incrementalmerkletree/src/bridgetree.rs

1493 lines
51 KiB
Rust

//! A space-efficient implementation of the `Tree` interface.
//!
//! In this module, the term "ommer" is used as a gender-neutral term for
//! the sibling of a parent node in a binary tree.
use serde::{Deserialize, Serialize};
use std::collections::{BTreeMap, BTreeSet};
use std::convert::TryFrom;
use std::fmt::Debug;
use std::mem::size_of;
use super::{Altitude, Hashable, Position, Tree};
/// A set of leaves of a Merkle tree.
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum Leaf<A> {
Left(A),
Right(A, A),
}
impl<A> Leaf<A> {
pub fn value(&self) -> &A {
match self {
Leaf::Left(a) => a,
Leaf::Right(_, a) => a,
}
}
}
#[derive(Debug, Clone)]
pub enum FrontierError {
PositionMismatch { expected_ommers: usize },
MaxDepthExceeded { altitude: Altitude },
}
/// A `[NonEmptyFrontier]` is a reduced representation of a Merkle tree,
/// having either one or two leaf values, and then a set of hashes produced
/// by the reduction of previously appended leaf values.
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct NonEmptyFrontier<H> {
position: Position,
leaf: Leaf<H>,
ommers: Vec<H>,
}
impl<H> NonEmptyFrontier<H> {
/// Constructs a new frontier with the specified value at position 0.
pub fn new(value: H) -> Self {
Self {
position: Position::zero(),
leaf: Leaf::Left(value),
ommers: vec![],
}
}
pub fn from_parts(
position: Position,
leaf: Leaf<H>,
ommers: Vec<H>,
) -> Result<Self, FrontierError> {
let expected_ommers = position.ommer_altitudes().count();
if expected_ommers == ommers.len() {
Ok(Self {
position,
leaf,
ommers,
})
} else {
Err(FrontierError::PositionMismatch { expected_ommers })
}
}
/// Returns the altitude of the highest ommer in the frontier.
pub fn max_altitude(&self) -> Altitude {
self.position.max_altitude()
}
/// Returns the position of the most recently appended leaf.
pub fn position(&self) -> Position {
self.position
}
/// Returns the number of leaves that have been appended to this frontier.
pub fn size(&self) -> usize {
<usize>::try_from(self.position)
.expect("The number of leaves must not exceed the representable range of a `usize`")
+ 1
}
pub fn leaf(&self) -> &Leaf<H> {
&self.leaf
}
pub fn ommers(&self) -> &[H] {
&self.ommers
}
/// Returns the value of the most recently appended leaf.
pub fn leaf_value(&self) -> &H {
match &self.leaf {
Leaf::Left(v) | Leaf::Right(_, v) => v,
}
}
}
impl<H: Hashable + Clone> NonEmptyFrontier<H> {
pub fn current_leaf(&self) -> &H {
self.leaf.value()
}
/// of two nodes is full (if the current leaf before the append is a `Leaf::Right`)
/// then recompute the ommers by hashing together full subtrees until an empty
/// ommer slot is found.
pub fn append(&mut self, value: H) {
let mut carry = None;
match &self.leaf {
Leaf::Left(a) => {
self.leaf = Leaf::Right(a.clone(), value);
}
Leaf::Right(a, b) => {
carry = Some((H::combine(Altitude::zero(), a, b), Altitude::one()));
self.leaf = Leaf::Left(value);
}
};
if carry.is_some() {
let mut new_ommers = Vec::with_capacity(self.position.altitudes_required().count());
for (ommer, ommer_lvl) in self.ommers.iter().zip(self.position.ommer_altitudes()) {
if let Some((carry_ommer, carry_lvl)) = carry.as_ref() {
if *carry_lvl == ommer_lvl {
carry = Some((H::combine(ommer_lvl, ommer, carry_ommer), ommer_lvl + 1))
} else {
// insert the carry at the first empty slot; then the rest of the
// ommers will remain unchanged
new_ommers.push(carry_ommer.clone());
new_ommers.push(ommer.clone());
carry = None;
}
} else {
// when there's no carry, just push on the ommer value
new_ommers.push(ommer.clone());
}
}
// we carried value out, so we need to push on one more ommer.
if let Some((carry_ommer, _)) = carry {
new_ommers.push(carry_ommer);
}
self.ommers = new_ommers;
}
self.position += 1;
}
/// Generate the root of the Merkle tree by hashing against empty branches.
pub fn root(&self) -> H {
Self::inner_root(self.position, &self.leaf, &self.ommers, None)
}
/// If the tree is full to the specified altitude, return the data
/// required to witness a sibling at that altitude.
pub fn witness(&self, sibling_altitude: Altitude) -> Option<H> {
if sibling_altitude == Altitude::zero() {
match &self.leaf {
Leaf::Left(_) => None,
Leaf::Right(_, a) => Some(a.clone()),
}
} else if self.position.is_complete(sibling_altitude) {
// the "incomplete" subtree root is actually complete
// if the tree is full to this altitude
Some(Self::inner_root(
self.position,
&self.leaf,
self.ommers.split_last().map_or(&[], |(_, s)| s),
Some(sibling_altitude),
))
} else {
None
}
}
/// If the tree is not full, generate the root of the incomplete subtree
/// by hashing with empty branches
pub fn witness_incomplete(&self, altitude: Altitude) -> Option<H> {
if self.position.is_complete(altitude) {
// if the tree is complete to this altitude, its hash should
// have already been included in an auth fragment.
