use super::EccInstructions; use crate::{ circuit::gadget::utilities::{ copy, lookup_range_check::LookupRangeCheckConfig, CellValue, UtilitiesInstructions, Var, }, constants::{self, NullifierK, OrchardFixedBasesFull, ValueCommitV}, primitives::sinsemilla, }; use arrayvec::ArrayVec; use group::prime::PrimeCurveAffine; use halo2::{ circuit::{Chip, Layouter}, plonk::{Advice, Column, ConstraintSystem, Error, Fixed, Selector}, }; use pasta_curves::{arithmetic::CurveAffine, pallas}; pub(super) mod add; pub(super) mod add_incomplete; pub(super) mod mul; pub(super) mod mul_fixed; pub(super) mod witness_point; /// A curve point represented in affine (x, y) coordinates, or the /// identity represented as (0, 0). /// Each coordinate is assigned to a cell. #[derive(Copy, Clone, Debug)] pub struct EccPoint { /// x-coordinate x: CellValue, /// y-coordinate y: CellValue, } impl EccPoint { /// Constructs a point from its coordinates, without checking they are on the curve. /// /// This is an internal API that we only use where we know we have a valid curve point /// (specifically inside Sinsemilla). pub(in crate::circuit::gadget) fn from_coordinates_unchecked( x: CellValue, y: CellValue, ) -> Self { EccPoint { x, y } } /// Returns the value of this curve point, if known. pub fn point(&self) -> Option { match (self.x.value(), self.y.value()) { (Some(x), Some(y)) => { if x == pallas::Base::zero() && y == pallas::Base::zero() { Some(pallas::Affine::identity()) } else { Some(pallas::Affine::from_xy(x, y).unwrap()) } } _ => None, } } /// The cell containing the affine short-Weierstrass x-coordinate, /// or 0 for the zero point. pub fn x(&self) -> CellValue { self.x } /// The cell containing the affine short-Weierstrass y-coordinate, /// or 0 for the zero point. pub fn y(&self) -> CellValue { self.y } #[cfg(test)] fn is_identity(&self) -> Option { self.x.value().map(|x| x == pallas::Base::zero()) } } /// A non-identity point represented in affine (x, y) coordinates. /// Each coordinate is assigned to a cell. #[derive(Copy, Clone, Debug)] pub struct NonIdentityEccPoint { /// x-coordinate x: CellValue, /// y-coordinate y: CellValue, } impl NonIdentityEccPoint { /// Constructs a point from its coordinates, without checking they are on the curve. /// /// This is an internal API that we only use where we know we have a valid non-identity /// curve point (specifically inside Sinsemilla). pub(in crate::circuit::gadget) fn from_coordinates_unchecked( x: CellValue, y: CellValue, ) -> Self { NonIdentityEccPoint { x, y } } /// Returns the value of this curve point, if known. pub fn point(&self) -> Option { match (self.x.value(), self.y.value()) { (Some(x), Some(y)) => { assert!(x != pallas::Base::zero() && y != pallas::Base::zero()); Some(pallas::Affine::from_xy(x, y).unwrap()) } _ => None, } } /// The cell containing the affine short-Weierstrass x-coordinate. pub fn x(&self) -> CellValue { self.x } /// The cell containing the affine short-Weierstrass y-coordinate. pub fn y(&self) -> CellValue { self.y } } impl From for EccPoint { fn from(non_id_point: NonIdentityEccPoint) -> Self { Self { x: non_id_point.x, y: non_id_point.y, } } } /// Configuration for the ECC chip #[derive(Clone, Debug, Eq, PartialEq)] #[allow(non_snake_case)] pub struct EccConfig { /// Advice columns needed by instructions in the ECC chip. pub advices: [Column; 10], /// Incomplete addition add_incomplete: add_incomplete::Config, /// Complete addition add: add::Config, /// Variable-base scalar multiplication mul: mul::Config, /// TODO: Remove this. pub mul_fixed: mul_fixed::Config, /// Fixed-base full-width scalar multiplication pub q_mul_fixed_full: Selector, /// Fixed-base signed short scalar multiplication pub q_mul_fixed_short: Selector, /// Canonicity checks on base field element used as scalar in fixed-base mul pub q_mul_fixed_base_field: Selector, /// Witness point witness_point: witness_point::Config, /// Lookup range check using 10-bit lookup table pub lookup_config: LookupRangeCheckConfig, } /// A chip implementing EccInstructions #[derive(Clone, Debug, Eq, PartialEq)] pub struct EccChip { config: EccConfig, } impl Chip for EccChip { type Config = EccConfig; type Loaded = (); fn config(&self) -> &Self::Config { &self.config } fn loaded(&self) -> &Self::Loaded { &() } } impl UtilitiesInstructions for EccChip { type Var = CellValue; } impl EccChip { pub fn construct(config: >::Config) -> Self { Self { config } } /// # Side effects /// /// All columns in `advices` will be equality-enabled. #[allow(non_snake_case)] pub fn configure( meta: &mut ConstraintSystem, advices: [Column; 10], lagrange_coeffs: [Column; 8], range_check: LookupRangeCheckConfig, ) -> >::Config { // The following columns need to be equality-enabled for their use in sub-configs: // // mul_fixed::base_field_element::Config: // - [advices[6], advices[7], advices[8]]: canon_advices // // TODO: Refactor away from `impl From for _` so that sub-configs can // equality-enable the columns they need to. for column in &advices { meta.enable_equality((*column).into()); } // Create witness point gate let witness_point = witness_point::Config::configure(meta, advices[0], advices[1]); // Create incomplete point addition gate let add_incomplete = add_incomplete::Config::configure(meta, advices[0], advices[1], advices[2], advices[3]); // Create complete point addition gate let add = add::Config::configure( meta, advices[0], advices[1], advices[2], advices[3], advices[4], advices[5], advices[6], advices[7], advices[8], ); // Create variable-base scalar mul gates let mul = mul::Config::configure(meta, add, range_check, advices); // Create config that is shared across short, base-field, and full-width // fixed-base scalar mul. let mul_fixed = mul_fixed::Config::configure( meta, lagrange_coeffs, advices[4], advices[0], advices[1], advices[5], add, add_incomplete, ); let config = EccConfig { advices, add_incomplete, add, mul, mul_fixed, q_mul_fixed_full: meta.selector(), q_mul_fixed_short: meta.selector(), q_mul_fixed_base_field: meta.selector(), witness_point, lookup_config: range_check, }; // Create gate that is only used in full-width fixed-base scalar mul. { let mul_fixed_full_config: mul_fixed::full_width::Config = (&config).into(); mul_fixed_full_config.create_gate(meta); } // Create gate that is only used in short fixed-base scalar mul. { let short_config: mul_fixed::short::Config = (&config).into(); short_config.create_gate(meta); } // Create gate that is only used in fixed-base mul using a base field element. { let base_field_config: mul_fixed::base_field_elem::Config = (&config).into(); base_field_config.create_gate(meta); } config } } /// A full-width scalar used for fixed-base scalar multiplication. /// This is decomposed into 85 3-bit windows in little-endian order, /// i.e. `windows` = [k_0, k_1, ..., k_84] (for a 255-bit scalar) /// where `scalar = k_0 + k_1 * (2^3) + ... + k_84 * (2^3)^84` and /// each `k_i` is in the range [0..2^3). #[derive(Clone, Debug)] pub struct EccScalarFixed { value: Option, windows: ArrayVec, { constants::NUM_WINDOWS }>, } /// A signed short scalar used for fixed-base scalar multiplication. /// A short scalar must have magnitude in the range [0..2^64), with /// a sign of either 1 or -1. /// This is decomposed into 3-bit windows in little-endian order /// using a running sum `z`, where z_{i+1} = (z_i - a_i) / (2^3) /// for element α = a_0 + (2^3) a_1 + ... + (2^{3(n-1)}) a_{n-1}. /// Each `a_i` is in the range [0..2^3). /// /// `windows` = [k_0, k_1, ..., k_21] (for a 64-bit magnitude) /// where `scalar = k_0 + k_1 * (2^3) + ... + k_84 * (2^3)^84` and /// each `k_i` is in the range [0..2^3). /// k_21 must be a single bit, i.e. 0 or 1. #[derive(Clone, Debug)] pub struct EccScalarFixedShort { magnitude: CellValue, sign: CellValue, running_sum: ArrayVec, { constants::NUM_WINDOWS_SHORT + 1 }>, } /// A base field element used for fixed-base scalar multiplication. /// This is decomposed into 3-bit windows in little-endian order /// using a running sum `z`, where z_{i+1} = (z_i - a_i) / (2^3) /// for element α = a_0 + (2^3) a_1 + ... + (2^{3(n-1)}) a_{n-1}. /// Each `a_i` is in the range [0..2^3). /// /// `running_sum` = [z_0, ..., z_85], where we expect z_85 = 0. /// Since z_0 is initialized as the scalar α, we store it as /// `base_field_elem`. #[derive(Clone, Debug)] struct EccBaseFieldElemFixed { base_field_elem: CellValue, running_sum: ArrayVec, { constants::NUM_WINDOWS + 1 }>, } impl EccBaseFieldElemFixed { fn base_field_elem(&self) -> CellValue { self.base_field_elem } } impl EccInstructions for EccChip { type ScalarFixed = EccScalarFixed; type ScalarFixedShort = EccScalarFixedShort; type ScalarVar = CellValue; type Point = EccPoint; type NonIdentityPoint = NonIdentityEccPoint; type X = CellValue; type FixedPoints = OrchardFixedBasesFull; type FixedPointsBaseField = NullifierK; type FixedPointsShort = ValueCommitV; fn constrain_equal( &self, layouter: &mut impl Layouter, a: &Self::Point, b: &Self::Point, ) -> Result<(), Error> { layouter.assign_region( || "constrain equal", |mut region| { // Constrain x-coordinates region.constrain_equal(a.x().cell(), b.x().cell())?; // Constrain x-coordinates region.constrain_equal(a.y().cell(), b.y().cell()) }, ) } fn witness_point( &self, layouter: &mut impl Layouter, value: Option, ) -> Result { let config = self.config().witness_point; layouter.assign_region( || "witness point", |mut region| config.point(value, 0, &mut region), ) } fn witness_point_non_id( &self, layouter: &mut impl Layouter, value: Option, ) -> Result { let config = self.config().witness_point; layouter.assign_region( || "witness non-identity point", |mut region| config.point_non_id(value, 0, &mut region), ) } fn extract_p + Clone>(point: &Point) -> Self::X { let point: EccPoint = (point.clone()).into(); point.x() } fn add_incomplete( &self, layouter: &mut impl Layouter, a: &Self::NonIdentityPoint, b: &Self::NonIdentityPoint, ) -> Result { let config = self.config().add_incomplete; layouter.assign_region( || "incomplete point addition", |mut region| config.assign_region(a, b, 0, &mut region), ) } fn add + Clone, B: Into + Clone>( &self, layouter: &mut impl Layouter, a: &A, b: &B, ) -> Result { let config = self.config().add; layouter.assign_region( || "complete point addition", |mut region| { config.assign_region(&(a.clone()).into(), &(b.clone()).into(), 0, &mut region) }, ) } fn mul( &self, layouter: &mut impl Layouter, scalar: &Self::Var, base: &Self::NonIdentityPoint, ) -> Result<(Self::Point, Self::ScalarVar), Error> { let config = self.config().mul; config.assign( layouter.namespace(|| "variable-base scalar mul"), *scalar, base, ) } fn mul_fixed( &self, layouter: &mut impl Layouter, scalar: Option, base: &Self::FixedPoints, ) -> Result<(Self::Point, Self::ScalarFixed), Error> { let config: mul_fixed::full_width::Config = self.config().into(); config.assign( layouter.namespace(|| format!("fixed-base mul of {:?}", base)), scalar, *base, ) } fn mul_fixed_short( &self, layouter: &mut impl Layouter, magnitude_sign: (CellValue, CellValue), base: &Self::FixedPointsShort, ) -> Result<(Self::Point, Self::ScalarFixedShort), Error> { let config: mul_fixed::short::Config = self.config().into(); config.assign( layouter.namespace(|| format!("short fixed-base mul of {:?}", base)), magnitude_sign, base, ) } fn mul_fixed_base_field_elem( &self, layouter: &mut impl Layouter, base_field_elem: CellValue, base: &Self::FixedPointsBaseField, ) -> Result { let config: mul_fixed::base_field_elem::Config = self.config().into(); config.assign( layouter.namespace(|| format!("base-field elem fixed-base mul of {:?}", base)), base_field_elem, *base, ) } }