Consistently use (u, v) for affine-ctEdwards coordinates.

Signed-off-by: Daira Hopwood <daira@jacaranda.org>
This commit is contained in:
Daira Hopwood 2020-08-22 01:01:05 +01:00
parent cfed47c176
commit 9e0041c497
5 changed files with 248 additions and 243 deletions

View File

@ -18,8 +18,8 @@ use crate::constants::{FixedGenerator, EDWARDS_D, MONTGOMERY_A, MONTGOMERY_SCALE
#[derive(Clone)]
pub struct EdwardsPoint {
x: AllocatedNum<bls12_381::Scalar>,
y: AllocatedNum<bls12_381::Scalar>,
u: AllocatedNum<bls12_381::Scalar>,
v: AllocatedNum<bls12_381::Scalar>,
}
/// Perform a fixed-base scalar multiplication with
@ -49,13 +49,14 @@ where
.cloned()
.unwrap_or_else(|| Boolean::constant(false));
let (x, y) = lookup3_xy(
// TODO: rename to lookup3_uv
let (u, v) = lookup3_xy(
cs.namespace(|| format!("window table lookup {}", i)),
&[chunk_a, chunk_b, chunk_c],
window,
)?;
let p = EdwardsPoint { x, y };
let p = EdwardsPoint { u, v };
if result.is_none() {
result = Some(p);
@ -72,12 +73,12 @@ where
}
impl EdwardsPoint {
pub fn get_x(&self) -> &AllocatedNum<bls12_381::Scalar> {
&self.x
pub fn get_u(&self) -> &AllocatedNum<bls12_381::Scalar> {
&self.u
}
pub fn get_y(&self) -> &AllocatedNum<bls12_381::Scalar> {
&self.y
pub fn get_v(&self) -> &AllocatedNum<bls12_381::Scalar> {
&self.v
}
pub fn assert_not_small_order<CS>(&self, mut cs: CS) -> Result<(), SynthesisError>
@ -90,9 +91,9 @@ impl EdwardsPoint {
// (0, -1) is a small order point, but won't ever appear here
// because cofactor is 2^3, and we performed three doublings.
// (0, 1) is the neutral element, so checking if x is nonzero
// (0, 1) is the neutral element, so checking if u is nonzero
// is sufficient to prevent small order points here.
tmp.x.assert_nonzero(cs.namespace(|| "check x != 0"))?;
tmp.u.assert_nonzero(cs.namespace(|| "check u != 0"))?;
Ok(())
}
@ -101,8 +102,8 @@ impl EdwardsPoint {
where
CS: ConstraintSystem<bls12_381::Scalar>,
{
self.x.inputize(cs.namespace(|| "x"))?;
self.y.inputize(cs.namespace(|| "y"))?;
self.u.inputize(cs.namespace(|| "u"))?;
self.v.inputize(cs.namespace(|| "v"))?;
Ok(())
}
@ -114,12 +115,12 @@ impl EdwardsPoint {
{
let mut tmp = vec![];
let x = self.x.to_bits_le_strict(cs.namespace(|| "unpack x"))?;
let u = self.u.to_bits_le_strict(cs.namespace(|| "unpack u"))?;
let y = self.y.to_bits_le_strict(cs.namespace(|| "unpack y"))?;
let v = self.v.to_bits_le_strict(cs.namespace(|| "unpack v"))?;
tmp.extend(y);
tmp.push(x[0].clone());
tmp.extend(v);
tmp.push(u[0].clone());
Ok(tmp)
}
@ -132,13 +133,13 @@ impl EdwardsPoint {
{
let p = p.map(|p| p.to_affine());
// Allocate x
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(p.get()?.get_u()))?;
// Allocate u
let u = AllocatedNum::alloc(cs.namespace(|| "u"), || Ok(p.get()?.get_u()))?;
// Allocate y
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(p.get()?.get_v()))?;
// Allocate v
let v = AllocatedNum::alloc(cs.namespace(|| "v"), || Ok(p.get()?.get_v()))?;
Self::interpret(cs.namespace(|| "point interpretation"), &x, &y)
Self::interpret(cs.namespace(|| "point interpretation"), &u, &v)
}
/// Returns `self` if condition is true, and the neutral
@ -151,48 +152,48 @@ impl EdwardsPoint {
where
CS: ConstraintSystem<bls12_381::Scalar>,
{
// Compute x' = self.x if condition, and 0 otherwise
let x_prime = AllocatedNum::alloc(cs.namespace(|| "x'"), || {
// Compute u' = self.u if condition, and 0 otherwise
let u_prime = AllocatedNum::alloc(cs.namespace(|| "u'"), || {
if *condition.get_value().get()? {
Ok(*self.x.get_value().get()?)
Ok(*self.u.get_value().get()?)
} else {
Ok(bls12_381::Scalar::zero())
}
})?;
// condition * x = x'
// if condition is 0, x' must be 0
// if condition is 1, x' must be x
// condition * u = u'
// if condition is 0, u' must be 0
// if condition is 1, u' must be u
let one = CS::one();
cs.enforce(
|| "x' computation",
|lc| lc + self.x.get_variable(),
|| "u' computation",
|lc| lc + self.u.get_variable(),
|_| condition.lc(one, bls12_381::Scalar::one()),
|lc| lc + x_prime.get_variable(),
|lc| lc + u_prime.get_variable(),
);
// Compute y' = self.y if condition, and 1 otherwise
let y_prime = AllocatedNum::alloc(cs.namespace(|| "y'"), || {
// Compute v' = self.v if condition, and 1 otherwise
let v_prime = AllocatedNum::alloc(cs.namespace(|| "v'"), || {
if *condition.get_value().get()? {
Ok(*self.y.get_value().get()?)