None
} else {
Some(if altitude == Altitude::zero() {
H::empty_leaf()
} else {
Self::inner_root(
self.position,
&self.leaf,
self.ommers.split_last().map_or(&[], |(_, s)| s),
Some(altitude),
)
})
}
}
// returns
fn inner_root(
position: Position,
leaf: &Leaf<H>,
ommers: &[H],
result_lvl: Option<Altitude>,
) -> H {
let mut digest = match leaf {
Leaf::Left(a) => H::combine(Altitude::zero(), a, &H::empty_leaf()),
Leaf::Right(a, b) => H::combine(Altitude::zero(), a, b),
};
let mut complete_lvl = Altitude::one();
for (ommer, ommer_lvl) in ommers.iter().zip(position.ommer_altitudes()) {
// stop once we've reached the max altitude
if result_lvl
.iter()
.any(|rl| *rl == complete_lvl || ommer_lvl >= *rl)
{
break;
}
digest = H::combine(
ommer_lvl,
ommer,
// fold up to ommer.lvl pairing with empty roots; if
// complete_lvl == ommer.lvl this is just the complete
// digest to this point
&complete_lvl
.iter_to(ommer_lvl)
.fold(digest, |d, l| H::combine(l, &d, &H::empty_root(l))),
);
complete_lvl = ommer_lvl + 1;
}
// if we've exhausted the ommers and still want more altitudes,
// continue hashing against empty roots
digest = complete_lvl
.iter_to(result_lvl.unwrap_or(complete_lvl))
.fold(digest, |d, l| H::combine(l, &d, &H::empty_root(l)));
digest
}
}
/// A possibly-empty Merkle frontier. Used when the
/// full functionality of a Merkle bridge is not necessary.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct Frontier<H, const DEPTH: u8> {
frontier: Option<NonEmptyFrontier<H>>,
}
impl<H, const DEPTH: u8> TryFrom<NonEmptyFrontier<H>> for Frontier<H, DEPTH> {
type Error = FrontierError;
fn try_from(f: NonEmptyFrontier<H>) -> Result<Self, FrontierError> {
if f.position.max_altitude().0 <= DEPTH {
Ok(Frontier { frontier: Some(f) })
} else {
Err(FrontierError::MaxDepthExceeded {
altitude: f.position.max_altitude(),
})
}
}
}
impl<H, const DEPTH: u8> Frontier<H, DEPTH> {
/// Constructs a new empty frontier.
pub fn empty() -> Self {
Self { frontier: None }
}
/// Constructs a new non-empty frontier from its constituent parts.
///
/// Returns `None` if the new frontier would exceed the maximum
/// allowed depth or if the list of ommers provided is not consistent
/// with the position of the leaf.
pub fn from_parts(
position: Position,
leaf: Leaf<H>,
ommers: Vec<H>,
) -> Result<Self, FrontierError> {
NonEmptyFrontier::from_parts(position, leaf, ommers).and_then(Self::try_from)
}
/// Return the wrapped NonEmptyFrontier reference, or None if
/// the frontier is empty.
pub fn value(&self) -> Option<&NonEmptyFrontier<H>> {
self.frontier.as_ref()
}
/// Returns the position of latest leaf appended to the frontier,
/// if the frontier is nonempty.
pub fn position(&self) -> Option<Position> {
self.frontier.as_ref().map(|f| f.position)
}
/// Returns the amount of memory dynamically allocated for ommer
/// values within the frontier.
pub fn dynamic_memory_usage(&self) -> usize {
self.frontier.as_ref().map_or(0, |f| {
2 * size_of::<usize>() + f.ommers.capacity() * size_of::<H>()
})
}
}
impl<H: Hashable + Clone, const DEPTH: u8> crate::Frontier<H> for Frontier<H, DEPTH> {
fn append(&mut self, value: &H) -> bool {
if let Some(frontier) = self.frontier.as_mut() {
if frontier.position().is_complete(Altitude(DEPTH)) {
false
} else {
frontier.append(value.clone());
true
}
} else {
self.frontier = Some(NonEmptyFrontier::new(value.clone()));
true
}
}
fn root(&self) -> H {
self.frontier
.as_ref()
.map_or(H::empty_root(Altitude(DEPTH)), |frontier| {
// fold from the current height, combining with empty branches,
// up to the maximum height of the tree
(frontier.max_altitude() + 1)
.iter_to(Altitude(DEPTH))
.fold(frontier.root(), |d, lvl| {
H::combine(lvl, &d, &H::empty_root(lvl))
})
})
}
}
/// Each AuthFragment stores part of the authentication path for the leaf at a
/// particular position. Successive fragments may be concatenated to produce
/// the authentication path up to one less than the maximum altitude of the
/// Merkle frontier corresponding to the leaf at the specified position. Then,
/// the authentication path may be completed by hashing with empty roots.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct AuthFragment<A> {
/// The position of the leaf for which this path fragment is being constructed.
position: Position,
/// We track the total number of altitudes collected across all fragments
/// constructed for the specified position separately from the length of
/// the values vector because the values will usually be split across multiple
/// fragments.
altitudes_observed: usize,
/// The subtree roots at altitudes required for the position that have not
/// been included in preceding fragments.
values: Vec<A>,
}
impl<A> AuthFragment<A> {
/// Construct the new empty authentication path fragment for the specified
/// position.
pub fn new(position: Position) -> Self {
Self {
position,
altitudes_observed: 0,
values: vec![],
}
}
/// Construct a fragment from its component parts. This cannot
/// perform any meaningful validation that the provided values
/// are valid.
pub fn from_parts(position: Position, altitudes_observed: usize, values: Vec<A>) -> Self {
Self {
position,
altitudes_observed,
values,
}
}
/// Construct the successor fragment for this fragment to produce a new empty fragment
/// for the specified position.
