//! This module provides an implementation of a variant of (Turbo)[PLONK][plonk] //! that is designed specifically for the polynomial commitment scheme described //! in the [Halo][halo] paper. //! //! [halo]: https://eprint.iacr.org/2019/1021 //! [plonk]: https://eprint.iacr.org/2019/953 use crate::arithmetic::CurveAffine; use crate::poly::{multiopen, Coeff, EvaluationDomain, ExtendedLagrangeCoeff, Polynomial}; use crate::transcript::ChallengeScalar; mod circuit; mod keygen; mod permutation; mod prover; mod verifier; pub use circuit::*; pub use keygen::*; pub use prover::*; pub use verifier::*; /// This is a verifying key which allows for the verification of proofs for a /// particular circuit. #[derive(Debug)] pub struct VerifyingKey { domain: EvaluationDomain, fixed_commitments: Vec, permutations: Vec>, cs: ConstraintSystem, } /// This is a proving key which allows for the creation of proofs for a /// particular circuit. #[derive(Debug)] pub struct ProvingKey { vk: VerifyingKey, // TODO: get rid of this? l0: Polynomial, fixed_polys: Vec>, fixed_cosets: Vec>, permutations: Vec>, } /// This is an object which represents a (Turbo)PLONK proof. // This structure must never allow points at infinity. #[derive(Debug, Clone)] pub struct Proof { advice_commitments: Vec, h_commitments: Vec, permutations: Option>, advice_evals: Vec, aux_evals: Vec, fixed_evals: Vec, h_evals: Vec, multiopening: multiopen::Proof, } /// This is an error that could occur during proving or circuit synthesis. // TODO: these errors need to be cleaned up #[derive(Debug)] pub enum Error { /// This is an error that can occur during synthesis of the circuit, for /// example, when the witness is not present. SynthesisError, /// The structured reference string or the parameters are not compatible /// with the circuit being synthesized. IncompatibleParams, /// The constraint system is not satisfied. ConstraintSystemFailure, /// Out of bounds index passed to a backend BoundsFailure, /// Opening error OpeningError, /// Transcript error TranscriptError, } impl ProvingKey { /// Get the underlying [`VerifyingKey`]. pub fn get_vk(&self) -> &VerifyingKey { &self.vk } } impl VerifyingKey { /// Get the underlying [`EvaluationDomain`]. pub fn get_domain(&self) -> &EvaluationDomain { &self.domain } } #[derive(Clone, Copy, Debug)] struct Beta; type ChallengeBeta = ChallengeScalar; #[derive(Clone, Copy, Debug)] struct Gamma; type ChallengeGamma = ChallengeScalar; #[derive(Clone, Copy, Debug)] struct Y; type ChallengeY = ChallengeScalar; #[derive(Clone, Copy, Debug)] struct X; type ChallengeX = ChallengeScalar; #[test] fn test_proving() { use crate::arithmetic::{Curve, FieldExt}; use crate::poly::commitment::{Blind, Params}; use crate::transcript::DummyHash; use crate::tweedle::{EqAffine, Fp, Fq}; use circuit::{Advice, Column, Fixed}; use std::marker::PhantomData; const K: u32 = 5; /// This represents an advice column at a certain row in the ConstraintSystem #[derive(Copy, Clone, Debug)] pub struct Variable(Column, usize); // Initialize the polynomial commitment parameters let params: Params = Params::new::>(K); struct PLONKConfig { a: Column, b: Column, c: Column, d: Column, e: Column, sa: Column, sb: Column, sc: Column, sm: Column, sp: Column, perm: usize, perm2: usize, } trait StandardCS { fn raw_multiply(&mut self, f: F) -> Result<(Variable, Variable, Variable), Error> where F: FnOnce() -> Result<(FF, FF, FF), Error>; fn raw_add(&mut