Ok(*self.v.get_value().get()?)
} else {
Ok(bls12_381::Scalar::one())
}
})?;
// condition * y = y' - (1 - condition)
// if condition is 0, y' must be 1
// if condition is 1, y' must be y
// condition * v = v' - (1 - condition)
// if condition is 0, v' must be 1
// if condition is 1, v' must be v
cs.enforce(
|| "y' computation",
|lc| lc + self.y.get_variable(),
|| "v' computation",
|lc| lc + self.v.get_variable(),
|_| condition.lc(one, bls12_381::Scalar::one()),
|lc| lc + y_prime.get_variable() - &condition.not().lc(one, bls12_381::Scalar::one()),
|lc| lc + v_prime.get_variable() - &condition.not().lc(one, bls12_381::Scalar::one()),
);
Ok(EdwardsPoint {
x: x_prime,
y: y_prime,
u: u_prime,
v: v_prime,
})
}
@ -248,29 +249,29 @@ impl EdwardsPoint {
pub fn interpret<CS>(
mut cs: CS,
x: &AllocatedNum<bls12_381::Scalar>,
y: &AllocatedNum<bls12_381::Scalar>,
u: &AllocatedNum<bls12_381::Scalar>,
v: &AllocatedNum<bls12_381::Scalar>,
) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<bls12_381::Scalar>,
{
// -x^2 + y^2 = 1 + dx^2y^2
// -u^2 + v^2 = 1 + du^2v^2
let x2 = x.square(cs.namespace(|| "x^2"))?;
let y2 = y.square(cs.namespace(|| "y^2"))?;
let x2y2 = x2.mul(cs.namespace(|| "x^2 y^2"), &y2)?;
let u2 = u.square(cs.namespace(|| "u^2"))?;
let v2 = v.square(cs.namespace(|| "v^2"))?;
let u2v2 = u2.mul(cs.namespace(|| "u^2 v^2"), &v2)?;
let one = CS::one();
cs.enforce(
|| "on curve check",
|lc| lc - x2.get_variable() + y2.get_variable(),
|lc| lc - u2.get_variable() + v2.get_variable(),
|lc| lc + one,
|lc| lc + one + (EDWARDS_D, x2y2.get_variable()),
|lc| lc + one + (EDWARDS_D, u2v2.get_variable()),
);
Ok(EdwardsPoint {
x: x.clone(),
y: y.clone(),
u: u.clone(),
v: v.clone(),
})
}
@ -278,13 +279,14 @@ impl EdwardsPoint {
where
CS: ConstraintSystem<bls12_381::Scalar>,
{
// Compute T = (x1 + y1) * (x1 + y1)
// Compute T = (u + v) * (v - EDWARDS_A*u)
// = (u + v) * (u + v)
let t = AllocatedNum::alloc(cs.namespace(|| "T"), || {
let mut t0 = *self.x.get_value().get()?;
t0.add_assign(self.y.get_value().get()?);
let mut t0 = *self.u.get_value().get()?;
t0.add_assign(self.v.get_value().get()?);
let mut t1 = *self.x.get_value().get()?;
t1.add_assign(self.y.get_value().get()?);
let mut t1 = *self.u.get_value().get()?;
t1.add_assign(self.v.get_value().get()?);
t0.mul_assign(&t1);
@ -293,13 +295,13 @@ impl EdwardsPoint {
cs.enforce(
|| "T computation",
|lc| lc + self.x.get_variable() + self.y.get_variable(),
|lc| lc + self.x.get_variable() + self.y.get_variable(),
|lc| lc + self.u.get_variable() + self.v.get_variable(),
|lc| lc + self.u.get_variable() + self.v.get_variable(),
|lc| lc + t.get_variable(),
);
// Compute A = x1 * y1
let a = self.x.mul(cs.namespace(|| "A computation"), &self.y)?;
// Compute A = u * v
let a = self.u.mul(cs.namespace(|| "A computation"), &self.v)?;
// Compute C = d*A*A
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
@ -316,8 +318,8 @@ impl EdwardsPoint {
|lc| lc + c.get_variable(),
);
// Compute x3 = (2.A) / (1 + C)
let x3 = AllocatedNum::alloc(cs.namespace(|| "x3"), || {
// Compute u3 = (2.A) / (1 + C)
let u3 = AllocatedNum::alloc(cs.namespace(|| "u3"), || {
let mut t0 = *a.get_value().get()?;
t0 = t0.double();
@ -334,14 +336,15 @@ impl EdwardsPoint {
let one = CS::one();
cs.enforce(
|| "x3 computation",
|| "u3 computation",
|lc| lc + one + c.get_variable(),
|lc| lc + x3.get_variable(),
|lc| lc + u3.get_variable(),
|lc| lc + a.get_variable() + a.get_variable(),
);
// Compute y3 = (U - 2.A) / (1 - C)
let y3 = AllocatedNum::alloc(cs.namespace(|| "y3"), || {
// Compute v3 = (T + (EDWARDS_A-1)*A) / (1 - C)
// = (T - 2.A) / (1 - C)
let v3 = AllocatedNum::alloc(cs.namespace(|| "v3"), || {
let mut t0 = *a.get_value().get()?;
t0 = t0.double().neg();
t0.add_assign(t.get_value().get()?);
@ -358,13 +361,13 @@ impl EdwardsPoint {
})?;
cs.enforce(
|| "y3 computation",
|| "v3 computation",
|lc| lc + one - c.get_variable(),
|lc| lc + y3.get_variable(),
|lc| lc + v3.get_variable(),
|lc| lc + t.get_variable() - a.get_variable() - a.get_variable(),
);
Ok(EdwardsPoint { x: x3, y: y3 })
Ok(EdwardsPoint { u: u3, v: v3 })
}
/// Perform addition between any two points
@ -372,13 +375,15 @@ impl EdwardsPoint {
where
CS: ConstraintSystem<bls12_381::Scalar>,
{
// Compute U = (x1 + y1) * (x2 + y2)
let u = AllocatedNum::alloc(cs.namespace(|| "U"), || {
let mut t0 = *self.x.get_value().get()?;
t0.add_assign(self.y.get_value().get()?);
// Compute U = (u1 + v1) * (v2 - EDWARDS_A*u2)
// = (u1 + v1) * (u2 + v2)
// (In hindsight, U was a poor choice of name.)