#[must_use]
pub fn successor(&self) -> Self {
Self {
position: self.position,
altitudes_observed: self.altitudes_observed,
values: vec![],
}
}
pub fn position(&self) -> Position {
self.position
}
pub fn altitudes_observed(&self) -> usize {
self.altitudes_observed
}
pub fn values(&self) -> &[A] {
&self.values
}
pub fn is_complete(&self) -> bool {
self.altitudes_observed >= self.position.altitudes_required().count()
}
pub fn next_required_altitude(&self) -> Option<Altitude> {
self.position
.all_altitudes_required()
.nth(self.altitudes_observed)
}
}
impl<A: Clone> AuthFragment<A> {
pub fn fuse(&self, other: &Self) -> Option<Self> {
if self.position == other.position
&& self.altitudes_observed + other.values.len() == other.altitudes_observed
{
Some(Self {
position: self.position,
altitudes_observed: other.altitudes_observed,
values: self
.values
.iter()
.chain(other.values.iter())
.cloned()
.collect(),
})
} else {
None
}
}
}
impl<H: Hashable + Clone + PartialEq> AuthFragment<H> {
pub fn augment(&mut self, frontier: &NonEmptyFrontier<H>) {
if let Some(altitude) = self.next_required_altitude() {
if let Some(digest) = frontier.witness(altitude) {
self.values.push(digest);
self.altitudes_observed += 1;
}
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct MerkleBridge<H: Ord> {
/// The position of the final leaf in the frontier of the
/// bridge that this bridge is the successor of, or None
/// if this is the first bridge in a tree.
prior_position: Option<Position>,
/// Fragments of authorization path data for prior bridges,
/// keyed by bridge index.
auth_fragments: BTreeMap<Position, AuthFragment<H>>,
/// The leading edge of the bridge.
frontier: NonEmptyFrontier<H>,
}
impl<H: Ord> MerkleBridge<H> {
/// Construct a new Merkle bridge containing only the specified
/// leaf.
pub fn new(value: H) -> Self {
Self {
prior_position: None,
auth_fragments: BTreeMap::new(),
frontier: NonEmptyFrontier::new(value),
}
}
/// Construct a new Merkle bridge from its constituent parts.
pub fn from_parts(
prior_position: Option<Position>,
auth_fragments: BTreeMap<Position, AuthFragment<H>>,
frontier: NonEmptyFrontier<H>,
) -> Self {
Self {
prior_position,
auth_fragments,
frontier,
}
}
/// Returns the position of the final leaf in the frontier of the
/// bridge that this bridge is the successor of, or None
/// if this is the first bridge in a tree.
pub fn prior_position(&self) -> Option<Position> {
self.prior_position
}
/// Returns the position of the most recently appended leaf.
pub fn position(&self) -> Position {
self.frontier.position()
}
/// Returns the fragments of authorization path data for prior bridges,
/// keyed by bridge index.
pub fn auth_fragments(&self) -> &BTreeMap<Position, AuthFragment<H>> {
&self.auth_fragments
}
/// Returns the non-empty frontier of this Merkle bridge.
pub fn frontier(&self) -> &NonEmptyFrontier<H> {
&self.frontier
}
/// Returns the maximum altitude of this bridge's frontier.
pub fn max_altitude(&self) -> Altitude {
self.frontier.max_altitude()
}
/// Checks whether this bridge is a valid successor for the specified
/// bridge.
pub fn can_follow(&self, prev: &Self) -> bool {
self.prior_position == Some(prev.frontier.position())
}
}
impl<'a, H: Hashable + Ord + Clone + 'a> MerkleBridge<H> {
/// Returns the current leaf.
pub fn current_leaf(&self) -> &H {
self.frontier.current_leaf()
}
/// Constructs a new bridge to follow this one. If witness_current_leaf is true, the successor
/// will track the information necessary to create an authentication path for the leaf most
/// recently appended to this bridge's frontier.
#[must_use]
pub fn successor(&self, witness_current_leaf: bool) -> Self {
let result = Self {
prior_position: Some(self.frontier.position()),
auth_fragments: self
.auth_fragments
.iter()
.map(|(k, v)| (*k, v.successor())) //TODO: filter_map and discard what we can
.chain(if witness_current_leaf {
Some((
self.frontier.position(),
AuthFragment::new(self.frontier.position()),
))
} else {
None
})
.collect(),
frontier: self.frontier.clone(),
};
result
}
/// Advances this bridge's frontier by appending the specified node,
/// and updates any auth path fragments being tracked if necessary.
pub fn append(&mut self, value: H) {
self.frontier.append(value);
for ext in self.auth_fragments.values_mut() {
ext.augment(&self.frontier);
}
}
/// Returns the Merkle root of this bridge's current frontier, as obtained
/// by hashing against empty nodes.
pub fn root(&self) -> H {
self.frontier.root()
}
fn root_at_altitude(&self, alt: Altitude) -> H {
// fold from the current height, combining with empty branches,
// up to the specified altitude
(self.max_altitude() + 1)
.iter_to(alt)
.fold(self.frontier.root(), |d, lvl| {
H::combine(lvl, &d, &H::empty_root(lvl))
})
}
/// Returns a single MerkleBridge that contains the aggregate information
/// of this bridge and `next`, or None if `next` is not a valid successor
/// to this bridge. The resulting Bridge will have the same state as though
/// `self` had had every leaf used to construct `next` appended to it
/// directly.
