1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//! Chip implementing a Merkle hash using Sinsemilla as the hash function.

use halo2_proofs::{
    circuit::{AssignedCell, Chip, Layouter, Value},
    plonk::{Advice, Column, ConstraintSystem, Constraints, Error, Selector},
    poly::Rotation,
};
use pasta_curves::pallas;

use super::MerkleInstructions;

use crate::{
    sinsemilla::{primitives as sinsemilla, MessagePiece},
    utilities::RangeConstrained,
    {
        ecc::FixedPoints,
        sinsemilla::{
            chip::{SinsemillaChip, SinsemillaConfig},
            CommitDomains, HashDomains, SinsemillaInstructions,
        },
        utilities::{
            cond_swap::{CondSwapChip, CondSwapConfig, CondSwapInstructions},
            UtilitiesInstructions,
        },
    },
};
use group::ff::PrimeField;

/// Configuration for the `MerkleChip` implementation.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MerkleConfig<Hash, Commit, Fixed>
where
    Hash: HashDomains<pallas::Affine>,
    Fixed: FixedPoints<pallas::Affine>,
    Commit: CommitDomains<pallas::Affine, Fixed, Hash>,
{
    advices: [Column<Advice>; 5],
    q_decompose: Selector,
    pub(super) cond_swap_config: CondSwapConfig,
    pub(super) sinsemilla_config: SinsemillaConfig<Hash, Commit, Fixed>,
}

/// Chip implementing `MerkleInstructions`.
///
/// This chip specifically implements `MerkleInstructions::hash_layer` as the `MerkleCRH`
/// function `hash = SinsemillaHash(Q, 𝑙⋆ || left⋆ || right⋆)`, where:
/// - `𝑙⋆ = I2LEBSP_10(l)`
/// - `left⋆ = I2LEBSP_255(left)`
/// - `right⋆ = I2LEBSP_255(right)`
///
/// This chip does **NOT** constrain `left⋆` and `right⋆` to be canonical encodings of
/// `left` and `right`.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct MerkleChip<Hash, Commit, Fixed>
where
    Hash: HashDomains<pallas::Affine>,
    Fixed: FixedPoints<pallas::Affine>,
    Commit: CommitDomains<pallas::Affine, Fixed, Hash>,
{
    config: MerkleConfig<Hash, Commit, Fixed>,
}

impl<Hash, Commit, Fixed> Chip<pallas::Base> for MerkleChip<Hash, Commit, Fixed>
where
    Hash: HashDomains<pallas::Affine>,
    Fixed: FixedPoints<pallas::Affine>,
    Commit: CommitDomains<pallas::Affine, Fixed, Hash>,
{
    type Config = MerkleConfig<Hash, Commit, Fixed>;
    type Loaded = ();

    fn config(&self) -> &Self::Config {
        &self.config
    }

    fn loaded(&self) -> &Self::Loaded {
        &()
    }
}

impl<Hash, Commit, F> MerkleChip<Hash, Commit, F>
where
    Hash: HashDomains<pallas::Affine>,
    F: FixedPoints<pallas::Affine>,
    Commit: CommitDomains<pallas::Affine, F, Hash>,
{
    /// Configures the [`MerkleChip`].
    pub fn configure(
        meta: &mut ConstraintSystem<pallas::Base>,
        sinsemilla_config: SinsemillaConfig<Hash, Commit, F>,
    ) -> MerkleConfig<Hash, Commit, F> {
        // All five advice columns are equality-enabled by SinsemillaConfig.
        let advices = sinsemilla_config.advices();
        let cond_swap_config = CondSwapChip::configure(meta, advices);

        // This selector enables the decomposition gate.
        let q_decompose = meta.selector();

