Merge pull request #460 from zcash/unified-encoding-logic

kind::unified: Extract common unified encoding logic.
This commit is contained in:
Kris Nuttycombe 2021-12-02 12:43:27 -07:00 committed by GitHub
commit 1c32172209
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 413 additions and 355 deletions

View File

@ -2,6 +2,7 @@ use std::{convert::TryInto, error::Error, fmt, str::FromStr};
use bech32::{self, FromBase32, ToBase32, Variant};
use crate::kind::unified::{private::SealedContainer, Encoding};
use crate::{kind::*, AddressKind, Network, ZcashAddress};
/// An error while attempting to parse a string as a Zcash address.
@ -52,17 +53,16 @@ impl FromStr for ZcashAddress {
Vec::<u8>::from_base32(&data).map_err(|_| ParseError::InvalidEncoding)?;
let net = match hrp.as_str() {
unified::MAINNET => Network::Main,
unified::TESTNET => Network::Test,
unified::REGTEST => Network::Regtest,
unified::address::Address::MAINNET => Network::Main,
unified::address::Address::TESTNET => Network::Test,
unified::address::Address::REGTEST => Network::Regtest,
// We will not define new Bech32m address encodings.
_ => {
return Err(ParseError::NotZcash);
}
};
return (hrp.as_str(), &data[..])
.try_into()
return unified::Address::try_from_bytes(hrp.as_str(), &data[..])
.map(AddressKind::Unified)
.map_err(|_| ParseError::InvalidEncoding)
.map(|kind| ZcashAddress { net, kind });
@ -152,9 +152,9 @@ impl fmt::Display for ZcashAddress {
),
AddressKind::Unified(data) => {
let hrp = match self.net {
Network::Main => unified::MAINNET,
Network::Test => unified::TESTNET,
Network::Regtest => unified::REGTEST,
Network::Main => unified::address::Address::MAINNET,
Network::Test => unified::address::Address::TESTNET,
Network::Regtest => unified::address::Address::REGTEST,
};
encode_bech32m(hrp, &data.to_bytes(hrp))
}
@ -230,21 +230,21 @@ mod tests {
"u1qpatys4zruk99pg59gcscrt7y6akvl9vrhcfyhm9yxvxz7h87q6n8cgrzzpe9zru68uq39uhmlpp5uefxu0su5uqyqfe5zp3tycn0ecl",
ZcashAddress {
net: Network::Main,
kind: AddressKind::Unified(unified::Address(vec![unified::Receiver::Sapling([0; 43])])),
kind: AddressKind::Unified(unified::Address(vec![unified::address::Receiver::Sapling([0; 43])])),
},
);
encoding(
"utest10c5kutapazdnf8ztl3pu43nkfsjx89fy3uuff8tsmxm6s86j37pe7uz94z5jhkl49pqe8yz75rlsaygexk6jpaxwx0esjr8wm5ut7d5s",
ZcashAddress {
net: Network::Test,
kind: AddressKind::Unified(unified::Address(vec![unified::Receiver::Sapling([0; 43])])),
kind: AddressKind::Unified(unified::Address(vec![unified::address::Receiver::Sapling([0; 43])])),
},
);
encoding(
"uregtest15xk7vj4grjkay6mnfl93dhsflc2yeunhxwdh38rul0rq3dfhzzxgm5szjuvtqdha4t4p2q02ks0jgzrhjkrav70z9xlvq0plpcjkd5z3",
ZcashAddress {
net: Network::Regtest,
kind: AddressKind::Unified(unified::Address(vec![unified::Receiver::Sapling([0; 43])])),
kind: AddressKind::Unified(unified::Address(vec![unified::address::Receiver::Sapling([0; 43])])),
},
);
}

View File

@ -3,27 +3,11 @@ use std::collections::HashSet;
use std::convert::{TryFrom, TryInto};
use std::error::Error;
use std::fmt;
use std::io::Write;
use zcash_encoding::CompactSize;
use crate::kind;
pub(crate) mod address;
/// The HRP for a Bech32m-encoded mainnet Unified Address.
///
/// Defined in [ZIP 316][zip-0316].
///
/// [zip-0316]: https://zips.z.cash/zip-0316
pub(crate) const MAINNET: &str = "u";
/// The HRP for a Bech32m-encoded testnet Unified Address.
///
/// Defined in [ZIP 316][zip-0316].
///
/// [zip-0316]: https://zips.z.cash/zip-0316
pub(crate) const TESTNET: &str = "utest";
/// The HRP for a Bech32m-encoded regtest Unified Address.
pub(crate) const REGTEST: &str = "uregtest";
pub use address::Address;
const PADDING_LEN: usize = 16;
@ -45,10 +29,10 @@ impl Ord for Typecode {
| (Self::P2sh, Self::P2sh)
| (Self::P2pkh, Self::P2pkh) => cmp::Ordering::Equal,
// We don't know for certain the preference order of unknown receivers, but it
// We don't know for certain the preference order of unknown items, but it
// is likely that the higher typecode has higher preference. The exact order
// doesn't really matter, as unknown receivers have lower preference than
// known receivers.