self, f: F) -> Result<(Variable, Variable, Variable), Error> where F: FnOnce() -> Result<(FF, FF, FF), Error>; fn copy(&mut self, a: Variable, b: Variable) -> Result<(), Error>; fn public_input(&mut self, f: F) -> Result where F: FnOnce() -> Result; } struct MyCircuit { a: Option, } struct StandardPLONK<'a, F: FieldExt, CS: Assignment + 'a> { cs: &'a mut CS, config: PLONKConfig, current_gate: usize, _marker: PhantomData, } impl<'a, FF: FieldExt, CS: Assignment> StandardPLONK<'a, FF, CS> { fn new(cs: &'a mut CS, config: PLONKConfig) -> Self { StandardPLONK { cs, config, current_gate: 0, _marker: PhantomData, } } } impl<'a, FF: FieldExt, CS: Assignment> StandardCS for StandardPLONK<'a, FF, CS> { fn raw_multiply(&mut self, f: F) -> Result<(Variable, Variable, Variable), Error> where F: FnOnce() -> Result<(FF, FF, FF), Error>, { let index = self.current_gate; self.current_gate += 1; let mut value = None; self.cs.assign_advice(self.config.a, index, || { value = Some(f()?); Ok(value.ok_or(Error::SynthesisError)?.0) })?; self.cs.assign_advice(self.config.d, index, || { Ok(value.ok_or(Error::SynthesisError)?.0.square().square()) })?; self.cs.assign_advice(self.config.b, index, || { Ok(value.ok_or(Error::SynthesisError)?.1) })?; self.cs.assign_advice(self.config.e, index, || { Ok(value.ok_or(Error::SynthesisError)?.1.square().square()) })?; self.cs.assign_advice(self.config.c, index, || { Ok(value.ok_or(Error::SynthesisError)?.2) })?; self.cs .assign_fixed(self.config.sa, index, || Ok(FF::zero()))?; self.cs .assign_fixed(self.config.sb, index, || Ok(FF::zero()))?; self.cs .assign_fixed(self.config.sc, index, || Ok(FF::one()))?; self.cs .assign_fixed(self.config.sm, index, || Ok(FF::one()))?; Ok(( Variable(self.config.a, index), Variable(self.config.b, index), Variable(self.config.c, index), )) } fn raw_add(&mut self, f: F) -> Result<(Variable, Variable, Variable), Error> where F: FnOnce() -> Result<(FF, FF, FF), Error>, { let index = self.current_gate; self.current_gate += 1; let mut value = None; self.cs.assign_advice(self.config.a, index, || { value = Some(f()?); Ok(value.ok_or(Error::SynthesisError)?.0) })?; self.cs.assign_advice(self.config.d, index, || { Ok(value.ok_or(Error::SynthesisError)?.0.square().square()) })?; self.cs.assign_advice(self.config.b, index, || { Ok(value.ok_or(Error::SynthesisError)?.1) })?; self.cs.assign_advice(self.config.e, index, || { Ok(value.ok_or(Error::SynthesisError)?.1.square().square()) })?; self.cs.assign_advice(self.config.c, index, || { Ok(value.ok_or(Error::SynthesisError)?.2) })?; self.cs .assign_fixed(self.config.sa, index, || Ok(FF::one()))?; self.cs .assign_fixed(self.config.sb, index, || Ok(FF::one()))?; self.cs .assign_fixed(self.config.sc, index, || Ok(FF::one()))?; self.cs .assign_fixed(self.config.sm, index, || Ok(FF::zero()))?; Ok(( Variable(self.config.a, index), Variable(self.config.b, index), Variable(self.config.c, index), )) } fn copy(&mut self, left: Variable, right: Variable) -> Result<(), Error> { let left_column = match left.0 { x if x == self.config.a => 0, x if x == self.config.b => 1, x if x == self.config.c => 2, _ => unreachable!(), }; let right_column = match right.0 { x if x == self.config.a => 0, x if x == self.config.b => 1, x if x == self.config.c => 2, _ => unreachable!