let uppercase_u = AllocatedNum::alloc(cs.namespace(|| "U"), || {
let mut t0 = *self.u.get_value().get()?;
t0.add_assign(self.v.get_value().get()?);
let mut t1 = *other.x.get_value().get()?;
t1.add_assign(other.y.get_value().get()?);
let mut t1 = *other.u.get_value().get()?;
t1.add_assign(other.v.get_value().get()?);
t0.mul_assign(&t1);
@ -387,16 +392,16 @@ impl EdwardsPoint {
cs.enforce(
|| "U computation",
|lc| lc + self.x.get_variable() + self.y.get_variable(),
|lc| lc + other.x.get_variable() + other.y.get_variable(),
|lc| lc + u.get_variable(),
|lc| lc + self.u.get_variable() + self.v.get_variable(),
|lc| lc + other.u.get_variable() + other.v.get_variable(),
|lc| lc + uppercase_u.get_variable(),
);
// Compute A = y2 * x1
let a = other.y.mul(cs.namespace(|| "A computation"), &self.x)?;
// Compute A = v2 * u1
let a = other.v.mul(cs.namespace(|| "A computation"), &self.u)?;
// Compute B = x2 * y1
let b = other.x.mul(cs.namespace(|| "B computation"), &self.y)?;
// Compute B = u2 * v1
let b = other.u.mul(cs.namespace(|| "B computation"), &self.v)?;
// Compute C = d*A*B
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
@ -414,8 +419,8 @@ impl EdwardsPoint {
|lc| lc + c.get_variable(),
);
// Compute x3 = (A + B) / (1 + C)
let x3 = AllocatedNum::alloc(cs.namespace(|| "x3"), || {
// Compute u3 = (A + B) / (1 + C)
let u3 = AllocatedNum::alloc(cs.namespace(|| "u3"), || {
let mut t0 = *a.get_value().get()?;
t0.add_assign(b.get_value().get()?);
@ -432,15 +437,15 @@ impl EdwardsPoint {
let one = CS::one();
cs.enforce(
|| "x3 computation",
|| "u3 computation",
|lc| lc + one + c.get_variable(),
|lc| lc + x3.get_variable(),
|lc| lc + u3.get_variable(),
|lc| lc + a.get_variable() + b.get_variable(),
);
// Compute y3 = (U - A - B) / (1 - C)
let y3 = AllocatedNum::alloc(cs.namespace(|| "y3"), || {
let mut t0 = *u.get_value().get()?;
// Compute v3 = (U - A - B) / (1 - C)
let v3 = AllocatedNum::alloc(cs.namespace(|| "v3"), || {
let mut t0 = *uppercase_u.get_value().get()?;
t0.sub_assign(a.get_value().get()?);
t0.sub_assign(b.get_value().get()?);
@ -456,13 +461,13 @@ impl EdwardsPoint {
})?;
cs.enforce(
|| "y3 computation",
|| "v3 computation",
|lc| lc + one - c.get_variable(),
|lc| lc + y3.get_variable(),
|lc| lc + u.get_variable() - a.get_variable() - b.get_variable(),
|lc| lc + v3.get_variable(),
|lc| lc + uppercase_u.get_variable() - a.get_variable() - b.get_variable(),
);
Ok(EdwardsPoint { x: x3, y: y3 })
Ok(EdwardsPoint { u: u3, v: v3 })
}
}
@ -522,7 +527,7 @@ impl MontgomeryPoint {
|lc| lc + &self.x.lc(bls12_381::Scalar::one()) - one,
);
Ok(EdwardsPoint { x: u, y: v })
Ok(EdwardsPoint { u, v })
}
/// Interprets an (x, y) pair as a point
@ -649,8 +654,8 @@ mod test {
let q = p.into_edwards(&mut cs).unwrap();
assert!(cs.is_satisfied());
assert!(q.x.get_value().unwrap() == u);
assert!(q.y.get_value().unwrap() == v);
assert!(q.u.get_value().unwrap() == u);
assert!(q.v.get_value().unwrap() == v);
cs.set("u/num", bls12_381::Scalar::random(rng));
assert_eq!(cs.which_is_unsatisfied().unwrap(), "u computation");
@ -680,35 +685,35 @@ mod test {
let p = p.to_affine();
assert!(cs.is_satisfied());
assert_eq!(q.x.get_value().unwrap(), p.get_u());
assert_eq!(q.y.get_value().unwrap(), p.get_v());
assert_eq!(q.u.get_value().unwrap(), p.get_u());
assert_eq!(q.v.get_value().unwrap(), p.get_v());
}
for _ in 0..100 {
let p = jubjub::ExtendedPoint::random(rng).to_affine();
let (x, y) = (p.get_u(), p.get_v());
let (u, v) = (p.get_u(), p.get_v());
let mut cs = TestConstraintSystem::new();
let numx = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(x)).unwrap();
let numy = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(y)).unwrap();
let numu = AllocatedNum::alloc(cs.namespace(|| "u"), || Ok(u)).unwrap();
let numv = AllocatedNum::alloc(cs.namespace(|| "v"), || Ok(v)).unwrap();
let p = EdwardsPoint::interpret(&mut cs, &numx, &numy).unwrap();
let p = EdwardsPoint::interpret(&mut cs, &numu, &numv).unwrap();
assert!(cs.is_satisfied());
assert_eq!(p.x.get_value().unwrap(), x);
assert_eq!(p.y.get_value().unwrap(), y);
assert_eq!(p.u.get_value().unwrap(), u);
assert_eq!(p.v.get_value().unwrap(), v);
}
// Random (x, y) are unlikely to be on the curve.