// doesn't really matter, as unknown items have lower preference than
// known items.
(Self::Unknown(a), Self::Unknown(b)) => b.cmp(a),
// For the remaining cases, we rely on `match` always choosing the first arm
@ -112,7 +96,7 @@ impl Typecode {
/// An error while attempting to parse a string as a Zcash address.
#[derive(Debug, PartialEq)]
pub enum ParseError {
/// The unified address contains both P2PKH and P2SH receivers.
/// The unified address contains both P2PKH and P2SH items.
BothP2phkAndP2sh,
/// The unified address contains a duplicated typecode.
DuplicateTypecode(Typecode),
@ -120,100 +104,89 @@ pub enum ParseError {
InvalidTypecodeValue(u64),
/// The string is an invalid encoding.
InvalidEncoding(String),
/// The unified address only contains transparent receivers.
/// The unified address only contains transparent items.
OnlyTransparent,
}
impl fmt::Display for ParseError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ParseError::BothP2phkAndP2sh => write!(f, "UA contains both P2PKH and P2SH receivers"),
ParseError::BothP2phkAndP2sh => write!(f, "UA contains both P2PKH and P2SH items"),
ParseError::DuplicateTypecode(c) => write!(f, "Duplicate typecode {}", u32::from(*c)),
ParseError::InvalidTypecodeValue(v) => write!(f, "Typecode value out of range {}", v),
ParseError::InvalidEncoding(msg) => write!(f, "Invalid encoding: {}", msg),
ParseError::OnlyTransparent => write!(f, "UA only contains transparent receivers"),
ParseError::OnlyTransparent => write!(f, "UA only contains transparent items"),
}
}
}
impl Error for ParseError {}
/// The set of known Receivers for Unified Addresses.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum Receiver {
Orchard([u8; 43]),
Sapling(kind::sapling::Data),
P2pkh(kind::p2pkh::Data),
P2sh(kind::p2sh::Data),
Unknown { typecode: u32, data: Vec<u8> },
}
pub(crate) mod private {
use super::{ParseError, Typecode, PADDING_LEN};
use std::{
cmp,
convert::{TryFrom, TryInto},
io::Write,
};
use zcash_encoding::CompactSize;
impl cmp::Ord for Receiver {
fn cmp(&self, other: &Self) -> cmp::Ordering {
match self.typecode().cmp(&other.typecode()) {
cmp::Ordering::Equal => self.addr().cmp(other.addr()),
res => res,
/// A raw address or viewing key.
pub trait SealedItem:
for<'a> TryFrom<(u32, &'a [u8]), Error = ParseError> + cmp::Ord + cmp::PartialOrd + Clone
{
fn typecode(&self) -> Typecode;
fn data(&self) -> &[u8];
}
/// A Unified Container containing addresses or viewing keys.
pub trait SealedContainer: super::Container {
const MAINNET: &'static str;
const TESTNET: &'static str;
const REGTEST: &'static str;
/// Implementations of this method should act as unchecked constructors
/// of the container type; the caller is guaranteed to check the
/// general invariants that apply to all unified containers.
fn from_inner(items: Vec<Self::Item>) -> Self;
fn write_raw_encoding<W: Write>(&self, mut writer: W) {
for item in &self.items() {
let addr = item.data();
CompactSize::write(
&mut writer,
<u32>::from(item.typecode()).try_into().unwrap(),
)
.unwrap();
CompactSize::write(&mut writer, addr.len()).unwrap();
writer.write_all(addr).unwrap();
}
}
/// Returns the jumbled padded raw encoding of this Unified Address or viewing key.
