use super::{EccInstructions, FixedPoints}; use crate::{ circuit::gadget::utilities::{ lookup_range_check::LookupRangeCheckConfig, UtilitiesInstructions, }, constants, primitives::sinsemilla, }; use arrayvec::ArrayVec; use ff::Field; use group::prime::PrimeCurveAffine; use halo2::{ circuit::{AssignedCell, Chip, Layouter}, plonk::{Advice, Column, ConstraintSystem, Error, Fixed}, }; use pasta_curves::{arithmetic::CurveAffine, pallas}; use std::convert::TryInto; pub(super) mod add; pub(super) mod add_incomplete; pub(super) mod mul; pub(super) mod mul_fixed; pub(super) mod witness_point; /// A curve point represented in affine (x, y) coordinates, or the /// identity represented as (0, 0). /// Each coordinate is assigned to a cell. #[derive(Clone, Debug)] pub struct EccPoint { /// x-coordinate x: AssignedCell, /// y-coordinate y: AssignedCell, } impl EccPoint { /// Constructs a point from its coordinates, without checking they are on the curve. /// /// This is an internal API that we only use where we know we have a valid curve point /// (specifically inside Sinsemilla). pub(in crate::circuit::gadget) fn from_coordinates_unchecked( x: AssignedCell, y: AssignedCell, ) -> Self { EccPoint { x, y } } /// Returns the value of this curve point, if known. pub fn point(&self) -> Option { match (self.x.value(), self.y.value()) { (Some(x), Some(y)) => { if x.is_zero_vartime() && y.is_zero_vartime() { Some(pallas::Affine::identity()) } else { Some(pallas::Affine::from_xy(*x, *y).unwrap()) } } _ => None, } } /// The cell containing the affine short-Weierstrass x-coordinate, /// or 0 for the zero point. pub fn x(&self) -> AssignedCell { self.x.clone() } /// The cell containing the affine short-Weierstrass y-coordinate, /// or 0 for the zero point. pub fn y(&self) -> AssignedCell { self.y.clone() } #[cfg(test)] fn is_identity(&self) -> Option { self.x.value().map(|x| x.is_zero_vartime()) } } /// A non-identity point represented in affine (x, y) coordinates. /// Each coordinate is assigned to a cell. #[derive(Clone, Debug)] pub struct NonIdentityEccPoint { /// x-coordinate x: AssignedCell, /// y-coordinate y: AssignedCell, } impl NonIdentityEccPoint { /// Constructs a point from its coordinates, without checking they are on the curve. /// /// This is an internal API that we only use where we know we have a valid non-identity /// curve point (specifically inside Sinsemilla). pub(in crate::circuit::gadget) fn from_coordinates_unchecked( x: AssignedCell, y: AssignedCell, ) -> Self { NonIdentityEccPoint { x, y } } /// Returns the value of this curve point, if known. pub fn point(&self) -> Option { match (self.x.value(), self.y.value()) { (Some(x), Some(y)) => { assert!(!x.is_zero_vartime() && !y.is_zero_vartime()); Some(pallas::Affine::from_xy(*x, *y).unwrap()) } _ => None, } } /// The cell containing the affine short-Weierstrass x-coordinate. pub fn x(&self) -> AssignedCell { self.x.clone() } /// The cell containing the affine short-Weierstrass y-coordinate. pub fn y(&self) -> AssignedCell { self.y.clone() } } impl From for EccPoint { fn from(non_id_point: NonIdentityEccPoint) -> Self { Self { x: non_id_point.x, y: non_id_point.y, } } } /// Configuration for the ECC chip #[derive(Clone, Debug, Eq, PartialEq)] #[allow(non_snake_case)] pub struct EccConfig> { /// Advice columns needed by instructions in the ECC chip. pub advices: [Column; 10], /// Incomplete addition add_incomplete: add_incomplete::Config, /// Complete addition add: add::Config, /// Variable-base scalar multiplication mul: mul::Config, /// Fixed-base full-width scalar multiplication mul_fixed_full: mul_fixed::full_width::Config, /// Fixed-base signed short scalar multiplication mul_fixed_short: mul_fixed::short::Config, /// Fixed-base mul using a base field element as a scalar mul_fixed_base_field: mul_fixed::base_field_elem::Config, /// Witness point witness_point: witness_point::Config, /// Lookup range check