// Random (u, v) are unlikely to be on the curve.
for _ in 0..100 {
let x = bls12_381::Scalar::random(rng);
let y = bls12_381::Scalar::random(rng);
let u = bls12_381::Scalar::random(rng);
let v = bls12_381::Scalar::random(rng);
let mut cs = TestConstraintSystem::new();
let numx = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(x)).unwrap();
let numy = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(y)).unwrap();
let numu = AllocatedNum::alloc(cs.namespace(|| "u"), || Ok(u)).unwrap();
let numv = AllocatedNum::alloc(cs.namespace(|| "v"), || Ok(v)).unwrap();
EdwardsPoint::interpret(&mut cs, &numx, &numy).unwrap();
EdwardsPoint::interpret(&mut cs, &numu, &numv).unwrap();
assert_eq!(cs.which_is_unsatisfied().unwrap(), "on curve check");
}
@ -727,7 +732,7 @@ mod test {
let p = zcash_primitives::constants::NOTE_COMMITMENT_RANDOMNESS_GENERATOR;
let s = jubjub::Fr::random(rng);
let q = jubjub::ExtendedPoint::from(p * s).to_affine();
let (x1, y1) = (q.get_u(), q.get_v());
let (u1, v1) = (q.get_u(), q.get_v());
let mut s_bits = BitIterator::<u8, _>::new(s.to_repr()).collect::<Vec<_>>();
s_bits.reverse();
@ -750,8 +755,8 @@ mod test {
)
.unwrap();
assert_eq!(q.x.get_value().unwrap(), x1);
assert_eq!(q.y.get_value().unwrap(), y1);
assert_eq!(q.u.get_value().unwrap(), u1);
assert_eq!(q.v.get_value().unwrap(), v1);
}
}
@ -770,15 +775,15 @@ mod test {
let q = (p * s).to_affine();
let p = p.to_affine();
let (x0, y0) = (p.get_u(), p.get_v());
let (x1, y1) = (q.get_u(), q.get_v());
let (u0, v0) = (p.get_u(), p.get_v());
let (u1, v1) = (q.get_u(), q.get_v());
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
let num_u0 = AllocatedNum::alloc(cs.namespace(|| "u0"), || Ok(u0)).unwrap();
let num_v0 = AllocatedNum::alloc(cs.namespace(|| "v0"), || Ok(v0)).unwrap();
let p = EdwardsPoint {
x: num_x0,
y: num_y0,
u: num_u0,
v: num_v0,
};
let mut s_bits = BitIterator::<u8, _>::new(s.to_repr()).collect::<Vec<_>>();
@ -799,9 +804,9 @@ mod test {
assert!(cs.is_satisfied());
assert_eq!(q.x.get_value().unwrap(), x1);
assert_eq!(q.u.get_value().unwrap(), u1);
assert_eq!(q.y.get_value().unwrap(), y1);
assert_eq!(q.v.get_value().unwrap(), v1);
}
}
@ -817,14 +822,14 @@ mod test {
let p = jubjub::ExtendedPoint::random(rng).to_affine();
let (x0, y0) = (p.get_u(), p.get_v());
let (u0, v0) = (p.get_u(), p.get_v());
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
let num_u0 = AllocatedNum::alloc(cs.namespace(|| "u0"), || Ok(u0)).unwrap();
let num_v0 = AllocatedNum::alloc(cs.namespace(|| "v0"), || Ok(v0)).unwrap();
let p = EdwardsPoint {
x: num_x0,
y: num_y0,
u: num_u0,
v: num_v0,
};
let mut should_we_select = rng.next_u32() % 2 != 0;
@ -852,21 +857,21 @@ mod test {
assert!(cs.is_satisfied());
if should_we_select {
assert_eq!(q.x.get_value().unwrap(), x0);
assert_eq!(q.y.get_value().unwrap(), y0);
assert_eq!(q.u.get_value().unwrap(), u0);
assert_eq!(q.v.get_value().unwrap(), v0);
cs.set("select/y'/num", bls12_381::Scalar::one());
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/y' computation");
cs.set("select/x'/num", bls12_381::Scalar::zero());
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/x' computation");
cs.set("select/v'/num", bls12_381::Scalar::one());
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/v' computation");
cs.set("select/u'/num", bls12_381::Scalar::zero());
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/u' computation");
} else {
assert_eq!(q.x.get_value().unwrap(), bls12_381::Scalar::zero());
assert_eq!(q.y.get_value().unwrap(), bls12_381::Scalar::one());
assert_eq!(q.u.get_value().unwrap(), bls12_381::Scalar::zero());
assert_eq!(q.v.get_value().unwrap(), bls12_381::Scalar::one());
cs.set("select/y'/num", x0);
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/y' computation");
cs.set("select/x'/num", y0);
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/x' computation");
cs.set("select/v'/num", u0);
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/v' computation");
cs.set("select/u'/num", v0);
assert_eq!(cs.which_is_unsatisfied().unwrap(), "select/u' computation");