fn to_bytes(&self, hrp: &str) -> Vec<u8> {
assert!(hrp.len() <= PADDING_LEN);
let mut writer = std::io::Cursor::new(Vec::new());
self.write_raw_encoding(&mut writer);
let mut padding = [0u8; PADDING_LEN];
padding[0..hrp.len()].copy_from_slice(hrp.as_bytes());
writer.write_all(&padding).unwrap();
f4jumble::f4jumble(&writer.into_inner()).unwrap()
}
}
}
impl cmp::PartialOrd for Receiver {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
use private::SealedItem;
impl TryFrom<(u32, &[u8])> for Receiver {
type Error = ParseError;
fn try_from((typecode, addr): (u32, &[u8])) -> Result<Self, Self::Error> {
match typecode.try_into()? {
Typecode::P2pkh => addr.try_into().map(Receiver::P2pkh),
Typecode::P2sh => addr.try_into().map(Receiver::P2sh),
Typecode::Sapling => addr.try_into().map(Receiver::Sapling),
Typecode::Orchard => addr.try_into().map(Receiver::Orchard),
Typecode::Unknown(_) => Ok(Receiver::Unknown {
typecode,
data: addr.to_vec(),
}),
}
.map_err(|e| {
ParseError::InvalidEncoding(format!("Invalid address for typecode {}: {}", typecode, e))
})
}
}
impl Receiver {
fn typecode(&self) -> Typecode {
match self {
Receiver::P2pkh(_) => Typecode::P2pkh,
Receiver::P2sh(_) => Typecode::P2sh,
Receiver::Sapling(_) => Typecode::Sapling,
Receiver::Orchard(_) => Typecode::Orchard,
Receiver::Unknown { typecode, .. } => Typecode::Unknown(*typecode),
}
}
fn addr(&self) -> &[u8] {
match self {
Receiver::P2pkh(data) => data,
Receiver::P2sh(data) => data,
Receiver::Sapling(data) => data,
Receiver::Orchard(data) => data,
Receiver::Unknown { data, .. } => data,
}
}
}
/// A Unified Address.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Address(pub(crate) Vec<Receiver>);
impl TryFrom<(&str, &[u8])> for Address {
type Error = ParseError;
fn try_from((hrp, buf): (&str, &[u8])) -> Result<Self, Self::Error> {
fn read_receiver(mut cursor: &mut std::io::Cursor<&[u8]>) -> Result<Receiver, ParseError> {
/// Trait providing common encoding logic for Unified containers.
pub trait Encoding: private::SealedContainer + std::marker::Sized {
fn try_from_bytes(hrp: &str, buf: &[u8]) -> Result<Self, ParseError> {
fn read_receiver<R: SealedItem>(
mut cursor: &mut std::io::Cursor<&[u8]>,
) -> Result<R, ParseError> {
let typecode = CompactSize::read(&mut cursor)
.map(|v| u32::try_from(v).expect("CompactSize::read enforces MAX_SIZE limit"))
.map_err(|e| {
@ -241,7 +214,7 @@ impl TryFrom<(&str, &[u8])> for Address {
length
)));
}
let result = Receiver::try_from((
let result = R::try_from((
typecode,
&buf[cursor.position() as usize..addr_end as usize],
));
@ -273,17 +246,13 @@ impl TryFrom<(&str, &[u8])> for Address {
result.push(read_receiver(&mut cursor)?);
}
assert_eq!(cursor.position(), encoded.len().try_into().unwrap());
result.try_into()
Self::try_from_items(result)
}
}
impl TryFrom<Vec<Receiver>> for Address {
type Error = ParseError;
fn try_from(receivers: Vec<Receiver>) -> Result<Self, Self::Error> {
let mut typecodes = HashSet::with_capacity(receivers.len());
for receiver in &receivers {
let t = receiver.typecode();
fn try_from_items(items: Vec<Self::Item>) -> Result<Self, ParseError> {
let mut typecodes = HashSet::with_capacity(items.len());
for item in &items {
let t = item.typecode();
if typecodes.contains(&t) {
return Err(ParseError::DuplicateTypecode(t));
} else if (t == Typecode::P2pkh && typecodes.contains(&Typecode::P2sh))
@ -299,251 +268,27 @@ impl TryFrom<Vec<Receiver>> for Address {
Err(ParseError::OnlyTransparent)
} else {
// All checks pass!
Ok(Address(receivers))
Ok(Self::from_inner(items))
}
}
}
impl Address {
/// Returns the raw encoding of this Unified Address.
pub(crate) fn to_bytes(&self, hrp: &str) -> Vec<u8> {
assert!(hrp.len() <= PADDING_LEN);
/// Trait for for Unified containers, that exposes the items within them.
pub trait Container {
/// The type of item in this unified container.
type Item: SealedItem;
let mut writer = std::io::Cursor::new(Vec::new());
for receiver in &self.0 {
let addr = receiver.addr();
CompactSize::write(
&mut writer,
<u32>::from(receiver.typecode()).try_into().unwrap(),
)
.unwrap();
CompactSize::write(&mut writer, addr.len()).unwrap();
writer.write_all(addr).unwrap();
}
let mut padding = [0u8; PADDING_LEN];
padding[0..hrp.len()].copy_from_slice(&hrp.as_bytes());
writer.write_all(&padding).unwrap();
f4jumble::f4jumble(&writer.into_inner()).unwrap()
}
/// Returns the receivers contained within this address, sorted in preference order.
pub fn receivers(&self) -> Vec<Receiver> {
let mut receivers = self.0.clone();
// Unstable sorting is fine, because all receivers are guaranteed by construction
/// Returns the items contained within this container, sorted in preference order.
fn items(&self) -> Vec<Self::Item> {
let mut items = self.items_as_parsed().to_vec();
// Unstable sorting is fine, because all items are guaranteed by construction
// to have distinct typecodes.
receivers.sort_unstable_by_key(|r| r.typecode());
receivers
items.sort_unstable_by_key(|r| r.typecode());
items
}
/// Returns the receivers contained within this address, in the order they were
/// parsed from the string encoding.