        // Check that pieces have been decomposed correctly for Sinsemilla hash.
        // <https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh>
        //
        // a = a_0||a_1 = l || (bits 0..=239 of left)
        // b = b_0||b_1||b_2
        //   = (bits 240..=249 of left) || (bits 250..=254 of left) || (bits 0..=4 of right)
        // c = bits 5..=254 of right
        //
        // The message pieces `a`, `b`, `c` are constrained by Sinsemilla to be
        // 250 bits, 20 bits, and 250 bits respectively.
        //
        // The pieces and subpieces are arranged in the following configuration:
        // |  A_0  |  A_1  |  A_2  |  A_3  |  A_4  | q_decompose |
        // -------------------------------------------------------
        // |   a   |   b   |   c   |  left | right |      1      |
        // |  z1_a |  z1_b |  b_1  |  b_2  |   l   |      0      |
        meta.create_gate("Decomposition check", |meta| {
            let q_decompose = meta.query_selector(q_decompose);
            let l_whole = meta.query_advice(advices[4], Rotation::next());

            let two_pow_5 = pallas::Base::from(1 << 5);
            let two_pow_10 = two_pow_5.square();

            // a_whole is constrained by Sinsemilla to be 250 bits.
            let a_whole = meta.query_advice(advices[0], Rotation::cur());
            // b_whole is constrained by Sinsemilla to be 20 bits.
            let b_whole = meta.query_advice(advices[1], Rotation::cur());
            // c_whole is constrained by Sinsemilla to be 250 bits.
            let c_whole = meta.query_advice(advices[2], Rotation::cur());
            let left_node = meta.query_advice(advices[3], Rotation::cur());
            let right_node = meta.query_advice(advices[4], Rotation::cur());

            // a = a_0||a_1 = l || (bits 0..=239 of left)
            //
            // z_1 of SinsemillaHash(a) = a_1
            // => a_0 = a - (a_1 * 2^10)
            let z1_a = meta.query_advice(advices[0], Rotation::next());
            let a_1 = z1_a;
            // Derive a_0 (constrained by SinsemillaHash to be 10 bits)
            let a_0 = a_whole - a_1.clone() * two_pow_10;

            // b = b_0||b_1||b_2
            //   = (bits 240..=249 of left) || (bits 250..=254 of left) || (bits 0..=4 of right)
            // The Orchard specification allows this representation to be non-canonical.
            // <https://zips.z.cash/protocol/protocol.pdf#merklepath>
            //
            //    z_1 of SinsemillaHash(b) = b_1 + 2^5 b_2
            // => b_0 = b - (z1_b * 2^10)
            let z1_b = meta.query_advice(advices[1], Rotation::next());
            // b_1 has been constrained to be 5 bits outside this gate.
            let b_1 = meta.query_advice(advices[2], Rotation::next());
            // b_2 has been constrained to be 5 bits outside this gate.
            let b_2 = meta.query_advice(advices[3], Rotation::next());
            // Constrain b_1 + 2^5 b_2 = z1_b
            // https://p.z.cash/halo2-0.1:sinsemilla-merkle-crh-bit-lengths?partial
            let b1_b2_check = z1_b.clone() - (b_1.clone() + b_2.clone() * two_pow_5);
            // Derive b_0 (constrained by SinsemillaHash to be 10 bits)
            let b_0 = b_whole - (z1_b * two_pow_10);

            // Check that left = a_1 (240 bits) || b_0 (10 bits) || b_1 (5 bits)
            // https://p.z.cash/halo2-0.1:sinsemilla-merkle-crh-decomposition?partial
            let left_check = {
                let reconstructed = {
                    let two_pow_240 = pallas::Base::from_u128(1 << 120).square();
                    a_1 + (b_0 + b_1 * two_pow_10) * two_pow_240
                };
                reconstructed - left_node
            };

            // Check that right = b_2 (5 bits) || c (250 bits)
            // The Orchard specification allows this representation to be non-canonical.
            // <https://zips.z.cash/protocol/protocol.pdf#merklepath>
            // https://p.z.cash/halo2-0.1:sinsemilla-merkle-crh-decomposition?partial
            let right_check = b_2 + c_whole * two_pow_5 - right_node;

            Constraints::with_selector(
                q_decompose,
                [
                    ("l_check", a_0 - l_whole),
                    ("left_check", left_check),
                    ("right_check", right_check),
                    ("b1_b2_check", b1_b2_check),
                ],
            )
        });