}
}
}
@ -888,51 +893,51 @@ mod test {
let p2 = p2.to_affine();
let p3 = p3.to_affine();
let (x0, y0) = (p1.get_u(), p1.get_v());
let (x1, y1) = (p2.get_u(), p2.get_v());
let (x2, y2) = (p3.get_u(), p3.get_v());
let (u0, v0) = (p1.get_u(), p1.get_v());
let (u1, v1) = (p2.get_u(), p2.get_v());
let (u2, v2) = (p3.get_u(), p3.get_v());
let mut cs = TestConstraintSystem::new();
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
let num_u0 = AllocatedNum::alloc(cs.namespace(|| "u0"), || Ok(u0)).unwrap();
let num_v0 = AllocatedNum::alloc(cs.namespace(|| "v0"), || Ok(v0)).unwrap();
let num_x1 = AllocatedNum::alloc(cs.namespace(|| "x1"), || Ok(x1)).unwrap();
let num_y1 = AllocatedNum::alloc(cs.namespace(|| "y1"), || Ok(y1)).unwrap();
let num_u1 = AllocatedNum::alloc(cs.namespace(|| "u1"), || Ok(u1)).unwrap();
let num_v1 = AllocatedNum::alloc(cs.namespace(|| "v1"), || Ok(v1)).unwrap();
let p1 = EdwardsPoint {
x: num_x0,
y: num_y0,
u: num_u0,
v: num_v0,
};
let p2 = EdwardsPoint {
x: num_x1,
y: num_y1,
u: num_u1,
v: num_v1,
};
let p3 = p1.add(cs.namespace(|| "addition"), &p2).unwrap();
assert!(cs.is_satisfied());
assert!(p3.x.get_value().unwrap() == x2);
assert!(p3.y.get_value().unwrap() == y2);
assert!(p3.u.get_value().unwrap() == u2);
assert!(p3.v.get_value().unwrap() == v2);
let u = cs.get("addition/U/num");
let uppercase_u = cs.get("addition/U/num");
cs.set("addition/U/num", bls12_381::Scalar::random(rng));
assert_eq!(cs.which_is_unsatisfied(), Some("addition/U computation"));
cs.set("addition/U/num", u);
cs.set("addition/U/num", uppercase_u);
assert!(cs.is_satisfied());
let x3 = cs.get("addition/x3/num");
cs.set("addition/x3/num", bls12_381::Scalar::random(rng));
assert_eq!(cs.which_is_unsatisfied(), Some("addition/x3 computation"));
cs.set("addition/x3/num", x3);
let u3 = cs.get("addition/u3/num");
cs.set("addition/u3/num", bls12_381::Scalar::random(rng));
assert_eq!(cs.which_is_unsatisfied(), Some("addition/u3 computation"));
cs.set("addition/u3/num", u3);
assert!(cs.is_satisfied());
let y3 = cs.get("addition/y3/num");
cs.set("addition/y3/num", bls12_381::Scalar::random(rng));
assert_eq!(cs.which_is_unsatisfied(), Some("addition/y3 computation"));
cs.set("addition/y3/num", y3);
let v3 = cs.get("addition/v3/num");
cs.set("addition/v3/num", bls12_381::Scalar::random(rng));
assert_eq!(cs.which_is_unsatisfied(), Some("addition/v3 computation"));
cs.set("addition/v3/num", v3);
assert!(cs.is_satisfied());
}
}
@ -951,25 +956,25 @@ mod test {
let p1 = p1.to_affine();
let p2 = p2.to_affine();
let (x0, y0) = (p1.get_u(), p1.get_v());
let (x1, y1) = (p2.get_u(), p2.get_v());
let (u0, v0) = (p1.get_u(), p1.get_v());
let (u1, v1) = (p2.get_u(), p2.get_v());
let mut cs = TestConstraintSystem::new();
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || Ok(x0)).unwrap();
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || Ok(y0)).unwrap();
let num_u0 = AllocatedNum::alloc(cs.namespace(|| "u0"), || Ok(u0)).unwrap();
let num_v0 = AllocatedNum::alloc(cs.namespace(|| "v0"), || Ok(v0)).unwrap();
let p1 = EdwardsPoint {
x: num_x0,
y: num_y0,
u: num_u0,
v: num_v0,
};
let p2 = p1.double(cs.namespace(|| "doubling")).unwrap();
assert!(cs.is_satisfied());
assert!(p2.x.get_value().unwrap() == x1);
assert!(p2.y.get_value().unwrap() == y1);
assert!(p2.u.get_value().unwrap() == u1);
assert!(p2.v.get_value().unwrap() == v1);
}
}
@ -1039,12 +1044,12 @@ mod test {
assert!(p.assert_not_small_order(&mut cs).is_err() == is_small_order);
};
let check_small_order_from_strs = |x, y| {
let (x, y) = (
bls12_381::Scalar::from_str(x).unwrap(),
bls12_381::Scalar::from_str(y).unwrap(),
let check_small_order_from_strs = |u, v| {
let (u, v) = (
bls12_381::Scalar::from_str(u).unwrap(),
bls12_381::Scalar::from_str(v).unwrap(),
);
let p = jubjub::AffinePoint::from_raw_unchecked(x, y);
let p = jubjub::AffinePoint::from_raw_unchecked(u, v);
check_small_order_from_p(p.into(), true);
};
@ -1059,10 +1064,10 @@ mod test {
.unwrap();
let largest_small_subgroup_order = jubjub::Fr::from_str("8").unwrap();