using 10-bit lookup table pub lookup_config: LookupRangeCheckConfig, } /// Returns information about a fixed point. /// /// TODO: When associated consts can be used as const generics, introduce a /// `const NUM_WINDOWS: usize` associated const, and return `NUM_WINDOWS`-sized /// arrays instead of `Vec`s. pub trait FixedPoint: std::fmt::Debug + Eq + Clone { fn generator(&self) -> C; fn u(&self) -> Vec<[[u8; 32]; constants::H]>; fn z(&self) -> Vec; fn lagrange_coeffs(&self) -> Vec<[C::Base; constants::H]>; } /// A chip implementing EccInstructions #[derive(Clone, Debug, Eq, PartialEq)] pub struct EccChip> { config: EccConfig, } impl> Chip for EccChip { type Config = EccConfig; type Loaded = (); fn config(&self) -> &Self::Config { &self.config } fn loaded(&self) -> &Self::Loaded { &() } } impl> UtilitiesInstructions for EccChip { type Var = AssignedCell; } impl> EccChip { pub fn construct(config: >::Config) -> Self { Self { config } } /// # Side effects /// /// All columns in `advices` will be equality-enabled. #[allow(non_snake_case)] pub fn configure( meta: &mut ConstraintSystem, advices: [Column; 10], lagrange_coeffs: [Column; 8], range_check: LookupRangeCheckConfig, ) -> >::Config { // Create witness point gate let witness_point = witness_point::Config::configure(meta, advices[0], advices[1]); // Create incomplete point addition gate let add_incomplete = add_incomplete::Config::configure(meta, advices[0], advices[1], advices[2], advices[3]); // Create complete point addition gate let add = add::Config::configure( meta, advices[0], advices[1], advices[2], advices[3], advices[4], advices[5], advices[6], advices[7], advices[8], ); // Create variable-base scalar mul gates let mul = mul::Config::configure(meta, add, range_check, advices); // Create config that is shared across short, base-field, and full-width // fixed-base scalar mul. let mul_fixed = mul_fixed::Config::::configure( meta, lagrange_coeffs, advices[4], advices[0], advices[1], advices[5], add, add_incomplete, ); // Create gate that is only used in full-width fixed-base scalar mul. let mul_fixed_full = mul_fixed::full_width::Config::::configure(meta, mul_fixed.clone()); // Create gate that is only used in short fixed-base scalar mul. let mul_fixed_short = mul_fixed::short::Config::::configure(meta, mul_fixed.clone()); // Create gate that is only used in fixed-base mul using a base field element. let mul_fixed_base_field = mul_fixed::base_field_elem::Config::::configure( meta, advices[6..9].try_into().unwrap(), range_check, mul_fixed, ); EccConfig { advices, add_incomplete, add, mul, mul_fixed_full, mul_fixed_short, mul_fixed_base_field, witness_point, lookup_config: range_check, } } } /// A full-width scalar used for fixed-base scalar multiplication. /// This is decomposed into 85 3-bit windows in little-endian order, /// i.e. `windows` = [k_0, k_1, ..., k_84] (for a 255-bit scalar) /// where `scalar = k_0 + k_1 * (2^3) + ... + k_84 * (2^3)^84` and /// each `k_i` is in the range [0..2^3). #[derive(Clone, Debug)] pub struct EccScalarFixed { value: Option, windows: ArrayVec, { constants::NUM_WINDOWS }>, } // TODO: Make V a `u64` type MagnitudeCell = AssignedCell; // TODO: Make V an enum Sign { Positive, Negative } type SignCell = AssignedCell; type MagnitudeSign = (MagnitudeCell, SignCell); /// A signed short scalar used for fixed-base scalar multiplication. /// A short scalar must have magnitude in the range [0..2^64), with /// a sign of either 1 or -1. /// This is decomposed into 3-bit windows in little-endian order /// using a running sum `z`, where z_{i+1} = (z_i - a_i) / (2^3) /// for element α = a_0 + (2^3) a_1 + ... + (2^{3(n-1)}) a_{n-1}. /// Each `a_i` is in the range [0..2^3). /// /// `windows` = [k_0, k_1, ..., k_21] (for a 64-bit magnitude) /// where `scalar = k_0 + k_1 * (2^3) + ... + k_84 * (2^3)^84` and /// each `k_i` is in the range [0..2^3). /// k_21 must be a single bit, i.e. 0 