/// Returns the items in the order they were parsed from the string encoding.
///
/// This API is for advanced usage; in most cases you should use `Address::receivers`.
pub fn receivers_as_parsed(&self) -> &[Receiver] {
&self.0
}
}
#[cfg(test)]
pub(crate) mod test_vectors;
#[cfg(test)]
mod tests {
use assert_matches::assert_matches;
use std::convert::TryFrom;
use proptest::{
array::{uniform11, uniform20, uniform32},
prelude::*,
};
use super::{Address, ParseError, Receiver, Typecode, MAINNET, REGTEST, TESTNET};
prop_compose! {
fn uniform43()(a in uniform11(0u8..), b in uniform32(0u8..)) -> [u8; 43] {
let mut c = [0; 43];
c[..11].copy_from_slice(&a);
c[11..].copy_from_slice(&b);
c
}
}
fn arb_shielded_receiver() -> BoxedStrategy<Receiver> {
prop_oneof![
uniform43().prop_map(Receiver::Sapling),
uniform43().prop_map(Receiver::Orchard),
]
.boxed()
}
fn arb_transparent_receiver() -> BoxedStrategy<Receiver> {
prop_oneof![
uniform20(0u8..).prop_map(Receiver::P2pkh),
uniform20(0u8..).prop_map(Receiver::P2sh),
]
.boxed()
}
prop_compose! {
fn arb_unified_address()(
shielded in prop::collection::hash_set(arb_shielded_receiver(), 1..2),
transparent in prop::option::of(arb_transparent_receiver()),
) -> Address {
Address(shielded.into_iter().chain(transparent).collect())
}
}
proptest! {
#[test]
fn ua_roundtrip(
hrp in prop_oneof![MAINNET, TESTNET, REGTEST],
ua in arb_unified_address(),
) {
let bytes = ua.to_bytes(&hrp);
let decoded = Address::try_from((hrp.as_str(), &bytes[..]));
prop_assert_eq!(decoded, Ok(ua));
}
}
#[test]
fn padding() {
// The test cases below use `Address(vec![Receiver::Orchard([1; 43])])` as base.
// Invalid padding ([0xff; 16] instead of [b'u', 0x00, 0x00, 0x00...])
let invalid_padding = [
0xe6, 0x59, 0xd1, 0xed, 0xf7, 0x4b, 0xe3, 0x5e, 0x5a, 0x54, 0x0e, 0x41, 0x5d, 0x2f,
0x0c, 0x0d, 0x33, 0x42, 0xbd, 0xbe, 0x9f, 0x82, 0x62, 0x01, 0xc1, 0x1b, 0xd4, 0x1e,
0x42, 0x47, 0x86, 0x23, 0x05, 0x4b, 0x98, 0xd7, 0x76, 0x86, 0xa5, 0xe3, 0x1b, 0xd3,
0x03, 0xca, 0x24, 0x44, 0x8e, 0x72, 0xc1, 0x4a, 0xc6, 0xbf, 0x3f, 0x2b, 0xce, 0xa7,
0x7b, 0x28, 0x69, 0xc9, 0x84,
];
assert_eq!(
Address::try_from((MAINNET, &invalid_padding[..])),
Err(ParseError::InvalidEncoding(
"Invalid padding bytes".to_owned()
))
);
// Short padding (padded to 15 bytes instead of 16)
let truncated_padding = [
0x9a, 0x56, 0x12, 0xa3, 0x43, 0x45, 0xe0, 0x82, 0x6c, 0xac, 0x24, 0x8b, 0x3b, 0x45,
0x72, 0x9a, 0x53, 0xd5, 0xf8, 0xda, 0xec, 0x07, 0x7c, 0xba, 0x9f, 0xa8, 0xd2, 0x97,
0x5b, 0xda, 0x73, 0x1b, 0xd2, 0xd1, 0x32, 0x6b, 0x7b, 0x36, 0xdd, 0x57, 0x84, 0x2a,
0xa0, 0x21, 0x23, 0x89, 0x73, 0x85, 0xe1, 0x4b, 0x3e, 0x95, 0xb7, 0xd4, 0x67, 0xbc,
0x4b, 0x31, 0xee, 0x5a,
];
assert_eq!(
Address::try_from((MAINNET, &truncated_padding[..])),
Err(ParseError::InvalidEncoding(
"Invalid padding bytes".to_owned()
))
);
}
#[test]
fn truncated() {
// The test cases below start from an encoding of
// `Address(vec![Receiver::Orchard([1; 43]), Receiver::Sapling([2; 43])])`
// with the receiver data truncated, but valid padding.