let (zero_x, zero_y) = (bls12_381::Scalar::zero(), bls12_381::Scalar::one());
let (zero_u, zero_v) = (bls12_381::Scalar::zero(), bls12_381::Scalar::one());
// generator for jubjub
let (x, y) = (
let (u, v) = (
bls12_381::Scalar::from_str(
"11076627216317271660298050606127911965867021807910416450833192264015104452986",
)
@ -1072,7 +1077,7 @@ mod test {
)
.unwrap(),
);
let g = jubjub::AffinePoint::from_raw_unchecked(x, y).into();
let g = jubjub::AffinePoint::from_raw_unchecked(u, v).into();
check_small_order_from_p(g, false);
// generator for the prime subgroup
@ -1081,11 +1086,11 @@ mod test {
let prime_subgroup_order_minus_1 = prime_subgroup_order - jubjub::Fr::one();
let should_not_be_zero = g_prime * prime_subgroup_order_minus_1;
assert_ne!(zero_x, should_not_be_zero.to_affine().get_u());
assert_ne!(zero_y, should_not_be_zero.to_affine().get_v());
assert_ne!(zero_u, should_not_be_zero.to_affine().get_u());
assert_ne!(zero_v, should_not_be_zero.to_affine().get_v());
let should_be_zero = should_not_be_zero + g_prime;
assert_eq!(zero_x, should_be_zero.to_affine().get_u());
assert_eq!(zero_y, should_be_zero.to_affine().get_v());
assert_eq!(zero_u, should_be_zero.to_affine().get_u());
assert_eq!(zero_v, should_be_zero.to_affine().get_v());
// generator for the small order subgroup
let g_small = g * prime_subgroup_order_minus_1;
@ -1096,12 +1101,12 @@ mod test {
let largest_small_subgroup_order_minus_1 = largest_small_subgroup_order - jubjub::Fr::one();
let should_not_be_zero = g_small * largest_small_subgroup_order_minus_1;
assert_ne!(zero_x, should_not_be_zero.to_affine().get_u());
assert_ne!(zero_y, should_not_be_zero.to_affine().get_v());
assert_ne!(zero_u, should_not_be_zero.to_affine().get_u());
assert_ne!(zero_v, should_not_be_zero.to_affine().get_v());
let should_be_zero = should_not_be_zero + g_small;
assert_eq!(zero_x, should_be_zero.to_affine().get_u());
assert_eq!(zero_y, should_be_zero.to_affine().get_v());
assert_eq!(zero_u, should_be_zero.to_affine().get_u());
assert_eq!(zero_v, should_be_zero.to_affine().get_v());
// take all the points from the script
// assert should be different than multiplying by cofactor, which is the solution

View File

@ -234,8 +234,8 @@ mod test {
))
.to_affine();
assert_eq!(res.get_x().get_value().unwrap(), expected.get_u());
assert_eq!(res.get_y().get_value().unwrap(), expected.get_v());
assert_eq!(res.get_u().get_value().unwrap(), expected.get_u());
assert_eq!(res.get_v().get_value().unwrap(), expected.get_v());
// Test against the output of a different personalization
let unexpected = jubjub::ExtendedPoint::from(pedersen_hash::pedersen_hash(
@ -244,8 +244,8 @@ mod test {
))
.to_affine();
assert!(res.get_x().get_value().unwrap() != unexpected.get_u());
assert!(res.get_y().get_value().unwrap() != unexpected.get_v());
assert!(res.get_u().get_value().unwrap() != unexpected.get_u());
assert!(res.get_v().get_value().unwrap() != unexpected.get_v());
}
}
}
@ -257,11 +257,11 @@ mod test {
0xbc, 0xe5,
]);
let expected_xs = [
let expected_us = [
"28161926966428986673895580777285905189725480206811328272001879986576840909576",
"39669831794597628158501766225645040955899576179071014703006420393381978263045",
];
let expected_ys = [
let expected_vs = [
"26869991781071974894722407757894142583682396277979904369818887810555917099932",
"2112827187110048608327330788910224944044097981650120385961435904443901436107",
];
@ -291,12 +291,12 @@ mod test {
assert!(cs.is_satisfied());
assert_eq!(
res.get_x().get_value().unwrap(),
bls12_381::Scalar::from_str(expected_xs[length - 300]).unwrap()
res.get_u().get_value().unwrap(),
bls12_381::Scalar::from_str(expected_us[length - 300]).unwrap()
);
assert_eq!(
res.get_y().get_value().unwrap(),
bls12_381::Scalar::from_str(expected_ys[length - 300]).unwrap()
res.get_v().get_value().unwrap(),
bls12_381::Scalar::from_str(expected_vs[length - 300]).unwrap()
);
}
}

View File

@ -287,7 +287,7 @@ impl Circuit<bls12_381::Scalar> for Spend {
// This is an injective encoding, as cur is a
// point in the prime order subgroup.
