that determine a `ConstraintSystem`.
#[allow(dead_code)]
#[derive(Debug)]
pub struct PinnedConstraintSystem<'a, F: Field> {
    num_fixed_columns: &'a usize,
    num_advice_columns: &'a usize,
    num_instance_columns: &'a usize,
    num_selectors: &'a usize,
    selector_map: &'a [Column<Fixed>],
    gates: PinnedGates<'a, F>,
    advice_queries: &'a Vec<(Column<Advice>, Rotation)>,
    instance_queries: &'a Vec<(Column<Instance>, Rotation)>,
    fixed_queries: &'a Vec<(Column<Fixed>, Rotation)>,
    permutation: &'a permutation::Argument,
    lookups: &'a Vec<lookup::Argument<F>>,
    constants: &'a Vec<Column<Fixed>>,
    minimum_degree: &'a Option<usize>,
}

struct PinnedGates<'a, F: Field>(&'a Vec<Gate<F>>);

impl<'a, F: Field> std::fmt::Debug for PinnedGates<'a, F> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        f.debug_list()
            .entries(self.0.iter().flat_map(|gate| gate.polynomials().iter()))
            .finish()
    }
}

impl<F: Field> Default for ConstraintSystem<F> {
    fn default() -> ConstraintSystem<F> {
        ConstraintSystem {
            num_fixed_columns: 0,
            num_advice_columns: 0,
            num_instance_columns: 0,
            num_selectors: 0,
            selector_map: vec![],
            gates: vec![],
            fixed_queries: Vec::new(),
            advice_queries: Vec::new(),
            num_advice_queries: Vec::new(),
            instance_queries: Vec::new(),
            permutation: permutation::Argument::new(),
            lookups: Vec::new(),
            constants: vec![],
            minimum_degree: None,
        }
    }
}

impl<F: Field> ConstraintSystem<F> {
    /// Obtain a pinned version of this constraint system; a structure with the
    /// minimal parameters needed to determine the rest of the constraint
    /// system.
    pub fn pinned(&self) -> PinnedConstraintSystem<'_, F> {
        PinnedConstraintSystem {
            num_fixed_columns: &self.num_fixed_columns,
            num_advice_columns: &self.num_advice_columns,
            num_instance_columns: &self.num_instance_columns,
            num_selectors: &self.num_selectors,
            selector_map: &self.selector_map,
            gates: PinnedGates(&self.gates),
            fixed_queries: &self.fixed_queries,
            advice_queries: &self.advice_queries,
            instance_queries: &self.instance_queries,
            permutation: &self.permutation,
            lookups: &self.lookups,
            constants: &self.constants,
            minimum_degree: &self.minimum_degree,
        }
    }

    /// Enables this fixed column to be used for global constant assignments.
    ///
    /// # Side-effects
    ///
    /// The column will be equality-enabled.
    pub fn enable_constant(&mut self, column: Column<Fixed>) {
        if !self.constants.contains(&column) {
            self.constants.push(column);
            self.enable_equality(column);
        }
    }

    /// Enable the ability to enforce equality over cells in this column
    pub fn enable_equality<C: Into<Column<Any>>>(&mut self, column: C) {
        let column = column.into();
        self.query_any_index(column, Rotation::cur());
        self.permutation.add_column(column);
    }

    /// Add a lookup argument for some input expressions and table columns.
    ///
    /// `table_map` returns a map between input expressions and the table columns
    /// they need to match.
    pub fn lookup(
        &mut self,
        table_map: impl FnOnce(&mut VirtualCells<'_, F>) -> Vec<(Expression<F>, TableColumn)>,
    ) -> usize {
        let mut cells = VirtualCells::new(self);
        let table_map = table_map(&mut cells)
            .into_iter()
            .map(|(input, table)| {
                if input.contains_simple_selector() {
                    panic!("expression containing simple selector supplied to lookup argument");
                }

                let table = cells.query_fixed(table.inner(), Rotation::cur());

                (input, table)
            })
            .collect();

        let index = self.lookups.len();

        self.lookups.push(lookup::Argument::new(table_map));

        index
    }

    fn query_fixed_index(&mut self, column: Column<Fixed>, at: Rotation) -> usize {
        // Return existing query, if it exists
        for (index, fixed_query) in self.fixed_queries.iter().enumerate() {
            if fixed_query == &(column, at) {
                return index;
            }
        }

        // Make a new query
        let index = self.fixed_queries.len();
        self.fixed_queries.push((column, at));

        index
    }

    pub(crate) fn query_advice_index(&mut self, column: Column<Advice>, at: Rotation) -> usize {
        // Return existing query, if it exists
        for (index, advice_query) in self.advice_queries.iter().enumerate() {
            if advice_query == &(column, at) {
                return index;
            }
        }