fn fuse(&self, next: &Self) -> Option<Self> {
if next.can_follow(self) {
let fused = Self {
prior_position: self.prior_position,
auth_fragments: self
.auth_fragments
.iter()
.map(|(k, ext)| {
// we only need to maintain & augment auth fragments that are in the current
// bridge, because we only need to complete the authentication path for the
// previous frontier, not the current one.
next.auth_fragments
.get(k)
.map_or((*k, ext.clone()), |next_ext| {
(
*k,
ext.fuse(next_ext)
.expect("Found auth fragments at incompatible positions."),
)
})
})
.collect(),
frontier: next.frontier.clone(),
};
Some(fused)
} else {
None
}
}
/// Returns a single MerkleBridge that contains the aggregate information
/// of all the provided bridges (discarding internal frontiers) or None
/// if any of the bridges are not valid successors to one another.
fn fuse_all<T: Iterator<Item = &'a Self>>(mut iter: T) -> Option<Self> {
let first = iter.next();
iter.fold(first.cloned(), |acc, b| acc?.fuse(b))
}
fn prune_auth_fragments(&mut self, to_remove: &BTreeSet<Position>) {
self.auth_fragments.retain(|k, _| !to_remove.contains(k));
}
}
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct Checkpoint {
/// The number of bridges that will be retained in a rewind.
bridges_len: usize,
/// A flag indicating whether or not the current state of the tree
/// had been witnessed at the time the checkpoint was created.
is_witnessed: bool,
/// A set of the positions that have been witnessed during the period that this
/// checkpoint is the current checkpoint.
witnessed: BTreeSet<Position>,
/// When a witness is forgotten, if the index of the forgotten witness is <= bridge_idx we
/// record it in the current checkpoint so that on rollback, we restore the forgotten
/// witnesses to the BridgeTree's "saved" list. If the witness was newly created since the
/// checkpoint, we don't need to remember when we forget it because both the witness
/// creation and removal will be reverted in the rollback.
forgotten: BTreeMap<Position, usize>,
}
impl Checkpoint {
/// Creates a new checkpoint from its constituent parts.
pub fn from_parts(
bridges_len: usize,
is_witnessed: bool,
witnessed: BTreeSet<Position>,
forgotten: BTreeMap<Position, usize>,
) -> Self {
Self {
bridges_len,
is_witnessed,
witnessed,
forgotten,
}
}
/// Creates a new empty checkpoint for the specified [`BridgeTree`] state.
pub fn at_length(bridges_len: usize, is_witnessed: bool) -> Self {
Checkpoint {
bridges_len,
is_witnessed,
witnessed: BTreeSet::new(),
forgotten: BTreeMap::new(),
}
}
/// Returns the length of the [`prior_bridges`] vector of the [`BridgeTree`] to which
/// this checkpoint refers.
///
/// This is the number of bridges that will be retained in the event of a rewind to this
/// checkpoint.
pub fn bridges_len(&self) -> usize {
self.bridges_len
}
/// Returns whether the current state of the tree had been witnessed at the point that
/// this checkpoint was made.
///
/// In the event of a rewind, the rewind logic will ensure that witness information is
/// properly reconstituted for the checkpointed tree state.
pub fn is_witnessed(&self) -> bool {
self.is_witnessed
}
/// Returns a set of the positions that have been witnessed during the period that this
/// checkpoint is the current checkpoint.
pub fn witnessed(&self) -> &BTreeSet<Position> {
&self.witnessed
}
/// Returns the set of previously-witnessed positions that have had their witnesses removed
/// during the period that this checkpoint is the current checkpoint.
pub fn forgotten(&self) -> &BTreeMap<Position, usize> {
&self.forgotten
}
// A private convenience method that returns the root of the bridge corresponding to
// this checkpoint at a specified depth, given the slice of bridges from which this checkpoint
// was derived.
fn root<H: Hashable + Clone + Ord>(
&self,
bridges: &[MerkleBridge<H>],
altitude: Altitude,
) -> H {
if self.bridges_len == 0 {
H::empty_root(altitude)
} else {
bridges[self.bridges_len - 1].root_at_altitude(altitude)
}
}
// A private convenience method that returns the position of the bridge corresponding
// to this checkpoint, if the checkpoint is not for the empty bridge.
fn position<H: Ord>(&self, bridges: &[MerkleBridge<H>]) -> Option<Position> {
if self.bridges_len == 0 {
None
} else {
Some(bridges[self.bridges_len - 1].position())
}
}
// A private method that rewrites the indices of each forgotten witness record
// using the specified rewrite function. Used during garbage collection.
fn rewrite_indices<F: Fn(usize) -> usize>(&mut self, f: F) {
self.bridges_len = f(self.bridges_len);
for v in self.forgotten.values_mut() {
*v = f(*v)
}
}
}
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct BridgeTree<H: Ord, const DEPTH: u8> {
/// The ordered list of Merkle bridges representing the history
/// of the tree. There will be one bridge for each saved leaf.
prior_bridges: Vec<MerkleBridge<H>>,
/// The current (mutable) bridge at the tip of the tree.
current_bridge: Option<MerkleBridge<H>>,
/// A map from positions for which we wish to be able to compute an
/// authentication path to index in the bridges vector.
saved: BTreeMap<Position, usize>,
/// A stack of bridge indices to which it's possible to rewind directly.
