use std::convert::{TryFrom, TryInto}; use super::{ private::{SealedContainer, SealedItem}, Container, Encoding, ParseError, Typecode, }; /// The set of known FVKs for Unified FVKs. #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub enum Fvk { /// The raw encoding of an Orchard Full Viewing Key. /// /// `(ak, nk, rivk)` each 32 bytes. Orchard([u8; 96]), /// Data contained within the Sapling component of a Unified Full Viewing Key /// /// `(ak, nk, ovk, dk)` each 32 bytes. Sapling([u8; 128]), /// A pruned version of the extended public key for the BIP 44 account corresponding to the /// transparent address subtree from which transparent addresses are derived. This /// includes just the chain code (32 bytes) and the compressed public key (33 bytes), and excludes /// the depth of in the derivation tree, the parent key fingerprint, and the child key /// number (which would reveal the wallet account number for which this UFVK was generated). /// /// Transparent addresses don't have "viewing keys" - the addresses themselves serve /// that purpose. However, we want the ability to derive diversified Unified Addresses /// from Unified Viewing Keys, and to not break the unlinkability property when they /// include transparent receivers. To achieve this, we treat the last hardened node in /// the BIP 44 derivation path as the "transparent viewing key"; all addresses derived /// from this node use non-hardened derivation, and can thus be derived just from this /// pruned extended public key. P2pkh([u8; 65]), Unknown { typecode: u32, data: Vec, }, } impl TryFrom<(u32, &[u8])> for Fvk { type Error = ParseError; fn try_from((typecode, data): (u32, &[u8])) -> Result { let data = data.to_vec(); match typecode.try_into()? { Typecode::P2pkh => data.try_into().map(Fvk::P2pkh), Typecode::P2sh => Err(data), Typecode::Sapling => data.try_into().map(Fvk::Sapling), Typecode::Orchard => data.try_into().map(Fvk::Orchard), Typecode::Unknown(_) => Ok(Fvk::Unknown { typecode, data }), } .map_err(|e| { ParseError::InvalidEncoding(format!("Invalid fvk for typecode {}: {:?}", typecode, e)) }) } } impl SealedItem for Fvk { fn typecode(&self) -> Typecode { match self { Fvk::P2pkh(_) => Typecode::P2pkh, Fvk::Sapling(_) => Typecode::Sapling, Fvk::Orchard(_) => Typecode::Orchard, Fvk::Unknown { typecode, .. } => Typecode::Unknown(*typecode), } } fn data(&self) -> &[u8] { match self { Fvk::P2pkh(data) => data, Fvk::Sapling(data) => data, Fvk::Orchard(data) => data, Fvk::Unknown { data, .. } => data, } } } /// A Unified Full Viewing Key. /// /// # Examples /// /// ``` /// # use std::error::Error; /// use zcash_address::unified::{self, Container, Encoding}; /// /// # fn main() -> Result<(), Box> { /// # let ufvk_from_user = || "uview1cgrqnry478ckvpr0f580t6fsahp0a5mj2e9xl7hv2d2jd4ldzy449mwwk2l9yeuts85wjls6hjtghdsy5vhhvmjdw3jxl3cxhrg3vs296a3czazrycrr5cywjhwc5c3ztfyjdhmz0exvzzeyejamyp0cr9z8f9wj0953fzht0m4lenk94t70ruwgjxag2tvp63wn9ftzhtkh20gyre3w5s24f6wlgqxnjh40gd2lxe75sf3z8h5y2x0atpxcyf9t3em4h0evvsftluruqne6w4sm066sw0qe5y8qg423grple5fftxrqyy7xmqmatv7nzd7tcjadu8f7mqz4l83jsyxy4t8pkayytyk7nrp467ds85knekdkvnd7hqkfer8mnqd7pv"; /// let example_ufvk: &str = ufvk_from_user(); /// /// let (network, ufvk) = unified::Ufvk::decode(example_ufvk)?; /// /// // We can obtain the pool-specific Full Viewing Keys for the UFVK in preference /// // order (the order in which wallets should prefer to use their corresponding /// // address receivers): /// let fvks: Vec = ufvk.items(); /// /// // And we can create the UFVK from a list of FVKs: /// let new_ufvk = unified::Ufvk::try_from_items(fvks)?; /// assert_eq!