        // Make a new query
        let index = self.advice_queries.len();
        self.advice_queries.push((column, at));
        self.num_advice_queries[column.index] += 1;

        index
    }

    fn query_instance_index(&mut self, column: Column<Instance>, at: Rotation) -> usize {
        // Return existing query, if it exists
        for (index, instance_query) in self.instance_queries.iter().enumerate() {
            if instance_query == &(column, at) {
                return index;
            }
        }

        // Make a new query
        let index = self.instance_queries.len();
        self.instance_queries.push((column, at));

        index
    }

    fn query_any_index(&mut self, column: Column<Any>, at: Rotation) -> usize {
        match column.column_type() {
            Any::Advice => self.query_advice_index(Column::<Advice>::try_from(column).unwrap(), at),
            Any::Fixed => self.query_fixed_index(Column::<Fixed>::try_from(column).unwrap(), at),
            Any::Instance => {
                self.query_instance_index(Column::<Instance>::try_from(column).unwrap(), at)
            }
        }
    }

    pub(crate) fn get_advice_query_index(&self, column: Column<Advice>, at: Rotation) -> usize {
        for (index, advice_query) in self.advice_queries.iter().enumerate() {
            if advice_query == &(column, at) {
                return index;
            }
        }

        panic!("get_advice_query_index called for non-existent query");
    }

    pub(crate) fn get_fixed_query_index(&self, column: Column<Fixed>, at: Rotation) -> usize {
        for (index, fixed_query) in self.fixed_queries.iter().enumerate() {
            if fixed_query == &(column, at) {
                return index;
            }
        }

        panic!("get_fixed_query_index called for non-existent query");
    }

    pub(crate) fn get_instance_query_index(&self, column: Column<Instance>, at: Rotation) -> usize {
        for (index, instance_query) in self.instance_queries.iter().enumerate() {
            if instance_query == &(column, at) {
                return index;
            }
        }

        panic!("get_instance_query_index called for non-existent query");
    }

    pub(crate) fn get_any_query_index(&self, column: Column<Any>, at: Rotation) -> usize {
        match column.column_type() {
            Any::Advice => {
                self.get_advice_query_index(Column::<Advice>::try_from(column).unwrap(), at)
            }
            Any::Fixed => {
                self.get_fixed_query_index(Column::<Fixed>::try_from(column).unwrap(), at)
            }
            Any::Instance => {
                self.get_instance_query_index(Column::<Instance>::try_from(column).unwrap(), at)
            }
        }
    }

    /// Sets the minimum degree required by the circuit, which can be set to a
    /// larger amount than actually needed. This can be used, for example, to
    /// force the permutation argument to involve more columns in the same set.
    pub fn set_minimum_degree(&mut self, degree: usize) {
        self.minimum_degree = Some(degree);
    }

    /// Creates a new gate.
    ///
    /// # Panics
    ///
    /// A gate is required to contain polynomial constraints. This method will panic if
    /// `constraints` returns an empty iterator.
    pub fn create_gate<C: Into<Constraint<F>>, Iter: IntoIterator<Item = C>>(
        &mut self,
        name: &'static str,
        constraints: impl FnOnce(&mut VirtualCells<'_, F>) -> Iter,
    ) {
        let mut cells = VirtualCells::new(self);
        let constraints = constraints(&mut cells);
        let queried_selectors = cells.queried_selectors;
        let queried_cells = cells.queried_cells;

        let (constraint_names, polys): (_, Vec<_>) = constraints
            .into_iter()
            .map(|c| c.into())
            .map(|c| (c.name, c.poly))
            .unzip();

        assert!(
            !polys.is_empty(),
            "Gates must contain at least one constraint."
        );

        self.gates.push(Gate {
            name,
            constraint_names,
            polys,
            queried_selectors,
            queried_cells,
        });
    }

    /// This will compress selectors together depending on their provided
    /// assignments. This `ConstraintSystem` will then be modified to add new
    /// fixed columns (representing the actual selectors) and will return the
    /// polynomials for those columns. Finally, an internal map is updated to
    /// find which fixed column corresponds with a given `Selector`.
    ///
    /// Do not call this twice. Yes, this should be a builder pattern instead.
    pub(crate) fn compress_selectors(mut self, selectors: Vec<Vec<bool>>) -> (Self, Vec<Vec<F>>) {
        // The number of provided selector assignments must be the number we
        // counted for this constraint system.
        assert_eq!(selectors.len(), self.num_selectors);

        // Compute the maximal degree of every selector. We only consider the
        // expressions in gates, as lookup arguments cannot support simple
        // selectors. Selectors that are complex or do not appear in any gates
        // will have degree zero.
        let mut degrees = vec![0; selectors.len()];
        for expr in self.gates.iter().flat_map(|gate| gate.polys.iter()) {
            if let Some(selector) = expr.extract_simple_selector() {
                degrees[selector.0] = max(degrees[selector.0], expr.degree());
            }
        }