let mut cur = cm.get_x().clone();
let mut cur = cm.get_u().clone();
// Ascend the merkle tree authentication path
for (i, e) in self.auth_path.into_iter().enumerate() {
@ -309,7 +309,7 @@ impl Circuit<bls12_381::Scalar> for Spend {
num::AllocatedNum::alloc(cs.namespace(|| "path element"), || Ok(e.get()?.0))?;
// Swap the two if the current subtree is on the right
let (xl, xr) = num::AllocatedNum::conditionally_reverse(
let (ul, ur) = num::AllocatedNum::conditionally_reverse(
cs.namespace(|| "conditional reversal of preimage"),
&cur,
&path_element,
@ -321,8 +321,8 @@ impl Circuit<bls12_381::Scalar> for Spend {
// they will be unable to find an authentication path in the
// tree with high probability.
let mut preimage = vec![];
preimage.extend(xl.to_bits_le(cs.namespace(|| "xl into bits"))?);
preimage.extend(xr.to_bits_le(cs.namespace(|| "xr into bits"))?);
preimage.extend(ul.to_bits_le(cs.namespace(|| "ul into bits"))?);
preimage.extend(ur.to_bits_le(cs.namespace(|| "ur into bits"))?);
// Compute the new subtree value
cur = pedersen_hash::pedersen_hash(
@ -330,7 +330,7 @@ impl Circuit<bls12_381::Scalar> for Spend {
pedersen_hash::Personalization::MerkleTree(i),
&preimage,
)?
.get_x()
.get_u()
.clone(); // Injective encoding
}
@ -449,21 +449,21 @@ impl Circuit<bls12_381::Scalar> for Output {
.as_ref()
.map(|e| jubjub::ExtendedPoint::from(*e.pk_d()).to_affine());
// Witness the y-coordinate, encoded as little
// Witness the v-coordinate, encoded as little
// endian bits (to match the representation)
let y_contents = boolean::field_into_boolean_vec_le(
cs.namespace(|| "pk_d bits of y"),
let v_contents = boolean::field_into_boolean_vec_le(
cs.namespace(|| "pk_d bits of v"),
pk_d.map(|e| e.get_v()),
)?;
// Witness the sign bit
let sign_bit = boolean::Boolean::from(boolean::AllocatedBit::alloc(
cs.namespace(|| "pk_d bit of x"),
cs.namespace(|| "pk_d bit of u"),
pk_d.map(|e| e.get_u().is_odd()),
)?);
// Extend the note with pk_d representation
note_contents.extend(y_contents);
note_contents.extend(v_contents);
note_contents.push(sign_bit);
}
@ -499,11 +499,11 @@ impl Circuit<bls12_381::Scalar> for Output {
cm = cm.add(cs.namespace(|| "randomization of note commitment"), &rcm)?;
}
// Only the x-coordinate of the output is revealed,
// Only the u-coordinate of the output is revealed,
// since we know it is prime order, and we know that
// the x-coordinate is an injective encoding for
// prime-order elements.
cm.get_x().inputize(cs.namespace(|| "commitment"))?;
cm.get_u().inputize(cs.namespace(|| "commitment"))?;
Ok(())
}
@ -636,18 +636,18 @@ fn test_input_circuit_with_bls12_381() {
"d37c738e83df5d9b0bb6495ac96abf21bcb2697477e2c15c2c7916ff7a3b6a89"
);
assert_eq!(cs.get("randomization of note commitment/x3/num"), cmu);
assert_eq!(cs.get("randomization of note commitment/u3/num"), cmu);
assert_eq!(cs.num_inputs(), 8);
assert_eq!(cs.get_input(0, "ONE"), bls12_381::Scalar::one());
assert_eq!(cs.get_input(1, "rk/x/input variable"), rk.get_u());
assert_eq!(cs.get_input(2, "rk/y/input variable"), rk.get_v());
assert_eq!(cs.get_input(1, "rk/u/input variable"), rk.get_u());
assert_eq!(cs.get_input(2, "rk/v/input variable"), rk.get_v());
assert_eq!(
cs.get_input(3, "value commitment/commitment point/x/input variable"),
cs.get_input(3, "value commitment/commitment point/u/input variable"),
expected_value_commitment.get_u()
);
assert_eq!(
cs.get_input(4, "value commitment/commitment point/y/input variable"),
cs.get_input(4, "value commitment/commitment point/v/input variable"),
expected_value_commitment.get_v()
);
assert_eq!(cs.get_input(5, "anchor/input variable"), cur);
@ -676,7 +676,7 @@ fn test_input_circuit_with_bls12_381_external_test_vectors() {
let tree_depth = 32;
let expected_commitment_xs = vec![
let expected_commitment_us = vec![
"43821661663052659750276289184181083197337192946256245809816728673021647664276",
"7220807656052227578299730541645543434083158611414003423211850718229633594616",
"13239753550660714843257636471668037031928211668773449453628093339627668081697",
@ -689,7 +689,7 @@ fn test_input_circuit_with_bls12_381_external_test_vectors() {
"18269767207277008186871145355531741929166733260352590789136389380124992250945",
];
let expected_commitment_ys = vec![
let expected_commitment_vs = vec![
"27630722367128086497290371604583225252915685718989450292520883698391703910",
"23310648738313092772044712773481584369462075017189681529702825235349449805260",
