incrementalmerkletree/bridgetree/src/position.rs

394 lines
11 KiB
Rust

//! Types that describe positions within a Merkle tree
use serde::{Deserialize, Serialize};
use std::convert::{TryFrom, TryInto};
use std::num::TryFromIntError;
use std::ops::{Add, AddAssign, Range};
/// A type-safe wrapper for indexing into "levels" of a binary tree, such that
/// nodes at level `0` are leaves, nodes at level `1` are parents of nodes at
/// level `0`, and so forth. This type is capable of representing levels in
/// trees containing up to 2^255 leaves.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
#[repr(transparent)]
pub struct Level(u8);
impl Level {
// TODO: replace with an instance for `Step<Level>` once `step_trait`
// is stabilized
pub fn iter_to(self, other: Level) -> impl Iterator<Item = Self> {
(self.0..other.0).into_iter().map(Level)
}
}
impl Add<u8> for Level {
type Output = Self;
fn add(self, value: u8) -> Self {
Self(self.0 + value)
}
}
impl From<u8> for Level {
fn from(value: u8) -> Self {
Self(value)
}
}
impl From<Level> for u8 {
fn from(level: Level) -> u8 {
level.0
}
}
impl From<Level> for usize {
fn from(level: Level) -> usize {
level.0 as usize
}
}
/// A type representing the position of a leaf in a Merkle tree.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
#[repr(transparent)]
pub struct Position(usize);
impl Position {
/// Return whether the position is odd-valued.
pub fn is_odd(&self) -> bool {
self.0 & 0x1 == 1
}
/// Returns the minimum possible level of the root of a binary tree containing at least
/// `self + 1` nodes.
pub fn root_level(&self) -> Level {
Level(64 - self.0.leading_zeros() as u8)
}
/// Returns the number of cousins and/or ommers required to construct an authentication
/// path to the root of a merkle tree that has `self + 1` nodes.
pub fn past_ommer_count(&self) -> usize {
(0..self.root_level().0)
.filter(|i| (self.0 >> i) & 0x1 == 1)
.count()
}
/// Returns whether the binary tree having `self` as the position of the rightmost leaf
/// contains a perfect balanced tree with a root at level `root_level` that contains the
/// aforesaid leaf.
pub fn is_complete_subtree(&self, root_level: Level) -> bool {
!(0..(root_level.0)).any(|l| self.0 & (1 << l) == 0)
}
/// Returns an iterator over the addresses of nodes required to create a witness for this
/// position, beginning with the sibling of the leaf at this position and ending with the
/// sibling of the ancestor of the leaf at this position that is required to compute a root at
/// the specified level.
pub(crate) fn witness_addrs(
&self,
root_level: Level,
) -> impl Iterator<Item = (Address, Source)> {
WitnessAddrsIter {
root_level,
current: Address::from(self),
ommer_count: 0,
}
}
}
impl From<Position> for usize {
fn from(p: Position) -> usize {
p.0
}
}
impl From<Position> for u64 {
fn from(p: Position) -> Self {
p.0 as u64
}
}
impl Add<usize> for Position {
type Output = Position;
fn add(self, other: usize) -> Self {
Position(self.0 + other)
}
}
impl AddAssign<usize> for Position {
fn add_assign(&mut self, other: usize) {
self.0 += other
}
}
impl From<usize> for Position {
fn from(sz: usize) -> Self {
Self(sz)
}
}
impl TryFrom<u64> for Position {
type Error = TryFromIntError;
fn try_from(sz: u64) -> Result<Self, Self::Error> {
<usize>::try_from(sz).map(Self)
}
}
/// The address of an internal node of the Merkle tree.
/// When `level == 0`, the index has the same value as the
/// position.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
pub struct Address {
level: Level,
index: usize,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) enum Source {
/// The sibling to the address can be derived from the incremental frontier
/// at the contained ommer index
Past(usize),
/// The sibling to the address must be obtained from values discovered by
/// the addition of more nodes to the tree
Future,
}
impl Address {
pub fn from_parts(level: Level, index: usize) -> Self {
Address { level, index }
}
pub fn position_range(&self) -> Range<Position> {
Range {
start: (self.index << self.level.0).try_into().unwrap(),
end: ((self.index + 1) << self.level.0).try_into().unwrap(),
}
}
pub fn level(&self) -> Level {
self.level
}
pub fn index(&self) -> usize {
self.index
}
pub fn parent(&self) -> Address {
Address {
level: self.level + 1,
index: self.index >> 1,
}
}
pub fn sibling(&self) -> Address {
Address {
level: self.level,
index: if self.index & 0x1 == 0 {
self.index + 1
} else {
self.index - 1
},
}
}
pub fn is_complete_node(&self) -> bool {
self.index & 0x1 == 1
}
pub fn current_incomplete(&self) -> Address {
// find the first zero bit in the index, searching from the least significant bit
let mut index = self.index;
for level in self.level.0.. {
if index & 0x1 == 1 {
index >>= 1;
} else {
return Address {
level: Level(level),
index,
};
}
}
unreachable!("The loop will always terminate via return in at most 64 iterations.")