        MerkleConfig {
            advices,
            q_decompose,
            cond_swap_config,
            sinsemilla_config,
        }
    }

    /// Constructs a [`MerkleChip`] given a [`MerkleConfig`].
    pub fn construct(config: MerkleConfig<Hash, Commit, F>) -> Self {
        MerkleChip { config }
    }
}

impl<Hash, Commit, F, const MERKLE_DEPTH: usize>
    MerkleInstructions<pallas::Affine, MERKLE_DEPTH, { sinsemilla::K }, { sinsemilla::C }>
    for MerkleChip<Hash, Commit, F>
where
    Hash: HashDomains<pallas::Affine> + Eq,
    F: FixedPoints<pallas::Affine>,
    Commit: CommitDomains<pallas::Affine, F, Hash> + Eq,
{
    #[allow(non_snake_case)]
    fn hash_layer(
        &self,
        mut layouter: impl Layouter<pallas::Base>,
        Q: pallas::Affine,
        // l = MERKLE_DEPTH - layer - 1
        l: usize,
        left: Self::Var,
        right: Self::Var,
    ) -> Result<Self::Var, Error> {
        let config = self.config().clone();

        // We need to hash `l || left || right`, where `l` is a 10-bit value.
        // We allow `left` and `right` to be non-canonical 255-bit encodings.
        //
        // a = a_0||a_1 = l || (bits 0..=239 of left)
        // b = b_0||b_1||b_2
        //   = (bits 240..=249 of left) || (bits 250..=254 of left) || (bits 0..=4 of right)
        // c = bits 5..=254 of right
        //
        // We start by witnessing all of the individual pieces, and range-constraining the
        // short pieces b_1 and b_2.
        //
        // https://p.z.cash/halo2-0.1:sinsemilla-merkle-crh-bit-lengths?partial

        // `a = a_0||a_1` = `l` || (bits 0..=239 of `left`)
        let a = MessagePiece::from_subpieces(
            self.clone(),
            layouter.namespace(|| "Witness a = a_0 || a_1"),
            [
                RangeConstrained::bitrange_of(Value::known(&pallas::Base::from(l as u64)), 0..10),
                RangeConstrained::bitrange_of(left.value(), 0..240),
            ],
        )?;

        // b = b_0 || b_1 || b_2
        //   = (bits 240..=249 of left) || (bits 250..=254 of left) || (bits 0..=4 of right)
        let (b_1, b_2, b) = {
            // b_0 = (bits 240..=249 of `left`)
            let b_0 = RangeConstrained::bitrange_of(left.value(), 240..250);

            // b_1 = (bits 250..=254 of `left`)
            // Constrain b_1 to 5 bits.
            let b_1 = RangeConstrained::witness_short(
                &config.sinsemilla_config.lookup_config(),
                layouter.namespace(|| "b_1"),
                left.value(),
                250..(pallas::Base::NUM_BITS as usize),
            )?;

            // b_2 = (bits 0..=4 of `right`)
            // Constrain b_2 to 5 bits.
            let b_2 = RangeConstrained::witness_short(
                &config.sinsemilla_config.lookup_config(),
                layouter.namespace(|| "b_2"),
                right.value(),
                0..5,
            )?;

            let b = MessagePiece::from_subpieces(
                self.clone(),
                layouter.namespace(|| "Witness b = b_0 || b_1 || b_2"),
                [b_0, b_1.value(), b_2.value()],
            )?;

            (b_1, b_2, b)
        };

        // c = bits 5..=254 of `right`
        let c = MessagePiece::from_subpieces(
            self.clone(),
            layouter.namespace(|| "Witness c"),
            [RangeConstrained::bitrange_of(
                right.value(),
                5..(pallas::Base::NUM_BITS as usize),
            )],
        )?;