// - Missing the last data byte of the Sapling receiver.
let truncated_sapling_data = [
0xaa, 0xb0, 0x6e, 0x7b, 0x26, 0x7a, 0x22, 0x17, 0x39, 0xfa, 0x07, 0x69, 0xe9, 0x32,
0x2b, 0xac, 0x8c, 0x9e, 0x5e, 0x8a, 0xd9, 0x24, 0x06, 0x5a, 0x13, 0x79, 0x3a, 0x8d,
0xb4, 0x52, 0xfa, 0x18, 0x4e, 0x33, 0x4d, 0x8c, 0x17, 0x77, 0x4d, 0x63, 0x69, 0x34,
0x22, 0x70, 0x3a, 0xea, 0x30, 0x82, 0x5a, 0x6b, 0x37, 0xd1, 0x0d, 0xbe, 0x20, 0xab,
0x82, 0x86, 0x98, 0x34, 0x6a, 0xd8, 0x45, 0x40, 0xd0, 0x25, 0x60, 0xbf, 0x1e, 0xb6,
0xeb, 0x06, 0x85, 0x70, 0x4c, 0x42, 0xbc, 0x19, 0x14, 0xef, 0x7a, 0x05, 0xa0, 0x71,
0xb2, 0x63, 0x80, 0xbb, 0xdc, 0x12, 0x08, 0x48, 0x28, 0x8f, 0x1c, 0x9e, 0xc3, 0x42,
0xc6, 0x5e, 0x68, 0xa2, 0x78, 0x6c, 0x9e,
];
assert_matches!(
Address::try_from((MAINNET, &truncated_sapling_data[..])),
Err(ParseError::InvalidEncoding(_))
);
// - Truncated after the typecode of the Sapling receiver.
let truncated_after_sapling_typecode = [
0x87, 0x7a, 0xdf, 0x79, 0x6b, 0xe3, 0xb3, 0x40, 0xef, 0xe4, 0x5d, 0xc2, 0x91, 0xa2,
0x81, 0xfc, 0x7d, 0x76, 0xbb, 0xb0, 0x58, 0x98, 0x53, 0x59, 0xd3, 0x3f, 0xbc, 0x4b,
0x86, 0x59, 0x66, 0x62, 0x75, 0x92, 0xba, 0xcc, 0x31, 0x1e, 0x60, 0x02, 0x3b, 0xd8,
0x4c, 0xdf, 0x36, 0xa1, 0xac, 0x82, 0x57, 0xed, 0x0c, 0x98, 0x49, 0x8f, 0x49, 0x7e,
0xe6, 0x70, 0x36, 0x5b, 0x7b, 0x9e,
];
assert_matches!(
Address::try_from((MAINNET, &truncated_after_sapling_typecode[..])),
Err(ParseError::InvalidEncoding(_))
);
}
#[test]
fn duplicate_typecode() {
// Construct and serialize an invalid UA.
let ua = Address(vec![Receiver::Sapling([1; 43]), Receiver::Sapling([2; 43])]);
let encoded = ua.to_bytes(MAINNET);
assert_eq!(
Address::try_from((MAINNET, &encoded[..])),
Err(ParseError::DuplicateTypecode(Typecode::Sapling))
);
}
#[test]
fn p2pkh_and_p2sh() {
// Construct and serialize an invalid UA.
let ua = Address(vec![Receiver::P2pkh([0; 20]), Receiver::P2sh([0; 20])]);
let encoded = ua.to_bytes(MAINNET);
assert_eq!(
Address::try_from((MAINNET, &encoded[..])),
Err(ParseError::BothP2phkAndP2sh)
);
}
#[test]
fn only_transparent() {
// Encoding of `Address(vec![Receiver::P2pkh([0; 20])])`.
let encoded = vec![
0xf0, 0x9e, 0x9d, 0x6e, 0xf5, 0xa6, 0xac, 0x16, 0x50, 0xf0, 0xdb, 0xe1, 0x2c, 0xa5,
0x36, 0x22, 0xa2, 0x04, 0x89, 0x86, 0xe9, 0x6a, 0x9b, 0xf3, 0xff, 0x6d, 0x2f, 0xe6,
0xea, 0xdb, 0xc5, 0x20, 0x62, 0xf9, 0x6f, 0xa9, 0x86, 0xcc,
];
// We can't actually exercise this error, because at present the only transparent
// receivers we can use are P2PKH and P2SH (which cannot be used together), and
// with only one of them we don't have sufficient data for F4Jumble (so we hit a
// different error).