"25709635353183537915646348052945798827495141780341329896098121888376871589480",
@ -745,11 +745,11 @@ fn test_input_circuit_with_bls12_381_external_test_vectors() {
jubjub::ExtendedPoint::from(value_commitment.commitment()).to_affine();
assert_eq!(
expected_value_commitment.get_u(),
bls12_381::Scalar::from_str(&expected_commitment_xs[i as usize]).unwrap()
bls12_381::Scalar::from_str(&expected_commitment_us[i as usize]).unwrap()
);
assert_eq!(
expected_value_commitment.get_v(),
bls12_381::Scalar::from_str(&expected_commitment_ys[i as usize]).unwrap()
bls12_381::Scalar::from_str(&expected_commitment_vs[i as usize]).unwrap()
);
let note = Note {
value: value_commitment.value,
@ -818,18 +818,18 @@ fn test_input_circuit_with_bls12_381_external_test_vectors() {
"d37c738e83df5d9b0bb6495ac96abf21bcb2697477e2c15c2c7916ff7a3b6a89"
);
assert_eq!(cs.get("randomization of note commitment/x3/num"), cmu);
assert_eq!(cs.get("randomization of note commitment/u3/num"), cmu);
assert_eq!(cs.num_inputs(), 8);
assert_eq!(cs.get_input(0, "ONE"), bls12_381::Scalar::one());
assert_eq!(cs.get_input(1, "rk/x/input variable"), rk.get_u());
assert_eq!(cs.get_input(2, "rk/y/input variable"), rk.get_v());
assert_eq!(cs.get_input(1, "rk/u/input variable"), rk.get_u());
assert_eq!(cs.get_input(2, "rk/v/input variable"), rk.get_v());
assert_eq!(
cs.get_input(3, "value commitment/commitment point/x/input variable"),
cs.get_input(3, "value commitment/commitment point/u/input variable"),
expected_value_commitment.get_u()
);
assert_eq!(
cs.get_input(4, "value commitment/commitment point/y/input variable"),
cs.get_input(4, "value commitment/commitment point/v/input variable"),
expected_value_commitment.get_v()
);
assert_eq!(cs.get_input(5, "anchor/input variable"), cur);
@ -924,19 +924,19 @@ fn test_output_circuit_with_bls12_381() {
assert_eq!(cs.num_inputs(), 6);
assert_eq!(cs.get_input(0, "ONE"), bls12_381::Scalar::one());
assert_eq!(
cs.get_input(1, "value commitment/commitment point/x/input variable"),
cs.get_input(1, "value commitment/commitment point/u/input variable"),
expected_value_commitment.get_u()
);
assert_eq!(
cs.get_input(2, "value commitment/commitment point/y/input variable"),
cs.get_input(2, "value commitment/commitment point/v/input variable"),
expected_value_commitment.get_v()
);
assert_eq!(
cs.get_input(3, "epk/x/input variable"),
cs.get_input(3, "epk/u/input variable"),
expected_epk.get_u()
);
assert_eq!(
cs.get_input(4, "epk/y/input variable"),
cs.get_input(4, "epk/v/input variable"),
expected_epk.get_v()
);
assert_eq!(cs.get_input(5, "commitment/input variable"), expected_cmu);

View File

@ -115,15 +115,15 @@ impl SaplingProvingContext {
let mut public_input = [bls12_381::Scalar::zero(); 7];
{
let affine = rk.0.to_affine();
let (x, y) = (affine.get_u(), affine.get_v());
public_input[0] = x;
public_input[1] = y;
let (u, v) = (affine.get_u(), affine.get_v());
public_input[0] = u;
public_input[1] = v;
}
{
let affine = jubjub::ExtendedPoint::from(value_commitment.commitment()).to_affine();
let (x, y) = (affine.get_u(), affine.get_v());
public_input[2] = x;
public_input[3] = y;
let (u, v) = (affine.get_u(), affine.get_v());
public_input[2] = u;
public_input[3] = v;
}
public_input[4] = anchor;

View File

@ -63,15 +63,15 @@ impl SaplingVerificationContext {
let mut public_input = [bls12_381::Scalar::zero(); 7];
{
let affine = rk.0.to_affine();
let (x, y) = (affine.get_u(), affine.get_v());
public_input[0] = x;
public_input[1] = y;
let (u, v) = (affine.get_u(), affine.get_v());
public_input[0] = u;
public_input[1] = v;
}
{
let affine = cv.to_affine();
let (x, y) = (affine.get_u(), affine.get_v());
public_input[2] = x;
public_input[3] = y;
let (u, v) = (affine.get_u(), affine.get_v());
public_input[2] = u;
public_input[3] = v;
}
public_input[4] = anchor;
@ -111,15 +111,15 @@ impl SaplingVerificationContext {
let mut public_input = [bls12_381::Scalar::zero(); 5];
{
let affine = cv.to_affine();
let (x, y) = (affine.get_u(), affine.get_v());
public_input[0] = x;
public_input[1] = y;
let (u, v) = (affine.get_u(), affine.get_v());
public_input[0] = u;
public_input[1] = v;
}
{
let affine = epk.to_affine();
let (x, y) = (affine.get_u(), affine.get_v());
public_input[2] = x;
public_input[3] = y;
let (u, v) = (affine.get_u(), affine.get_v());
public_input[2] = u;
public_input[3] = v;
}
public_input[4] = cmu;