}
pub fn next_incomplete_parent(&self) -> Address {
if self.is_complete_node() {
self.current_incomplete()
} else {
let complete = Address {
level: self.level,
index: self.index + 1,
};
complete.current_incomplete()
}
}
}
impl From<Position> for Address {
fn from(p: Position) -> Self {
Address {
level: 0.into(),
index: p.into(),
}
}
}
impl<'a> From<&'a Position> for Address {
fn from(p: &'a Position) -> Self {
Address {
level: 0.into(),
index: (*p).into(),
}
}
}
impl From<Address> for Option<Position> {
fn from(addr: Address) -> Self {
if addr.level == 0.into() {
Some(addr.index.into())
} else {
None
}
}
}
impl<'a> From<&'a Address> for Option<Position> {
fn from(addr: &'a Address) -> Self {
if addr.level == 0.into() {
Some(addr.index.into())
} else {
None
}
}
}
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub(crate) struct WitnessAddrsIter {
root_level: Level,
current: Address,
ommer_count: usize,
}
impl Iterator for WitnessAddrsIter {
type Item = (Address, Source);
fn next(&mut self) -> Option<(Address, Source)> {
if self.current.level() < self.root_level {
let current = self.current;
let source = if current.is_complete_node() {
Source::Past(self.ommer_count)
} else {
Source::Future
};
self.current = current.parent();
if matches!(source, Source::Past(_)) {
self.ommer_count += 1;
}
Some((current.sibling(), source))
} else {
None
}
}
}
#[cfg(test)]
pub(crate) mod tests {
use super::{Address, Level, Position, Source};
#[test]
fn position_is_complete_subtree() {
assert!(Position(0).is_complete_subtree(Level(0)));
assert!(Position(1).is_complete_subtree(Level(1)));
assert!(!Position(2).is_complete_subtree(Level(1)));
assert!(!Position(2).is_complete_subtree(Level(2)));
assert!(Position(3).is_complete_subtree(Level(2)));
assert!(!Position(4).is_complete_subtree(Level(2)));
assert!(Position(7).is_complete_subtree(Level(3)));
assert!(Position(u32::MAX as usize).is_complete_subtree(Level(32)));
}
#[test]
fn position_past_ommer_count() {
assert_eq!(0, Position(0).past_ommer_count());
assert_eq!(1, Position(1).past_ommer_count());
assert_eq!(1, Position(2).past_ommer_count());
assert_eq!(2, Position(3).past_ommer_count());
assert_eq!(1, Position(4).past_ommer_count());
assert_eq!(3, Position(7).past_ommer_count());
assert_eq!(1, Position(8).past_ommer_count());
}
#[test]
fn position_root_level() {
assert_eq!(Level(0), Position(0).root_level());
assert_eq!(Level(1), Position(1).root_level());
assert_eq!(Level(2), Position(2).root_level());
assert_eq!(Level(2), Position(3).root_level());
assert_eq!(Level(3), Position(4).root_level());
assert_eq!(Level(3), Position(7).root_level());
assert_eq!(Level(4), Position(8).root_level());
}
#[test]
fn current_incomplete() {
let addr = |l, i| Address::from_parts(Level(l), i);
assert_eq!(addr(0, 0), addr(0, 0).current_incomplete());
assert_eq!(addr(1, 0), addr(0, 1).current_incomplete());
assert_eq!(addr(0, 2), addr(0, 2).current_incomplete());
assert_eq!(addr(2, 0), addr(0, 3).current_incomplete());
}
#[test]
fn next_incomplete_parent() {
let addr = |l, i| Address::from_parts(Level(l), i);
assert_eq!(addr(1, 0), addr(0, 0).next_incomplete_parent());
assert_eq!(addr(1, 0), addr(0, 1).next_incomplete_parent());
assert_eq!(addr(2, 0), addr(0, 2).next_incomplete_parent());
assert_eq!(addr(2, 0), addr(0, 3).next_incomplete_parent());
assert_eq!(addr(3, 0), addr(2, 0).next_incomplete_parent());
assert_eq!(addr(1, 2), addr(0, 4).next_incomplete_parent());
assert_eq!(addr(3, 0), addr(1, 2).next_incomplete_parent());
}
#[test]
fn position_witness_addrs() {
use Source::*;
let path_elem = |l, i, s| (Address::from_parts(Level(l), i), s);
assert_eq!(
vec![path_elem(0, 1, Future), path_elem(1, 1, Future)],
Position(0).witness_addrs(Level(2)).collect::<Vec<_>>()
);
assert_eq!(
vec![path_elem(0, 3, Future), path_elem(1, 0, Past(0))],
Position(2).witness_addrs(Level(2)).collect::<Vec<_>>()
);
assert_eq!(
vec![
path_elem(0, 2, Past(0)),
path_elem(1, 0, Past(1)),
path_elem(2, 1, Future)
],
Position(3).witness_addrs(Level(3)).collect::<Vec<_>>()
);
assert_eq!(
vec![
path_elem(0, 5, Future),
path_elem(1, 3, Future),
path_elem(2, 0, Past(0)),
path_elem(3, 1, Future)
],
Position(4).witness_addrs(Level(4)).collect::<Vec<_>>()
);
assert_eq!(
vec![
path_elem(0, 7, Future),
path_elem(1, 2, Past(0)),
path_elem(2, 0, Past(1)),
path_elem(3, 1, Future)
],
Position(6).witness_addrs(Level(4)).collect::<Vec<_>>()
);
}
}