halo2/halo2_backend/src/plonk/circuit.rs

390 lines
15 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use group::ff::Field;
use halo2_middleware::circuit::{Any, ChallengeMid, ColumnMid, Gate};
use halo2_middleware::expression::{Expression, Variable};
use halo2_middleware::poly::Rotation;
use halo2_middleware::{lookup, permutation::ArgumentMid, shuffle};
// TODO: Reuse ColumnMid inside this.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct QueryBack {
/// Query index
pub(crate) index: usize,
/// Column index
pub(crate) column_index: usize,
/// The type of the column.
pub(crate) column_type: Any,
/// Rotation of this query
pub(crate) rotation: Rotation,
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum VarBack {
/// This is a generic column query
Query(QueryBack),
/// This is a challenge
Challenge(ChallengeMid),
}
impl Variable for VarBack {
fn degree(&self) -> usize {
match self {
VarBack::Query(_) => 1,
VarBack::Challenge(_) => 0,
}
}
fn complexity(&self) -> usize {
match self {
VarBack::Query(_) => 1,
VarBack::Challenge(_) => 0,
}
}
fn write_identifier<W: std::io::Write>(&self, _writer: &mut W) -> std::io::Result<()> {
unimplemented!("unused method")
}
}
pub(crate) type ExpressionBack<F> = Expression<F, VarBack>;
pub(crate) type GateBack<F> = Gate<F, VarBack>;
pub(crate) type LookupArgumentBack<F> = lookup::Argument<F, VarBack>;
pub(crate) type ShuffleArgumentBack<F> = shuffle::Argument<F, VarBack>;
pub(crate) type PermutationArgumentBack = ArgumentMid;
/// This is a description of the circuit environment, such as the gate, column and permutation
/// arrangements. This type is internal to the backend and will appear in the verifying key.
#[derive(Debug, Clone)]
pub struct ConstraintSystemBack<F: Field> {
pub(crate) num_fixed_columns: usize,
pub(crate) num_advice_columns: usize,
pub(crate) num_instance_columns: usize,
pub(crate) num_challenges: usize,
/// Contains the index of each advice column that is left unblinded.
pub(crate) unblinded_advice_columns: Vec<usize>,
/// Contains the phase for each advice column. Should have same length as num_advice_columns.
pub(crate) advice_column_phase: Vec<u8>,
/// Contains the phase for each challenge. Should have same length as num_challenges.
pub(crate) challenge_phase: Vec<u8>,
pub(crate) gates: Vec<GateBack<F>>,
pub(crate) advice_queries: Vec<(ColumnMid, Rotation)>,
// Contains an integer for each advice column
// identifying how many distinct queries it has
// so far; should be same length as num_advice_columns.
pub(crate) num_advice_queries: Vec<usize>,
pub(crate) instance_queries: Vec<(ColumnMid, Rotation)>,
pub(crate) fixed_queries: Vec<(ColumnMid, Rotation)>,
// Permutation argument for performing equality constraints
pub(crate) permutation: PermutationArgumentBack,
// Vector of lookup arguments, where each corresponds to a sequence of
// input expressions and a sequence of table expressions involved in the lookup.
pub(crate) lookups: Vec<LookupArgumentBack<F>>,
// Vector of shuffle arguments, where each corresponds to a sequence of
// input expressions and a sequence of shuffle expressions involved in the shuffle.
pub(crate) shuffles: Vec<ShuffleArgumentBack<F>>,
// The minimum degree required by the circuit, which can be set to a
// larger amount than actually needed. This can be used, for example, to
// force the permutation argument to involve more columns in the same set.
pub(crate) minimum_degree: Option<usize>,
}
impl<F: Field> ConstraintSystemBack<F> {
/// Compute the degree of the constraint system (the maximum degree of all
/// constraints).
pub fn degree(&self) -> usize {
// The permutation argument will serve alongside the gates, so must be
// accounted for.
let mut degree = permutation_argument_required_degree();
// The lookup argument also serves alongside the gates and must be accounted
// for.
degree = std::cmp::max(
degree,
self.lookups
.iter()
.map(|l| lookup_argument_required_degree(l))
.max()
.unwrap_or(1),
);
// The lookup argument also serves alongside the gates and must be accounted
// for.
degree = std::cmp::max(
degree,
self.shuffles
.iter()
.map(|l| shuffle_argument_required_degree(l))
.max()
.unwrap_or(1),
);
// Account for each gate to ensure our quotient polynomial is the
// correct degree and that our extended domain is the right size.
degree = std::cmp::max(
degree,
self.gates
.iter()
.map(|gate| gate.poly.degree())
.max()
.unwrap_or(0),
);
std::cmp::max(degree, self.minimum_degree.unwrap_or(1))
}
/// Compute the number of blinding factors necessary to perfectly blind
/// each of the prover's witness polynomials.
pub fn blinding_factors(&self) -> usize {
// All of the prover's advice columns are evaluated at no more than
let factors = *self.num_advice_queries.iter().max().unwrap_or(&1);
// distinct points during gate checks.