assert_matches!(
Address::try_from((MAINNET, &encoded[..])),
Err(ParseError::InvalidEncoding(_))
);
}
#[test]
fn receivers_are_sorted() {
// Construct a UA with receivers in an unsorted order.
let ua = Address(vec![
Receiver::P2pkh([0; 20]),
Receiver::Orchard([0; 43]),
Receiver::Unknown {
typecode: 0xff,
data: vec![],
},
Receiver::Sapling([0; 43]),
]);
// `Address::receivers` sorts the receivers in priority order.
assert_eq!(
ua.receivers(),
vec![
Receiver::Orchard([0; 43]),
Receiver::Sapling([0; 43]),
Receiver::P2pkh([0; 20]),
Receiver::Unknown {
typecode: 0xff,
data: vec![],
},
]
)
}
/// This API is for advanced usage; in most cases you should use `Self::items`.
fn items_as_parsed(&self) -> &[Self::Item];
}

View File

@ -0,0 +1,310 @@
use super::{private::SealedItem, ParseError, Typecode};
use crate::kind;
use std::cmp;
use std::convert::{TryFrom, TryInto};
/// The set of known Receivers for Unified Addresses.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum Receiver {
Orchard([u8; 43]),
Sapling(kind::sapling::Data),
P2pkh(kind::p2pkh::Data),
P2sh(kind::p2sh::Data),
Unknown { typecode: u32, data: Vec<u8> },
}
impl cmp::Ord for Receiver {
fn cmp(&self, other: &Self) -> cmp::Ordering {
match self.typecode().cmp(&other.typecode()) {
cmp::Ordering::Equal => self.data().cmp(other.data()),
res => res,
}
}
}
impl cmp::PartialOrd for Receiver {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl TryFrom<(u32, &[u8])> for Receiver {
type Error = ParseError;
fn try_from((typecode, addr): (u32, &[u8])) -> Result<Self, Self::Error> {
match typecode.try_into()? {
Typecode::P2pkh => addr.try_into().map(Receiver::P2pkh),
Typecode::P2sh => addr.try_into().map(Receiver::P2sh),
Typecode::Sapling => addr.try_into().map(Receiver::Sapling),
Typecode::Orchard => addr.try_into().map(Receiver::Orchard),
Typecode::Unknown(_) => Ok(Receiver::Unknown {
typecode,
data: addr.to_vec(),
}),
}
.map_err(|e| {
ParseError::InvalidEncoding(format!("Invalid address for typecode {}: {}", typecode, e))
})
}
}
impl SealedItem for Receiver {
fn typecode(&self) -> Typecode {
match self {
Receiver::P2pkh(_) => Typecode::P2pkh,
Receiver::P2sh(_) => Typecode::P2sh,
Receiver::Sapling(_) => Typecode::Sapling,
Receiver::Orchard(_) => Typecode::Orchard,
Receiver::Unknown { typecode, .. } => Typecode::Unknown(*typecode),
}
}
fn data(&self) -> &[u8] {
match self {
Receiver::P2pkh(data) => data,
Receiver::P2sh(data) => data,
Receiver::Sapling(data) => data,
Receiver::Orchard(data) => data,
Receiver::Unknown { data, .. } => data,
}
}
}
/// A Unified Address.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Address(pub(crate) Vec<Receiver>);
impl super::private::SealedContainer for Address {
/// The HRP for a Bech32m-encoded mainnet Unified Address.
///
/// Defined in [ZIP 316][zip-0316].
///
/// [zip-0316]: https://zips.z.cash/zip-0316
const MAINNET: &'static str = "u";
/// The HRP for a Bech32m-encoded testnet Unified Address.
///
/// Defined in [ZIP 316][zip-0316].
///
/// [zip-0316]: https://zips.z.cash/zip-0316
const TESTNET: &'static str = "utest";
/// The HRP for a Bech32m-encoded regtest Unified Address.