        // hash = SinsemillaHash(Q, 𝑙⋆ || left⋆ || right⋆)
        //
        // `hash = ⊥` is handled internally to `SinsemillaChip::hash_to_point`: incomplete
        // addition constraints allows ⊥ to occur, and then during synthesis it detects
        // these edge cases and raises an error (aborting proof creation).
        //
        // Note that MerkleCRH as-defined maps ⊥ to 0. This is for completeness outside
        // the circuit (so that the ⊥ does not propagate into the type system). The chip
        // explicitly doesn't map ⊥ to 0; in fact it cannot, as doing so would require
        // constraints that amount to using complete addition. The rationale for excluding
        // this map is the same as why Sinsemilla uses incomplete addition: this situation
        // yields a nontrivial discrete log relation, and by assumption it is hard to find
        // these.
        //
        // https://p.z.cash/proto:merkle-crh-orchard
        let (point, zs) = self.hash_to_point(
            layouter.namespace(|| format!("hash at l = {}", l)),
            Q,
            vec![a.inner(), b.inner(), c.inner()].into(),
        )?;
        let hash = Self::extract(&point);

        // `SinsemillaChip::hash_to_point` returns the running sum for each `MessagePiece`.
        // Grab the outputs we need for the decomposition constraints.
        let z1_a = zs[0][1].clone();
        let z1_b = zs[1][1].clone();

        // Check that the pieces have been decomposed properly.
        //
        // The pieces and subpieces are arranged in the following configuration:
        // |  A_0  |  A_1  |  A_2  |  A_3  |  A_4  | q_decompose |
        // -------------------------------------------------------
        // |   a   |   b   |   c   |  left | right |      1      |
        // |  z1_a |  z1_b |  b_1  |  b_2  |   l   |      0      |
        {
            layouter.assign_region(
                || "Check piece decomposition",
                |mut region| {
                    // Set the fixed column `l` to the current l.
                    // Recall that l = MERKLE_DEPTH - layer - 1.
                    // The layer with 2^n nodes is called "layer n".
                    config.q_decompose.enable(&mut region, 0)?;
                    region.assign_advice_from_constant(
                        || format!("l {}", l),
                        config.advices[4],
                        1,
                        pallas::Base::from(l as u64),
                    )?;

                    // Offset 0
                    // Copy and assign `a` at the correct position.
                    a.inner().cell_value().copy_advice(
                        || "copy a",
                        &mut region,
                        config.advices[0],
                        0,
                    )?;
                    // Copy and assign `b` at the correct position.
                    b.inner().cell_value().copy_advice(
                        || "copy b",
                        &mut region,
                        config.advices[1],
                        0,
                    )?;
                    // Copy and assign `c` at the correct position.
                    c.inner().cell_value().copy_advice(
                        || "copy c",
                        &mut region,
                        config.advices[2],
                        0,
                    )?;
                    // Copy and assign the left node at the correct position.
                    left.copy_advice(|| "left", &mut region, config.advices[3], 0)?;
                    // Copy and assign the right node at the correct position.
                    right.copy_advice(|| "right", &mut region, config.advices[4], 0)?;

                    // Offset 1
                    // Copy and assign z_1 of SinsemillaHash(a) = a_1
                    z1_a.copy_advice(|| "z1_a", &mut region, config.advices[0], 1)?;
                    // Copy and assign z_1 of SinsemillaHash(b) = b_1
                    z1_b.copy_advice(|| "z1_b", &mut region, config.advices[1], 1)?;
                    // Copy `b_1`, which has been constrained to be a 5-bit value
                    b_1.inner()
                        .copy_advice(|| "b_1", &mut region, config.advices[2], 1)?;
                    // Copy `b_2`, which has been constrained to be a 5-bit value
                    b_2.inner()
                        .copy_advice(|| "b_2", &mut region, config.advices[3], 1)?;