// - The permutation argument witness polynomials are evaluated at most 3 times.
// - Each lookup argument has independent witness polynomials, and they are
// evaluated at most 2 times.
let factors = std::cmp::max(3, factors);
// Each polynomial is evaluated at most an additional time during
// multiopen (at x_3 to produce q_evals):
let factors = factors + 1;
// h(x) is derived by the other evaluations so it does not reveal
// anything; in fact it does not even appear in the proof.
// h(x_3) is also not revealed; the verifier only learns a single
// evaluation of a polynomial in x_1 which has h(x_3) and another random
// polynomial evaluated at x_3 as coefficients -- this random polynomial
// is "random_poly" in the vanishing argument.
// Add an additional blinding factor as a slight defense against
// off-by-one errors.
factors + 1
}
/// Returns the minimum necessary rows that need to exist in order to
/// account for e.g. blinding factors.
pub fn minimum_rows(&self) -> usize {
self.blinding_factors() // m blinding factors
+ 1 // for l_{-(m + 1)} (l_last)
+ 1 // for l_0 (just for extra breathing room for the permutation
// argument, to essentially force a separation in the
// permutation polynomial between the roles of l_last, l_0
// and the interstitial values.)
+ 1 // for at least one row
}
pub fn get_any_query_index(&self, column: ColumnMid, at: Rotation) -> usize {
let queries = match column.column_type {
Any::Advice(_) => &self.advice_queries,
Any::Fixed => &self.fixed_queries,
Any::Instance => &self.instance_queries,
};
for (index, instance_query) in queries.iter().enumerate() {
if instance_query == &(column, at) {
return index;
}
}
panic!("get_any_query_index called for non-existent query");
}
/// Returns the list of phases
pub fn phases(&self) -> impl Iterator<Item = u8> {
let max_phase = self
.advice_column_phase
.iter()
.max()
.copied()
.unwrap_or_default();
0..=max_phase
}
/// Obtain a pinned version of this constraint system; a structure with the
/// minimal parameters needed to determine the rest of the constraint
/// system.
pub fn pinned(&self) -> PinnedConstraintSystem<'_, F> {
PinnedConstraintSystem {
num_fixed_columns: &self.num_fixed_columns,
num_advice_columns: &self.num_advice_columns,
num_instance_columns: &self.num_instance_columns,
num_challenges: &self.num_challenges,
advice_column_phase: &self.advice_column_phase,
challenge_phase: &self.challenge_phase,
gates: PinnedGates(&self.gates),
fixed_queries: &self.fixed_queries,
advice_queries: &self.advice_queries,
instance_queries: &self.instance_queries,
permutation: &self.permutation,
lookups: &self.lookups,
shuffles: &self.shuffles,
minimum_degree: &self.minimum_degree,
}
}
}
struct PinnedGates<'a, F: Field>(&'a Vec<GateBack<F>>);
impl<'a, F: Field> std::fmt::Debug for PinnedGates<'a, F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
f.debug_list()
.entries(self.0.iter().map(|gate| &gate.poly))
.finish()
}
}
/// Represents the minimal parameters that determine a `ConstraintSystem`.
pub struct PinnedConstraintSystem<'a, F: Field> {
num_fixed_columns: &'a usize,
num_advice_columns: &'a usize,
num_instance_columns: &'a usize,
num_challenges: &'a usize,
advice_column_phase: &'a Vec<u8>,
challenge_phase: &'a Vec<u8>,
gates: PinnedGates<'a, F>,
advice_queries: &'a Vec<(ColumnMid, Rotation)>,
instance_queries: &'a Vec<(ColumnMid, Rotation)>,
fixed_queries: &'a Vec<(ColumnMid, Rotation)>,
permutation: &'a PermutationArgumentBack,
lookups: &'a Vec<LookupArgumentBack<F>>,
shuffles: &'a Vec<ShuffleArgumentBack<F>>,
minimum_degree: &'a Option<usize>,
}
impl<'a, F: Field> std::fmt::Debug for PinnedConstraintSystem<'a, F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut debug_struct = f.debug_struct("PinnedConstraintSystem");
debug_struct
.field("num_fixed_columns", self.num_fixed_columns)
.field("num_advice_columns", self.num_advice_columns)
.field("num_instance_columns", self.num_instance_columns);
// Only show multi-phase related fields if it's used.
if *self.num_challenges > 0 {
debug_struct
.field("num_challenges", self.num_challenges)
.field("advice_column_phase", self.advice_column_phase)
.field("challenge_phase", self.challenge_phase);
}
debug_struct
.field("gates", &self.gates)
.field("advice_queries", self.advice_queries)
.field("instance_queries", self.instance_queries)
.field("fixed_queries", self.fixed_queries)
.field("permutation", self.permutation)
.field("lookups", self.lookups);
if !self.shuffles.is_empty() {
debug_struct.field("shuffles", self.shuffles);
}
debug_struct.field("minimum_degree", self.minimum_degree);
debug_struct.finish()
}
}
// Cost functions: arguments required degree
/// Returns the minimum circuit degree required by the permutation argument.