const REGTEST: &'static str = "uregtest";
fn from_inner(receivers: Vec<Self::Item>) -> Self {
Self(receivers)
}
}
impl super::Encoding for Address {}
impl super::Container for Address {
type Item = Receiver;
fn items_as_parsed(&self) -> &[Receiver] {
&self.0
}
}
#[cfg(test)]
pub(crate) mod test_vectors;
#[cfg(test)]
mod tests {
use assert_matches::assert_matches;
use crate::kind::unified::{private::SealedContainer, Container, Encoding};
use proptest::{
array::{uniform11, uniform20, uniform32},
prelude::*,
};
use super::{Address, ParseError, Receiver, Typecode};
prop_compose! {
fn uniform43()(a in uniform11(0u8..), b in uniform32(0u8..)) -> [u8; 43] {
let mut c = [0; 43];
c[..11].copy_from_slice(&a);
c[11..].copy_from_slice(&b);
c
}
}
fn arb_shielded_receiver() -> BoxedStrategy<Receiver> {
prop_oneof![
uniform43().prop_map(Receiver::Sapling),
uniform43().prop_map(Receiver::Orchard),
]
.boxed()
}
fn arb_transparent_receiver() -> BoxedStrategy<Receiver> {
prop_oneof![
uniform20(0u8..).prop_map(Receiver::P2pkh),
uniform20(0u8..).prop_map(Receiver::P2sh),
]
.boxed()
}
prop_compose! {
fn arb_unified_address()(
shielded in prop::collection::hash_set(arb_shielded_receiver(), 1..2),
transparent in prop::option::of(arb_transparent_receiver()),
) -> Address {
Address(shielded.into_iter().chain(transparent).collect())
}
}
proptest! {
#[test]
fn ua_roundtrip(
hrp in prop_oneof![Address::MAINNET, Address::TESTNET, Address::REGTEST],
ua in arb_unified_address(),
) {
let bytes = ua.to_bytes(&hrp);
let decoded = Address::try_from_bytes(hrp.as_str(), &bytes[..]);
prop_assert_eq!(decoded, Ok(ua));
}
}
#[test]
fn padding() {
// The test cases below use `Address(vec![Receiver::Orchard([1; 43])])` as base.
// Invalid padding ([0xff; 16] instead of [b'u', 0x00, 0x00, 0x00...])
let invalid_padding = [
0xe6, 0x59, 0xd1, 0xed, 0xf7, 0x4b, 0xe3, 0x5e, 0x5a, 0x54, 0x0e, 0x41, 0x5d, 0x2f,
0x0c, 0x0d, 0x33, 0x42, 0xbd, 0xbe, 0x9f, 0x82, 0x62, 0x01, 0xc1, 0x1b, 0xd4, 0x1e,
0x42, 0x47, 0x86, 0x23, 0x05, 0x4b, 0x98, 0xd7, 0x76, 0x86, 0xa5, 0xe3, 0x1b, 0xd3,
0x03, 0xca, 0x24, 0x44, 0x8e, 0x72, 0xc1, 0x4a, 0xc6, 0xbf, 0x3f, 0x2b, 0xce, 0xa7,
0x7b, 0x28, 0x69, 0xc9, 0x84,
];
assert_eq!(
Address::try_from_bytes(Address::MAINNET, &invalid_padding[..]),
Err(ParseError::InvalidEncoding(
"Invalid padding bytes".to_owned()
))
);
// Short padding (padded to 15 bytes instead of 16)
let truncated_padding = [
0x9a, 0x56, 0x12, 0xa3, 0x43, 0x45, 0xe0, 0x82, 0x6c, 0xac, 0x24, 0x8b, 0x3b, 0x45,
0x72, 0x9a, 0x53, 0xd5, 0xf8, 0xda, 0xec, 0x07, 0x7c, 0xba, 0x9f, 0xa8, 0xd2, 0x97,
0x5b, 0xda, 0x73, 0x1b, 0xd2, 0xd1, 0x32, 0x6b, 0x7b, 0x36, 0xdd, 0x57, 0x84, 0x2a,
0xa0, 0x21, 0x23, 0x89, 0x73, 0x85, 0xe1, 0x4b, 0x3e, 0x95, 0xb7, 0xd4, 0x67, 0xbc,
0x4b, 0x31, 0xee, 0x5a,
];
assert_eq!(
Address::try_from_bytes(Address::MAINNET, &truncated_padding[..]),
Err(ParseError::InvalidEncoding(
"Invalid padding bytes".to_owned()
))
);
}
#[test]
fn truncated() {
// The test cases below start from an encoding of
// `Address(vec![Receiver::Orchard([1; 43]), Receiver::Sapling([2; 43])])`
// with the receiver data truncated, but valid padding.
// - Missing the last data byte of the Sapling receiver.
let truncated_sapling_data = [
0xaa, 0xb0, 0x6e, 0x7b, 0x26, 0x7a, 0x22, 0x17, 0x39, 0xfa, 0x07, 0x69, 0xe9, 0x32,
0x2b, 0xac, 0x8c, 0x9e, 0x5e, 0x8a, 0xd9, 0x24, 0x06, 0x5a, 0x13, 0x79, 0x3a, 0x8d,
0xb4, 0x52, 0xfa, 0x18, 0x4e, 0x33, 0x4d, 0x8c, 0x17, 0x77, 0x4d, 0x63, 0x69, 0x34,
0x22, 0x70, 0x3a, 0xea, 0x30, 0x82, 0x5a, 0x6b, 0x37, 0xd1, 0x0d, 0xbe, 0x20, 0xab,
0x82, 0x86, 0x98, 0x34, 0x6a, 0xd8, 0x45, 0x40, 0xd0, 0x25, 0x60, 0xbf, 0x1e, 0xb6,
0xeb, 0x06, 0x85, 0x70, 0x4c, 0x42, 0xbc, 0x19, 0x14, 0xef, 0x7a, 0x05, 0xa0, 0x71,
0xb2, 0x63, 0x80, 0xbb, 0xdc, 0x12, 0x08, 0x48, 0x28, 0x8f, 0x1c, 0x9e, 0xc3, 0x42,
0xc6, 0x5e, 0x68, 0xa2, 0x78, 0x6c, 0x9e,
];
assert_matches!(
Address::try_from_bytes(Address::MAINNET, &truncated_sapling_data[..]),
Err(ParseError::InvalidEncoding(_))
);
// - Truncated after the typecode of the Sapling receiver.