checkpoints: Vec<Checkpoint>,
/// The maximum number of checkpoints to retain. If this number is
/// exceeded, the oldest checkpoint will be dropped when creating
/// a new checkpoint.
max_checkpoints: usize,
}
impl<H: Hashable + Ord + Debug, const DEPTH: u8> Debug for BridgeTree<H, DEPTH> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
write!(
f,
"BridgeTree {{\n depth: {:?},\n prior_bridges: {:?},\n current_bridge: {:?},\n saved: {:?},\n checkpoints: {:?},\n max_checkpoints: {:?}\n}}",
DEPTH, self.prior_bridges, self.current_bridge, self.saved, self.checkpoints, self.max_checkpoints
)
}
}
/// Errors that can appear when validating the internal consistency of a `[MerkleBridge]`
/// value when constructing a bridge from its constituent parts.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum BridgeTreeError {
IncorrectIncompleteIndex,
InvalidWitnessIndex(usize),
PositionMismatch { expected: Position, found: Position },
InvalidSavePoints,
ContinuityError,
CheckpointMismatch,
}
impl<H: Ord, const DEPTH: u8> BridgeTree<H, DEPTH> {
/// Removes the oldest checkpoint. Returns true if successful and false if
/// there are no checkpoints.
fn drop_oldest_checkpoint(&mut self) -> bool {
if self.checkpoints.is_empty() {
false
} else {
self.checkpoints.remove(0);
true
}
}
/// Returns the prior bridges that make up this tree
pub fn prior_bridges(&self) -> &[MerkleBridge<H>] {
&self.prior_bridges
}
/// Returns the current bridge at the tip of this tree
pub fn current_bridge(&self) -> &Option<MerkleBridge<H>> {
&self.current_bridge
}
pub fn witnessed_indices(&self) -> &BTreeMap<Position, usize> {
&self.saved
}
/// Returns the checkpoints to which this tree may be rewound.
pub fn checkpoints(&self) -> &[Checkpoint] {
&self.checkpoints
}
/// Returns the maximum number of checkpoints that will be maintained
/// by the data structure. When this number of checkpoints is exceeded,
/// the oldest checkpoints are discarded when creating new checkpoints.
pub fn max_checkpoints(&self) -> usize {
self.max_checkpoints
}
pub fn frontier(&self) -> Option<&NonEmptyFrontier<H>> {
self.current_bridge.as_ref().map(|b| b.frontier())
}
}
impl<H: Hashable + Ord + Clone, const DEPTH: u8> BridgeTree<H, DEPTH> {
pub fn new(max_checkpoints: usize) -> Self {
Self {
prior_bridges: vec![],
current_bridge: None,
saved: BTreeMap::new(),
checkpoints: vec![],
max_checkpoints,
}
}
fn check_consistency_internal(
prior_bridges: &[MerkleBridge<H>],
current_bridge: &Option<MerkleBridge<H>>,
saved: &BTreeMap<Position, usize>,
checkpoints: &[Checkpoint],
max_checkpoints: usize,
) -> Result<(), BridgeTreeError> {
// check that saved values correspond to bridges
for (pos, i) in saved {
if i >= &prior_bridges.len() {
return Err(BridgeTreeError::InvalidWitnessIndex(*i));
}
let found = prior_bridges[*i].position();
if &found != pos {
return Err(BridgeTreeError::PositionMismatch {
expected: *pos,
found,
});
}
}
if checkpoints.len() > max_checkpoints
|| checkpoints
.iter()
.any(|c| c.bridges_len > prior_bridges.len())
{
return Err(BridgeTreeError::CheckpointMismatch);
}
if !prior_bridges
.iter()
.zip(prior_bridges.iter().skip(1))
.all(|(prev, next)| next.can_follow(prev))
{
return Err(BridgeTreeError::ContinuityError);
}
if !prior_bridges
.last()
.zip(current_bridge.as_ref())
.map_or(true, |(prev, next)| next.can_follow(prev))
{
return Err(BridgeTreeError::ContinuityError);
}
Ok(())
}
/// Construct a new BridgeTree that will start recording changes from the state of
/// the specified frontier.