        // We will not increase the degree of the constraint system, so we limit
        // ourselves to the largest existing degree constraint.
        let max_degree = self.degree();

        let mut new_columns = vec![];
        let (polys, selector_assignment) = compress_selectors::process(
            selectors
                .into_iter()
                .zip(degrees.into_iter())
                .enumerate()
                .map(
                    |(i, (activations, max_degree))| compress_selectors::SelectorDescription {
                        selector: i,
                        activations,
                        max_degree,
                    },
                )
                .collect(),
            max_degree,
            || {
                let column = self.fixed_column();
                new_columns.push(column);
                Expression::Fixed {
                    query_index: self.query_fixed_index(column, Rotation::cur()),
                    column_index: column.index,
                    rotation: Rotation::cur(),
                }
            },
        );

        let mut selector_map = vec![None; selector_assignment.len()];
        let mut selector_replacements = vec![None; selector_assignment.len()];
        for assignment in selector_assignment {
            selector_replacements[assignment.selector] = Some(assignment.expression);
            selector_map[assignment.selector] = Some(new_columns[assignment.combination_index]);
        }

        self.selector_map = selector_map
            .into_iter()
            .map(|a| a.unwrap())
            .collect::<Vec<_>>();
        let selector_replacements = selector_replacements
            .into_iter()
            .map(|a| a.unwrap())
            .collect::<Vec<_>>();

        fn replace_selectors<F: Field>(
            expr: &mut Expression<F>,
            selector_replacements: &[Expression<F>],
            must_be_nonsimple: bool,
        ) {
            *expr = expr.evaluate(
                &|constant| Expression::Constant(constant),
                &|selector| {
                    if must_be_nonsimple {
                        // Simple selectors are prohibited from appearing in
                        // expressions in the lookup argument by
                        // `ConstraintSystem`.
                        assert!(!selector.is_simple());
                    }

                    selector_replacements[selector.0].clone()
                },
                &|query_index, column_index, rotation| Expression::Fixed {
                    query_index,
                    column_index,
                    rotation,
                },
                &|query_index, column_index, rotation| Expression::Advice {
                    query_index,
                    column_index,
                    rotation,
                },
                &|query_index, column_index, rotation| Expression::Instance {
                    query_index,
                    column_index,
                    rotation,
                },
                &|a| -a,
                &|a, b| a + b,
                &|a, b| a * b,
                &|a, f| a * f,
            );
        }

        // Substitute selectors for the real fixed columns in all gates
        for expr in self.gates.iter_mut().flat_map(|gate| gate.polys.iter_mut()) {
            replace_selectors(expr, &selector_replacements, false);
        }

        // Substitute non-simple selectors for the real fixed columns in all
        // lookup expressions
        for expr in self.lookups.iter_mut().flat_map(|lookup| {
            lookup
                .input_expressions
                .iter_mut()
                .chain(lookup.table_expressions.iter_mut())
        }) {
            replace_selectors(expr, &selector_replacements, true);
        }

        (self, polys)
    }

    /// Allocate a new (simple) selector. Simple selectors cannot be added to
    /// expressions nor multiplied by other expressions containing simple
    /// selectors. Also, simple selectors may not appear in lookup argument
    /// inputs.
    pub fn selector(&mut self) -> Selector {
        let index = self.num_selectors;
        self.num_selectors += 1;
        Selector(index, true)
    }

    /// Allocate a new complex selector that can appear anywhere
    /// within expressions.
    pub fn complex_selector(&mut self) -> Selector {
        let index = self.num_selectors;
        self.num_selectors += 1;
        Selector(index, false)
    }

    /// Allocates a new fixed column that can be used in a lookup table.
    pub fn lookup_table_column(&mut self) -> TableColumn {
        TableColumn {
            inner: self.fixed_column(),
        }
    }

    /// Allocate a new fixed column
    pub fn fixed_column(&mut self) -> Column<Fixed> {
        let tmp = Column {
            index: self.num_fixed_columns,
            column_type: Fixed,
        };
        self.num_fixed_columns += 1;
        tmp
    }

    /// Allocate a new advice column
    pub fn advice_column(&mut self) -> Column<Advice> {
        let tmp = Column {
            index: self.num_advice_columns,
            column_type: Advice,
        };
        self.num_advice_columns += 1;
        self.num_advice_queries.push(0);
        tmp
    }

    /// Allocate a new instance column
    pub fn instance_column(&mut self) -> Column<Instance> {
        let tmp = Column {
            index: self.num_instance_columns,
            column_type: Instance,
        };
        self.num_instance_columns += 1;
        tmp
    }