let truncated_after_sapling_typecode = [
0x87, 0x7a, 0xdf, 0x79, 0x6b, 0xe3, 0xb3, 0x40, 0xef, 0xe4, 0x5d, 0xc2, 0x91, 0xa2,
0x81, 0xfc, 0x7d, 0x76, 0xbb, 0xb0, 0x58, 0x98, 0x53, 0x59, 0xd3, 0x3f, 0xbc, 0x4b,
0x86, 0x59, 0x66, 0x62, 0x75, 0x92, 0xba, 0xcc, 0x31, 0x1e, 0x60, 0x02, 0x3b, 0xd8,
0x4c, 0xdf, 0x36, 0xa1, 0xac, 0x82, 0x57, 0xed, 0x0c, 0x98, 0x49, 0x8f, 0x49, 0x7e,
0xe6, 0x70, 0x36, 0x5b, 0x7b, 0x9e,
];
assert_matches!(
Address::try_from_bytes(Address::MAINNET, &truncated_after_sapling_typecode[..]),
Err(ParseError::InvalidEncoding(_))
);
}
#[test]
fn duplicate_typecode() {
// Construct and serialize an invalid UA.
let ua = Address(vec![Receiver::Sapling([1; 43]), Receiver::Sapling([2; 43])]);
let encoded = ua.to_bytes(Address::MAINNET);
assert_eq!(
Address::try_from_bytes(Address::MAINNET, &encoded[..]),
Err(ParseError::DuplicateTypecode(Typecode::Sapling))
);
}
#[test]
fn p2pkh_and_p2sh() {
// Construct and serialize an invalid UA.
let ua = Address(vec![Receiver::P2pkh([0; 20]), Receiver::P2sh([0; 20])]);
let encoded = ua.to_bytes(Address::MAINNET);
assert_eq!(
Address::try_from_bytes(Address::MAINNET, &encoded[..]),
Err(ParseError::BothP2phkAndP2sh)
);
}
#[test]
fn only_transparent() {
// Encoding of `Address(vec![Receiver::P2pkh([0; 20])])`.
let encoded = vec![
0xf0, 0x9e, 0x9d, 0x6e, 0xf5, 0xa6, 0xac, 0x16, 0x50, 0xf0, 0xdb, 0xe1, 0x2c, 0xa5,
0x36, 0x22, 0xa2, 0x04, 0x89, 0x86, 0xe9, 0x6a, 0x9b, 0xf3, 0xff, 0x6d, 0x2f, 0xe6,
0xea, 0xdb, 0xc5, 0x20, 0x62, 0xf9, 0x6f, 0xa9, 0x86, 0xcc,
];
// We can't actually exercise this error, because at present the only transparent
// receivers we can use are P2PKH and P2SH (which cannot be used together), and
// with only one of them we don't have sufficient data for F4Jumble (so we hit a
// different error).
assert_matches!(
Address::try_from_bytes(Address::MAINNET, &encoded[..]),
Err(ParseError::InvalidEncoding(_))
);
}
#[test]
fn receivers_are_sorted() {
// Construct a UA with receivers in an unsorted order.
let ua = Address(vec![
Receiver::P2pkh([0; 20]),
Receiver::Orchard([0; 43]),
Receiver::Unknown {
typecode: 0xff,
data: vec![],
},
Receiver::Sapling([0; 43]),
]);
// `Address::receivers` sorts the receivers in priority order.
assert_eq!(
ua.items(),
vec![
Receiver::Orchard([0; 43]),
Receiver::Sapling([0; 43]),
Receiver::P2pkh([0; 20]),
Receiver::Unknown {
typecode: 0xff,
data: vec![],
},
]
)
}
}

View File

@ -1,7 +1,10 @@
use std::iter;
use crate::{
unified::{self, test_vectors::TEST_VECTORS, Receiver},
unified::{
self,
address::{test_vectors::TEST_VECTORS, Receiver},
},
Network, ToAddress, ZcashAddress,
};