pub fn from_frontier(max_checkpoints: usize, frontier: NonEmptyFrontier<H>) -> Self {
Self {
prior_bridges: vec![],
current_bridge: Some(MerkleBridge::from_parts(None, BTreeMap::new(), frontier)),
saved: BTreeMap::new(),
checkpoints: vec![],
max_checkpoints,
}
}
pub fn from_parts(
prior_bridges: Vec<MerkleBridge<H>>,
current_bridge: Option<MerkleBridge<H>>,
saved: BTreeMap<Position, usize>,
checkpoints: Vec<Checkpoint>,
max_checkpoints: usize,
) -> Result<Self, BridgeTreeError> {
Self::check_consistency_internal(
&prior_bridges,
&current_bridge,
&saved,
&checkpoints,
max_checkpoints,
)?;
Ok(BridgeTree {
prior_bridges,
current_bridge,
saved,
checkpoints,
max_checkpoints,
})
}
pub fn check_consistency(&self) -> Result<(), BridgeTreeError> {
Self::check_consistency_internal(
&self.prior_bridges,
&self.current_bridge,
&self.saved,
&self.checkpoints,
self.max_checkpoints,
)
}
}
impl<H: Hashable + Ord + Clone + Debug, const DEPTH: u8> Tree<H> for BridgeTree<H, DEPTH> {
fn append(&mut self, value: &H) -> bool {
if let Some(bridge) = self.current_bridge.as_mut() {
if bridge.frontier.position().is_complete(Altitude(DEPTH)) {
false
} else {
bridge.append(value.clone());
true
}
} else {
self.current_bridge = Some(MerkleBridge::new(value.clone()));
true
}
}
fn root(&self, checkpoint_depth: usize) -> Option<H> {
let altitude = Altitude(DEPTH);
if checkpoint_depth == 0 {
Some(
self.current_bridge
.as_ref()
.map_or(H::empty_root(altitude), |bridge| {
bridge.root_at_altitude(altitude)
}),
)
} else if self.checkpoints.len() >= checkpoint_depth {
let checkpoint_idx = self.checkpoints.len() - checkpoint_depth;
self.checkpoints
.get(checkpoint_idx)
.map(|c| c.root(&self.prior_bridges, altitude))
} else {
None
}
}
fn current_position(&self) -> Option<Position> {
self.current_bridge.as_ref().map(|b| b.position())
}
fn current_leaf(&self) -> Option<&H> {
self.current_bridge.as_ref().map(|b| b.current_leaf())
}
fn witness(&mut self) -> Option<Position> {
match self.current_bridge.take() {
Some(mut cur_b) => {
let pos = cur_b.position();
// If the latest bridge is a newly created checkpoint, the last prior
// bridge will have the same position and all we need to do is mark
// the checkpointed leaf as being saved.
if self
.prior_bridges
.last()
.map_or(false, |prior_b| prior_b.position() == cur_b.position())
{
// the current bridge has not been advanced, so we just need to make
// sure that we have an auth fragment tracking the witnessed leaf
cur_b
.auth_fragments
.entry(pos)
.or_insert_with(|| AuthFragment::new(pos));
self.current_bridge = Some(cur_b);
} else {
let successor = cur_b.successor(true);
self.prior_bridges.push(cur_b);
self.current_bridge = Some(successor);
}
self.saved
.entry(pos)
.or_insert(self.prior_bridges.len() - 1);
// mark the position as having been witnessed in the current checkpoint
if let Some(c) = self.checkpoints.last_mut() {
if !c.is_witnessed {
c.witnessed.insert(pos);
}
}
Some(pos)
}
None => None,
}
}
fn witnessed_positions(&self) -> BTreeSet<Position> {
self.saved.keys().cloned().collect()
}
fn get_witnessed_leaf(&self, position: Position) -> Option<&H> {
self.saved
.get(&position)
.and_then(|idx| self.prior_bridges.get(*idx).map(|b| b.current_leaf()))
}
fn remove_witness(&mut self, position: Position) -> bool {
if let Some(idx) = self.saved.remove(&position) {
// Stop tracking auth fragments for the removed position
if let Some(cur_b) = self.current_bridge.as_mut() {
cur_b.auth_fragments.remove(&position);
}
// If the position is one that has *not* just been witnessed since the last checkpoint,
// then add it to the set of those forgotten during the current checkpoint span so that
// it can be restored on rollback.
if let Some(c) = self.checkpoints.last_mut() {
if !c.witnessed.contains(&position) {
c.forgotten.insert(position, idx);
}
}
true
} else {
false
}
}
fn checkpoint(&mut self) {
match self.current_bridge.take() {
Some(cur_b) => {
let is_witnessed = self.get_witnessed_leaf(cur_b.position()).is_some();
// Do not create a duplicate bridge
if self
.prior_bridges
.last()
.map_or(false, |pb| pb.position() == cur_b.position())
{
self.current_bridge = Some(cur_b);
} else {
self.current_bridge = Some(cur_b.successor(false));
self.prior_bridges.push(cur_b);
}
self.checkpoints.push(Checkpoint::at_length(
self.prior_bridges.len(),
is_witnessed,
));
}
None => {
self.checkpoints.push(Checkpoint::at_length(0, false));
}
}
if self.checkpoints.len() > self.max_checkpoints {
self.drop_oldest_checkpoint();
}
}
fn rewind(&mut self) -> bool {
match self.checkpoints.pop() {
Some(mut c) => {
// drop witnessed values at and above the checkpoint height;
// we will re-witness if necessary.
self.saved.append(&mut c.forgotten);
self.saved.retain(|_, i| *i + 1 < c.bridges_len);
self.prior_bridges.truncate(c.bridges_len);
self.current_bridge = self
.prior_bridges
.last()
.map(|b| b.successor(c.is_witnessed));
if c.is_witnessed {
self.witness();
}
true
}
None => false,
}
}
fn authentication_path(&self, position: Position, as_of_root: &H) -> Option<Vec<H>> {
#[derive(Debug)]
enum AuthBase<'a> {
Current,
Checkpoint(usize, &'a Checkpoint),
NotFound,
}
let max_alt = Altitude(DEPTH);
// Find the earliest checkpoint having a matching root, or the current
// root if it matches and there is no earlier matching checkpoint.
let auth_base = self
.checkpoints
.iter()
.enumerate()
.rev()
.take_while(|(_, c)| c.position(&self.prior_bridges) >= Some(position))
.filter(|(_, c)| &c.root(&self.prior_bridges, max_alt) == as_of_root)
.last()
.map(|(i, c)| AuthBase::Checkpoint(i, c))
.unwrap_or_else(|| {
if self.root(0).as_ref() == Some(as_of_root) {
AuthBase::Current
} else {
AuthBase::NotFound
}
});
let saved_idx = self.saved.get(&position).or_else(|| {
if let AuthBase::Checkpoint(i, _) = auth_base {
// The saved position might have been forgotten since the checkpoint,
// so look for it in each of the subsequent checkpoints' forgotten
// items.