    /// Compute the degree of the constraint system (the maximum degree of all
    /// constraints).
    pub fn degree(&self) -> usize {
        // The permutation argument will serve alongside the gates, so must be
        // accounted for.
        let mut degree = self.permutation.required_degree();

        // The lookup argument also serves alongside the gates and must be accounted
        // for.
        degree = std::cmp::max(
            degree,
            self.lookups
                .iter()
                .map(|l| l.required_degree())
                .max()
                .unwrap_or(1),
        );

        // Account for each gate to ensure our quotient polynomial is the
        // correct degree and that our extended domain is the right size.
        degree = std::cmp::max(
            degree,
            self.gates
                .iter()
                .flat_map(|gate| gate.polynomials().iter().map(|poly| poly.degree()))
                .max()
                .unwrap_or(0),
        );

        std::cmp::max(degree, self.minimum_degree.unwrap_or(1))
    }

    /// Compute the number of blinding factors necessary to perfectly blind
    /// each of the prover's witness polynomials.
    pub fn blinding_factors(&self) -> usize {
        // All of the prover's advice columns are evaluated at no more than
        let factors = *self.num_advice_queries.iter().max().unwrap_or(&1);
        // distinct points during gate checks.

        // - The permutation argument witness polynomials are evaluated at most 3 times.
        // - Each lookup argument has independent witness polynomials, and they are
        //   evaluated at most 2 times.
        let factors = std::cmp::max(3, factors);

        // Each polynomial is evaluated at most an additional time during
        // multiopen (at x_3 to produce q_evals):
        let factors = factors + 1;

        // h(x) is derived by the other evaluations so it does not reveal
        // anything; in fact it does not even appear in the proof.

        // h(x_3) is also not revealed; the verifier only learns a single
        // evaluation of a polynomial in x_1 which has h(x_3) and another random
        // polynomial evaluated at x_3 as coefficients -- this random polynomial
        // is "random_poly" in the vanishing argument.

        // Add an additional blinding factor as a slight defense against
        // off-by-one errors.
        factors + 1
    }

    /// Returns the minimum necessary rows that need to exist in order to
    /// account for e.g. blinding factors.
    pub fn minimum_rows(&self) -> usize {
        self.blinding_factors() // m blinding factors
            + 1 // for l_{-(m + 1)} (l_last)
            + 1 // for l_0 (just for extra breathing room for the permutation
                // argument, to essentially force a separation in the
                // permutation polynomial between the roles of l_last, l_0
                // and the interstitial values.)
            + 1 // for at least one row
    }
}

/// Exposes the "virtual cells" that can be queried while creating a custom gate or lookup
/// table.
#[derive(Debug)]
pub struct VirtualCells<'a, F: Field> {
    meta: &'a mut ConstraintSystem<F>,
    queried_selectors: Vec<Selector>,
    queried_cells: Vec<VirtualCell>,
}

impl<'a, F: Field> VirtualCells<'a, F> {
    fn new(meta: &'a mut ConstraintSystem<F>) -> Self {
        VirtualCells {
            meta,
            queried_selectors: vec![],
            queried_cells: vec![],
        }
    }

    /// Query a selector at the current position.
    pub fn query_selector(&mut self, selector: Selector) -> Expression<F> {
        self.queried_selectors.push(selector);
        Expression::Selector(selector)
    }

    /// Query a fixed column at a relative position
    pub fn query_fixed(&mut self, column: Column<Fixed>, at: Rotation) -> Expression<F> {
        self.queried_cells.push((column, at).into());
        Expression::Fixed {
            query_index: self.meta.query_fixed_index(column, at),
            column_index: column.index,
            rotation: at,
        }
    }

    /// Query an advice column at a relative position
    pub fn query_advice(&mut self, column: Column<Advice>, at: Rotation) -> Expression<F> {
        self.queried_cells.push((column, at).into());
        Expression::Advice {
            query_index: self.meta.query_advice_index(column, at),
            column_index: column.index,
            rotation: at,
        }
    }

    /// Query an instance column at a relative position
    pub fn query_instance(&mut self, column: Column<Instance>, at: Rotation) -> Expression<F> {
        self.queried_cells.push((column, at).into());
        Expression::Instance {
            query_index: self.meta.query_instance_index(column, at),
            column_index: column.index,
            rotation: at,
        }
    }

    /// Query an Any column at a relative position
    pub fn query_any<C: Into<Column<Any>>>(&mut self, column: C, at: Rotation) -> Expression<F> {
        let column = column.into();
        match column.column_type() {
            Any::Advice => self.query_advice(Column::<Advice>::try_from(column).unwrap(), at),
            Any::Fixed => self.query_fixed(Column::<Fixed>::try_from(column).unwrap(), at),
            Any::Instance => self.query_instance(Column::<Instance>::try_from(column).unwrap(), at),
        }
    }
}