/// The argument may use larger degree gates depending on the actual
/// circuit's degree and how many columns are involved in the permutation.
fn permutation_argument_required_degree() -> usize {
// degree 2:
// l_0(X) * (1 - z(X)) = 0
//
// We will fit as many polynomials p_i(X) as possible
// into the required degree of the circuit, so the
// following will not affect the required degree of
// this middleware.
//
// (1 - (l_last(X) + l_blind(X))) * (
// z(\omega X) \prod (p(X) + \beta s_i(X) + \gamma)
// - z(X) \prod (p(X) + \delta^i \beta X + \gamma)
// )
//
// On the first sets of columns, except the first
// set, we will do
//
// l_0(X) * (z(X) - z'(\omega^(last) X)) = 0
//
// where z'(X) is the permutation for the previous set
// of columns.
//
// On the final set of columns, we will do
//
// degree 3:
// l_last(X) * (z'(X)^2 - z'(X)) = 0
//
// which will allow the last value to be zero to
// ensure the argument is perfectly complete.
// There are constraints of degree 3 regardless of the
// number of columns involved.
3
}
fn lookup_argument_required_degree<F: Field, V: Variable>(arg: &lookup::Argument<F, V>) -> usize {
assert_eq!(arg.input_expressions.len(), arg.table_expressions.len());
// The first value in the permutation poly should be one.
// degree 2:
// l_0(X) * (1 - z(X)) = 0
//
// The "last" value in the permutation poly should be a boolean, for
// completeness and soundness.
// degree 3:
// l_last(X) * (z(X)^2 - z(X)) = 0
//
// Enable the permutation argument for only the rows involved.
// degree (2 + input_degree + table_degree) or 4, whichever is larger:
// (1 - (l_last(X) + l_blind(X))) * (
// z(\omega X) (a'(X) + \beta) (s'(X) + \gamma)
// - z(X) (\theta^{m-1} a_0(X) + ... + a_{m-1}(X) + \beta) (\theta^{m-1} s_0(X) + ... + s_{m-1}(X) + \gamma)
// ) = 0
//
// The first two values of a' and s' should be the same.
// degree 2:
// l_0(X) * (a'(X) - s'(X)) = 0
//
// Either the two values are the same, or the previous
// value of a' is the same as the current value.
// degree 3:
// (1 - (l_last(X) + l_blind(X))) * (a(X) s(X))⋅(a(X) a(\omega^{-1} X)) = 0
let mut input_degree = 1;
for expr in arg.input_expressions.iter() {
input_degree = std::cmp::max(input_degree, expr.degree());
}
let mut table_degree = 1;
for expr in arg.table_expressions.iter() {
table_degree = std::cmp::max(table_degree, expr.degree());
}
// In practice because input_degree and table_degree are initialized to
// one, the latter half of this max() invocation is at least 4 always,
// rendering this call pointless except to be explicit in case we change
// the initialization of input_degree/table_degree in the future.
std::cmp::max(
// (1 - (l_last + l_blind)) z(\omega X) (a'(X) + \beta) (s'(X) + \gamma)
4,
// (1 - (l_last + l_blind)) z(X) (\theta^{m-1} a_0(X) + ... + a_{m-1}(X) + \beta) (\theta^{m-1} s_0(X) + ... + s_{m-1}(X) + \gamma)
2 + input_degree + table_degree,
)
}
fn shuffle_argument_required_degree<F: Field, V: Variable>(arg: &shuffle::Argument<F, V>) -> usize {
assert_eq!(arg.input_expressions.len(), arg.shuffle_expressions.len());
let mut input_degree = 1;
for expr in arg.input_expressions.iter() {
input_degree = std::cmp::max(input_degree, expr.degree());
}
let mut shuffle_degree = 1;
for expr in arg.shuffle_expressions.iter() {
shuffle_degree = std::cmp::max(shuffle_degree, expr.degree());
}
// (1 - (l_last + l_blind)) (z(\omega X) (s(X) + \gamma) - z(X) (a(X) + \gamma))
std::cmp::max(2 + shuffle_degree, 2 + input_degree)
}