self.checkpoints[i..].iter().find_map(|c| {
// restore the forgotten position, if that position was not also witnessed
// in the same checkpoint
c.forgotten
.get(&position)
.filter(|_| !c.witnessed.contains(&position))
})
} else {
None
}
});
saved_idx.and_then(|idx| {
let frontier = &self.prior_bridges[*idx].frontier;
// Fuse the following bridges to obtain a bridge that has all
// of the data to the right of the selected value in the tree,
// up to the specified checkpoint depth.
let fuse_from = idx + 1;
let fused = match auth_base {
AuthBase::Current => MerkleBridge::fuse_all(
self.prior_bridges[fuse_from..]
.iter()
.chain(&self.current_bridge),
),
AuthBase::Checkpoint(_, checkpoint) if fuse_from < checkpoint.bridges_len => {
MerkleBridge::fuse_all(
self.prior_bridges[fuse_from..checkpoint.bridges_len].iter(),
)
}
AuthBase::Checkpoint(_, checkpoint) if fuse_from == checkpoint.bridges_len => {
// The successor bridge should just be the empty successor to the
// checkpointed bridge.
if checkpoint.bridges_len > 0 {
Some(self.prior_bridges[checkpoint.bridges_len - 1].successor(false))
} else {
None
}
}
AuthBase::Checkpoint(_, _) => {
// if the saved index is after the checkpoint, we can't generate
// an auth path
None
}
AuthBase::NotFound => None,
};
fused.map(|successor| {
// construct a complete trailing edge that includes the data from
// the following frontier not yet included in the trailing edge.
let auth_fragment = successor.auth_fragments.get(&frontier.position());
let rest_frontier = successor.frontier;
let mut auth_values = auth_fragment.iter().flat_map(|auth_fragment| {
let last_altitude = auth_fragment.next_required_altitude();
let last_digest =
last_altitude.and_then(|lvl| rest_frontier.witness_incomplete(lvl));
// TODO: can we eliminate this .cloned()?
auth_fragment.values.iter().cloned().chain(last_digest)
});
let mut result = vec![];
match &frontier.leaf {
Leaf::Left(_) => {
result.push(auth_values.next().unwrap_or_else(H::empty_leaf));
}
Leaf::Right(a, _) => {
result.push(a.clone());
}
}
for (ommer, ommer_lvl) in frontier
.ommers
.iter()
.zip(frontier.position.ommer_altitudes())
{
for synth_lvl in (result.len() as u8)..(ommer_lvl.into()) {
result.push(
auth_values
.next()
.unwrap_or_else(|| H::empty_root(Altitude(synth_lvl))),
)
}
result.push(ommer.clone());
}
for synth_lvl in (result.len() as u8)..DEPTH {
result.push(
auth_values
.next()
.unwrap_or_else(|| H::empty_root(Altitude(synth_lvl))),
);
}
result
})
})
}
fn garbage_collect(&mut self) {
// Only garbage collect once we have more bridges than the maximum number of
// checkpoints; we cannot remove information that we might need to restore in
// a rewind.
if self.checkpoints.len() == self.max_checkpoints {
let gc_len = self.checkpoints.first().unwrap().bridges_len;
// Get a list of the leaf positions that we need to retain. This consists of
// all the saved leaves, plus all the leaves that have been forgotten since
// the most distant checkpoint to which we could rewind.
let remember: BTreeSet<Position> = self
.saved
.keys()
.chain(self.checkpoints.iter().flat_map(|c| c.forgotten.keys()))
.cloned()
.collect();
let mut cur: Option<MerkleBridge<H>> = None;
let mut merged = 0;
let mut prune_fragment_positions: BTreeSet<Position> = BTreeSet::new();
for (i, next_bridge) in std::mem::take(&mut self.prior_bridges)
.into_iter()
.enumerate()
{
if let Some(cur_bridge) = cur {
let pos = cur_bridge.position();
let mut new_cur = if remember.contains(&pos) || i > gc_len {
// We need to remember cur_bridge; update its save index & put next_bridge
// on the chopping block
if let Some(idx) = self.saved.get_mut(&pos) {
*idx -= merged;
}
self.prior_bridges.push(cur_bridge);
next_bridge
} else {
// We can fuse these bridges together because we don't need to
// remember next_bridge.
merged += 1;
prune_fragment_positions.insert(cur_bridge.frontier.position());
cur_bridge.fuse(&next_bridge).unwrap()
};
new_cur.prune_auth_fragments(&prune_fragment_positions);
cur = Some(new_cur);
} else {
// this case will only occur for the first bridge
cur = Some(next_bridge);
}
}
// unwrap is safe because we know that prior_bridges was nonempty.