or 1. #[derive(Clone, Debug)] pub struct EccScalarFixedShort { magnitude: MagnitudeCell, sign: SignCell, running_sum: ArrayVec, { constants::NUM_WINDOWS_SHORT + 1 }>, } /// A base field element used for fixed-base scalar multiplication. /// This is decomposed into 3-bit windows in little-endian order /// using a running sum `z`, where z_{i+1} = (z_i - a_i) / (2^3) /// for element α = a_0 + (2^3) a_1 + ... + (2^{3(n-1)}) a_{n-1}. /// Each `a_i` is in the range [0..2^3). /// /// `running_sum` = [z_0, ..., z_85], where we expect z_85 = 0. /// Since z_0 is initialized as the scalar α, we store it as /// `base_field_elem`. #[derive(Clone, Debug)] struct EccBaseFieldElemFixed { base_field_elem: AssignedCell, running_sum: ArrayVec, { constants::NUM_WINDOWS + 1 }>, } impl EccBaseFieldElemFixed { fn base_field_elem(&self) -> AssignedCell { self.base_field_elem.clone() } } impl> EccInstructions for EccChip where >::Base: FixedPoint, >::FullScalar: FixedPoint, >::ShortScalar: FixedPoint, { type ScalarFixed = EccScalarFixed; type ScalarFixedShort = EccScalarFixedShort; type ScalarVar = AssignedCell; type Point = EccPoint; type NonIdentityPoint = NonIdentityEccPoint; type X = AssignedCell; type FixedPoints = Fixed; fn constrain_equal( &self, layouter: &mut impl Layouter, a: &Self::Point, b: &Self::Point, ) -> Result<(), Error> { layouter.assign_region( || "constrain equal", |mut region| { // Constrain x-coordinates region.constrain_equal(a.x().cell(), b.x().cell())?; // Constrain x-coordinates region.constrain_equal(a.y().cell(), b.y().cell()) }, ) } fn witness_point( &self, layouter: &mut impl Layouter, value: Option, ) -> Result { let config = self.config().witness_point; layouter.assign_region( || "witness point", |mut region| config.point(value, 0, &mut region), ) } fn witness_point_non_id( &self, layouter: &mut impl Layouter, value: Option, ) -> Result { let config = self.config().witness_point; layouter.assign_region( || "witness non-identity point", |mut region| config.point_non_id(value, 0, &mut region), ) } fn extract_p + Clone>(point: &Point) -> Self::X { let point: EccPoint = (point.clone()).into(); point.x() } fn add_incomplete( &self, layouter: &mut impl Layouter, a: &Self::NonIdentityPoint, b: &Self::NonIdentityPoint, ) -> Result { let config = self.config().add_incomplete; layouter.assign_region( || "incomplete point addition", |mut region| config.assign_region(a, b, 0, &mut region), ) } fn add + Clone, B: Into + Clone>( &self, layouter: &mut impl Layouter, a: &A, b: &B, ) -> Result { let config = self.config().add; layouter.assign_region( || "complete point addition", |mut region| { config.assign_region(&(a.clone()).into(), &(b.clone()).into(), 0, &mut region) }, ) } fn mul( &self, layouter: &mut impl Layouter, scalar: &Self::Var, base: &Self::NonIdentityPoint, ) -> Result<(Self::Point, Self::ScalarVar), Error> { let config = self.config().mul; config.assign( layouter.namespace(|| "variable-base scalar mul"), scalar.clone(), base, ) } fn mul_fixed( &self, layouter: &mut impl Layouter, scalar: Option, base: &>::FullScalar, ) -> Result<(Self::Point, Self::ScalarFixed), Error> { let config = self.config().mul_fixed_full.clone(); config.assign( layouter.namespace(|| format!("fixed-base mul of {:?}", base)), scalar, base, ) } fn mul_fixed_short( &self, layouter: &mut impl Layouter, magnitude_sign: MagnitudeSign, base: &>::ShortScalar, ) -> Result<(Self::Point, Self::ScalarFixedShort), Error> { let config = self.config().mul_fixed_short.clone(); config.assign( layouter.namespace(|| format!("short fixed-base mul of {:?}", base)), magnitude_sign, base, ) } fn mul_fixed_base_field_elem( &self, layouter: &mut impl Layouter, base_field_elem: AssignedCell, base: &>::Base, ) -> Result { let config = self.config().mul_fixed_base_field.clone(); config.assign( layouter.namespace(|| format!("base-field elem fixed-base mul of {:?}", base)), base_field_elem, base, ) } }