(), }; self.cs .copy(self.config.perm, left_column, left.1, right_column, right.1)?; self.cs.copy( self.config.perm2, left_column, left.1, right_column, right.1, ) } fn public_input(&mut self, f: F) -> Result where F: FnOnce() -> Result, { let index = self.current_gate; self.current_gate += 1; self.cs.assign_advice(self.config.a, index, || f())?; self.cs .assign_fixed(self.config.sp, index, || Ok(FF::one()))?; Ok(Variable(self.config.a, index)) } } impl Circuit for MyCircuit { type Config = PLONKConfig; fn configure(meta: &mut ConstraintSystem) -> PLONKConfig { let e = meta.advice_column(); let a = meta.advice_column(); let b = meta.advice_column(); let sf = meta.fixed_column(); let c = meta.advice_column(); let d = meta.advice_column(); let p = meta.aux_column(); let perm = meta.permutation(&[a, b, c]); let perm2 = meta.permutation(&[a, b, c]); let sm = meta.fixed_column(); let sa = meta.fixed_column(); let sb = meta.fixed_column(); let sc = meta.fixed_column(); let sp = meta.fixed_column(); meta.create_gate(|meta| { let d = meta.query_advice(d, 1); let a = meta.query_advice(a, 0); let sf = meta.query_fixed(sf, 0); let e = meta.query_advice(e, -1); let b = meta.query_advice(b, 0); let c = meta.query_advice(c, 0); let sa = meta.query_fixed(sa, 0); let sb = meta.query_fixed(sb, 0); let sc = meta.query_fixed(sc, 0); let sm = meta.query_fixed(sm, 0); a.clone() * sa + b.clone() * sb + a * b * sm + (c * sc * (-F::one())) + sf * (d * e) }); meta.create_gate(|meta| { let a = meta.query_advice(a, 0); let p = meta.query_aux(p, 0); let sp = meta.query_fixed(sp, 0); sp * (a + p * (-F::one())) }); PLONKConfig { a, b, c, d, e, sa, sb, sc, sm, sp, perm, perm2, } } fn synthesize( &self, cs: &mut impl Assignment, config: PLONKConfig, ) -> Result<(), Error> { let mut cs = StandardPLONK::new(cs, config); let _ = cs.public_input(|| Ok(F::one() + F::one()))?; for _ in 0..10 { let mut a_squared = None; let (a0, _, c0) = cs.raw_multiply(|| { a_squared = self.a.map(|a| a.square()); Ok(( self.a.ok_or(Error::SynthesisError)?, self.a.ok_or(Error::SynthesisError)?, a_squared.ok_or(Error::SynthesisError)?, )) })?; let (a1, b1, _) = cs.raw_add(|| { let fin = a_squared.and_then(|a2| self.a.map(|a| a + a2)); Ok(( self.a.ok_or(Error::SynthesisError)?, a_squared.ok_or(Error::SynthesisError)?, fin.ok_or(Error::SynthesisError)?, )) })?; cs.copy(a0, a1)?; cs.copy(b1, c0)?; } Ok(()) } } let circuit: MyCircuit = MyCircuit { a: Some(Fp::rand()), }; let empty_circuit: MyCircuit = MyCircuit { a: None }; // Initialize the proving key let pk = keygen(¶ms, &empty_circuit).expect("keygen should not fail"); let mut pubinputs = pk.get_vk().get_domain().empty_lagrange(); pubinputs[0] = Fp::one(); pubinputs[0] += Fp::one(); let pubinput = params .commit_lagrange(&pubinputs, Blind::default()) .to_affine(); for _ in 0..100 { // Create a proof let proof = Proof::create::, DummyHash, _>( ¶ms, &pk, &circuit, &[pubinputs.clone()], ) .expect("proof generation should not fail"); let pubinput_slice = &[pubinput]; let msm = params.empty_msm(); let guard = proof .verify::, DummyHash>(¶ms, pk.get_vk(), msm, pubinput_slice) .unwrap(); { let msm = guard.clone().use_challenges(); assert!(msm.eval()); } { let g = guard.compute_g(); let (msm, _) = guard.clone().use_g(g); assert!(msm.eval()); } let msm = guard.clone().use_challenges(); assert!(msm.clone().eval()); let guard = proof .verify::, DummyHash>(¶ms, pk.get_vk(), msm, pubinput_slice) .unwrap(); { let msm = guard.clone().use_challenges(); assert!(msm.eval()); } { let g = guard.compute_g(); let (msm, _) = guard.clone().use_g(g); assert!(msm.eval()); } } }