if let Some(last_bridge) = cur {
if let Some(idx) = self.saved.get_mut(&last_bridge.position()) {
*idx -= merged;
}
self.prior_bridges.push(last_bridge);
}
for c in self.checkpoints.iter_mut() {
c.rewrite_indices(|idx| idx - merged);
}
}
if let Err(e) = self.check_consistency() {
panic!("Consistency check failed with {:?} for tree {:?}", e, self);
}
}
}
#[cfg(test)]
mod tests {
use proptest::prelude::*;
use super::*;
use crate::tests::{apply_operation, arb_operation};
use crate::Tree;
#[test]
fn tree_depth() {
let mut tree = BridgeTree::<String, 3>::new(100);
for c in 'a'..'i' {
assert!(tree.append(&c.to_string()))
}
assert!(!tree.append(&'i'.to_string()));
}
fn arb_bridgetree<G: Strategy + Clone>(
item_gen: G,
max_count: usize,
) -> impl Strategy<Value = BridgeTree<G::Value, 8>>
where
G::Value: Hashable + Ord + Clone + Debug + 'static,
{
proptest::collection::vec(arb_operation(item_gen, 0..max_count), 0..max_count).prop_map(
|ops| {
let mut tree: BridgeTree<G::Value, 8> = BridgeTree::new(10);
for op in ops {
apply_operation(&mut tree, op);
}
tree
},
)
}
proptest! {
#[test]
fn bridgetree_from_parts(
tree in arb_bridgetree((97u8..123).prop_map(|c| char::from(c).to_string()), 100)
) {
assert_eq!(
BridgeTree::from_parts(
tree.prior_bridges.clone(),
tree.current_bridge.clone(),
tree.saved.clone(),
tree.checkpoints.clone(),
tree.max_checkpoints
),
Ok(tree),
);
}
#[test]
fn prop_garbage_collect(
tree in arb_bridgetree((97u8..123).prop_map(|c| char::from(c).to_string()), 100)
) {
let mut tree_mut = tree.clone();
// ensure we have enough checkpoints to not rewind past the state `tree` is in
for _ in 0..10 {
tree_mut.checkpoint();
}
tree_mut.garbage_collect();
tree_mut.rewind();
for pos in tree.saved.keys() {
assert_eq!(
tree.authentication_path(*pos, &tree.root(0).unwrap()),
tree_mut.authentication_path(*pos, &tree.root(0).unwrap())
);
}
}
}
#[test]
fn bridge_root_hashes() {
let mut bridge = MerkleBridge::<String>::new("a".to_string());
assert_eq!(bridge.root(), "a_");
bridge.append("b".to_string());
assert_eq!(bridge.root(), "ab");
bridge.append("c".to_string());
assert_eq!(bridge.root(), "abc_");
}
#[test]
fn drop_oldest_checkpoint() {
let mut t = BridgeTree::<String, 6>::new(100);
t.checkpoint();
t.append(&"a".to_string());
t.witness();
t.append(&"b".to_string());
t.append(&"c".to_string());
assert!(
t.drop_oldest_checkpoint(),
"Checkpoint drop is expected to succeed"
);
assert!(!t.rewind(), "Rewind is expected to fail.");
}
#[test]
fn frontier_from_parts() {
assert!(
super::Frontier::<(), 0>::from_parts(Position::zero(), Leaf::Left(()), vec![]).is_ok()
);
assert!(super::Frontier::<(), 0>::from_parts(
Position::zero(),
Leaf::Right((), ()),
vec![]
)
.is_ok());
assert!(
super::Frontier::<(), 0>::from_parts(Position::zero(), Leaf::Left(()), vec![()])
.is_err()
);
}
#[test]
fn root_hashes() {
crate::tests::check_root_hashes(BridgeTree::<String, 4>::new);
}
#[test]
fn auth_paths() {
crate::tests::check_auth_paths(BridgeTree::<String, 4>::new);
}
#[test]
fn checkpoint_rewind() {
crate::tests::check_checkpoint_rewind(BridgeTree::<String, 4>::new);
}
#[test]
fn rewind_remove_witness() {
crate::tests::check_rewind_remove_witness(BridgeTree::<String, 4>::new);
}
#[test]
fn garbage_collect() {
let mut t = BridgeTree::<String, 7>::new(10);
let mut to_unwitness = vec![];
let mut has_auth_path = vec![];
for i in 0usize..100 {
let elem: String = format!("{},", i);
assert!(t.append(&elem), "Append should succeed.");
if i % 5 == 0 {
t.checkpoint();
}
if i % 7 == 0 {
t.witness();
if i > 0 && i % 2 == 0 {
to_unwitness.push(Position::from(i));
} else {
has_auth_path.push(Position::from(i));
}
}
if i % 11 == 0 && !to_unwitness.is_empty() {
let pos = to_unwitness.remove(0);
t.remove_witness(pos);
}
}
// 32 = 20 (checkpointed) + 14 (witnessed) - 2 (witnessed & checkpointed)
assert_eq!(t.prior_bridges().len(), 20 + 14 - 2);
let auth_paths = has_auth_path
.iter()
.map(|pos| {
t.authentication_path(*pos, &t.root(0).unwrap())
.expect("Must be able to get auth path")
})
.collect::<Vec<_>>();
t.garbage_collect();
// 20 = 32 - 10 (removed checkpoints) + 1 (not removed due to witness) - 3 (removed witnesses)
assert_eq!(t.prior_bridges().len(), 32 - 10 + 1 - 3);
let retained_auth_paths = has_auth_path
.iter()
.map(|pos| {
t.authentication_path(*pos, &t.root(0).unwrap())
.expect("Must be able to get auth path")
})
.collect::<Vec<_>>();
assert_eq!(auth_paths, retained_auth_paths);
}
#[test]
fn garbage_collect_idx() {
let mut tree: BridgeTree<String, 7> = BridgeTree::new(100);
let empty_root = tree.root(0);
tree.append(&"a".to_string());
for _ in 0..100 {
tree.checkpoint();
}
tree.garbage_collect();
assert!(tree.root(0) != empty_root);
tree.rewind();
assert!(tree.root(0) != empty_root);
}
}