                    Ok(())
                },
            )?;
        }

        // Check layer hash output against Sinsemilla primitives hash
        #[cfg(test)]
        {
            use crate::{sinsemilla::primitives::HashDomain, utilities::i2lebsp};

            use group::ff::PrimeFieldBits;

            left.value()
                .zip(right.value())
                .zip(hash.value())
                .assert_if_known(|((left, right), hash)| {
                    let l = i2lebsp::<10>(l as u64);
                    let left: Vec<_> = left
                        .to_le_bits()
                        .iter()
                        .by_vals()
                        .take(pallas::Base::NUM_BITS as usize)
                        .collect();
                    let right: Vec<_> = right
                        .to_le_bits()
                        .iter()
                        .by_vals()
                        .take(pallas::Base::NUM_BITS as usize)
                        .collect();
                    let merkle_crh = HashDomain::from_Q(Q.into());

                    let mut message = l.to_vec();
                    message.extend_from_slice(&left);
                    message.extend_from_slice(&right);

                    let expected = merkle_crh.hash(message.into_iter()).unwrap();

                    expected.to_repr() == hash.to_repr()
                });
        }

        Ok(hash)
    }
}

impl<Hash, Commit, F> UtilitiesInstructions<pallas::Base> for MerkleChip<Hash, Commit, F>
where
    Hash: HashDomains<pallas::Affine>,
    F: FixedPoints<pallas::Affine>,
    Commit: CommitDomains<pallas::Affine, F, Hash>,
{
    type Var = AssignedCell<pallas::Base, pallas::Base>;
}

impl<Hash, Commit, F> CondSwapInstructions<pallas::Base> for MerkleChip<Hash, Commit, F>
where
    Hash: HashDomains<pallas::Affine>,
    F: FixedPoints<pallas::Affine>,
    Commit: CommitDomains<pallas::Affine, F, Hash>,
{
    #[allow(clippy::type_complexity)]
    fn swap(
        &self,
        layouter: impl Layouter<pallas::Base>,
        pair: (Self::Var, Value<pallas::Base>),
        swap: Value<bool>,
    ) -> Result<(Self::Var, Self::Var), Error> {
        let config = self.config().cond_swap_config.clone();
        let chip = CondSwapChip::<pallas::Base>::construct(config);
        chip.swap(layouter, pair, swap)
    }
}

impl<Hash, Commit, F> SinsemillaInstructions<pallas::Affine, { sinsemilla::K }, { sinsemilla::C }>
    for MerkleChip<Hash, Commit, F>
where
    Hash: HashDomains<pallas::Affine>,
    F: FixedPoints<pallas::Affine>,
    Commit: CommitDomains<pallas::Affine, F, Hash>,
{
    type CellValue = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::CellValue;

    type Message = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::Message;
    type MessagePiece = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::MessagePiece;
    type RunningSum = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::RunningSum;

    type X = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::X;
    type NonIdentityPoint = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::NonIdentityPoint;
    type FixedPoints = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::FixedPoints;

    type HashDomains = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::HashDomains;
    type CommitDomains = <SinsemillaChip<Hash, Commit, F> as SinsemillaInstructions<
        pallas::Affine,
        { sinsemilla::K },
        { sinsemilla::C },
    >>::CommitDomains;

    fn witness_message_piece(
        &self,
        layouter: impl Layouter<pallas::Base>,
        value: Value<pallas::Base>,
        num_words: usize,
    ) -> Result<Self::MessagePiece, Error> {
        let config = self.config().sinsemilla_config.clone();
        let chip = SinsemillaChip::<Hash, Commit, F>::construct(config);
        chip.witness_message_piece(layouter, value, num_words)
    }

    #[allow(non_snake_case)]
    #[allow(clippy::type_complexity)]
    fn hash_to_point(
        &self,
        layouter: impl Layouter<pallas::Base>,
        Q: pallas::Affine,
        message: Self::Message,
    ) -> Result<(Self::NonIdentityPoint, Vec<Vec<Self::CellValue>>), Error> {
        let config = self.config().sinsemilla_config.clone();
        let chip = SinsemillaChip::<Hash, Commit, F>::construct(config);
        chip.hash_to_point(layouter, Q, message)
    }

    fn extract(point: &Self::NonIdentityPoint) -> Self::X {
        SinsemillaChip::<Hash, Commit, F>::extract(point)
    }
}