(new_ufvk, ufvk); /// # Ok(()) /// # } /// ``` #[derive(Clone, Debug, PartialEq, Eq, Hash)] pub struct Ufvk(pub(crate) Vec); impl Container for Ufvk { type Item = Fvk; /// Returns the FVKs contained within this UFVK, in the order they were /// parsed from the string encoding. /// /// This API is for advanced usage; in most cases you should use `Ufvk::receivers`. fn items_as_parsed(&self) -> &[Fvk] { &self.0 } } impl Encoding for Ufvk {} impl SealedContainer for Ufvk { /// The HRP for a Bech32m-encoded mainnet Unified FVK. /// /// Defined in [ZIP 316][zip-0316]. /// /// [zip-0316]: https://zips.z.cash/zip-0316 const MAINNET: &'static str = "uview"; /// The HRP for a Bech32m-encoded testnet Unified FVK. /// /// Defined in [ZIP 316][zip-0316]. /// /// [zip-0316]: https://zips.z.cash/zip-0316 const TESTNET: &'static str = "uviewtest"; /// The HRP for a Bech32m-encoded regtest Unified FVK. const REGTEST: &'static str = "uviewregtest"; fn from_inner(fvks: Vec) -> Self { Self(fvks) } } #[cfg(test)] mod tests { use assert_matches::assert_matches; use proptest::{array::uniform1, array::uniform32, prelude::*, sample::select}; use super::{Fvk, ParseError, Typecode, Ufvk}; use crate::{ kind::unified::{ private::{SealedContainer, SealedItem}, Container, Encoding, }, Network, }; prop_compose! { fn uniform128()(a in uniform96(), b in uniform32(0u8..)) -> [u8; 128] { let mut fvk = [0; 128]; fvk[..96].copy_from_slice(&a); fvk[96..].copy_from_slice(&b); fvk } } prop_compose! { fn uniform96()(a in uniform32(0u8..), b in uniform32(0u8..), c in uniform32(0u8..)) -> [u8; 96] { let mut fvk = [0; 96]; fvk[..32].copy_from_slice(&a); fvk[32..64].copy_from_slice(&b); fvk[64..].copy_from_slice(&c); fvk } } prop_compose! { fn uniform65()(a in uniform32(0u8..), b in uniform32(0u8..), c in uniform1(0u8..)) -> [u8; 65] { let mut fvk = [0; 65]; fvk[..32].copy_from_slice(&a); fvk[32..64].copy_from_slice(&b); fvk[64..].copy_from_slice(&c); fvk } } pub fn arb_orchard_fvk() -> impl Strategy { uniform96().prop_map(Fvk::Orchard) } pub fn arb_sapling_fvk() -> impl Strategy { uniform128().prop_map(Fvk::Sapling) } fn arb_shielded_fvk() -> impl Strategy> { prop_oneof![ vec![arb_sapling_fvk().boxed()], vec![arb_orchard_fvk().boxed()], vec![arb_sapling_fvk().boxed(), arb_orchard_fvk().boxed()], ] } fn arb_transparent_fvk() -> BoxedStrategy { uniform65().prop_map(Fvk::P2pkh).boxed() } prop_compose! { fn arb_unified_fvk()( shielded in arb_shielded_fvk(), transparent in prop::option::of(arb_transparent_fvk()), ) -> Ufvk { let mut items: Vec<_> = transparent.into_iter().chain(shielded).collect(); items.sort_unstable_by(Fvk::encoding_order); Ufvk(items) } } proptest! { #[test] fn ufvk_roundtrip( network in select(vec![Network::Main, Network::Test, Network::Regtest]), ufvk in arb_unified_fvk(), ) { let encoded = ufvk.encode(&network); let decoded = Ufvk::decode(&encoded); prop_assert_eq!(decoded, Ok((network, ufvk))); } } #[test] fn padding() { // The test cases below use `Ufvk(vec![Fvk::Orchard([1; 96])])` as base. // Invalid padding ([0xff; 16] instead of [b'u', 0x00, 0x00, 0x00...]) let invalid_padding = vec![ 0x6b, 0x32, 0x44, 0xf1, 0xb, 0x67, 0xe9, 0x8f, 0x6, 0x57, 0xe3, 0x5, 0x17, 0xa0, 0x7, 0x5c, 0xb0, 0xc9, 0x23, 0xcc, 0xb7, 0x54, 0xac, 0x55, 0x6a, 0x65, 0x99, 0x95, 0x32, 0x97, 0xd5, 0x34, 0xa7, 0xc8, 0x6f, 0xc, 0xd7, 0x3b, 0xe0, 0x88, 0x19, 0xf3, 0x3e, 0x26, 0x19, 0xd6, 0x5f, 0x9a, 0x62, 0xc9, 0x6f, 0xad, 0x3b, 0xe5, 0xdd, 0xf1, 0xff, 0x5b, 0x4a, 0x13, 0x61, 0xc0, 0xd5, 0xa5, 0x87, 0xc5, 0x69, 0x48, 0xdb, 0x7e, 0xc6, 0x4e, 0xb0, 0x55, 0x41, 0x3f, 0xc0, 0x53, 0xbb, 0x79, 0x8b, 0x24, 0xa0, 0xfa, 0xd1, 0x6e, 0xea, 0x9, 0xea, 0xb3, 0xaf, 0x0, 0x7d, 0x86, 0x47, 0xdb, 0x8b, 0x38, 0xdd, 0x7b, 0xdf, 0x63, 0xe7, 0xef, 0x65, 0x6b, 0x18, 0x23, 0xf7, 0x3e, 0x35, 0x7c, 0xf3, 0xc4, ]; assert_eq!( Ufvk::parse_internal(Ufvk::MAINNET, &invalid_padding[..]), Err(ParseError::InvalidEncoding( "Invalid padding bytes".to_owned() )) ); // Short padding (padded to 15 bytes instead of 16) let truncated_padding = vec![ 0xdf, 0xea, 0x84, 0x55, 0xc3, 0x4a, 0x7c, 0x6e, 0x9f, 0x83, 0x3, 0x21, 0x14, 0xb0, 0xcf, 0xb0, 0x60, 0x84, 0x75, 0x3a, 0xdc, 0xb9, 0x93, 0x16, 0xc0, 0x8f, 0x28, 0x5f, 0x61, 0x5e, 0xf0, 0x8e, 0x44, 0xae, 0xa6, 0x74, 0xc5, 0x64, 0xad, 0xfa, 0xdc, 0x7d, 0x64, 0x2a, 0x9, 0x47, 0x16, 0xf6, 0x5d, 0x8e, 0x46, 0xc4, 0xf0, 0x54, 0xfa, 0x5, 0x28, 0x1e, 0x3d, 0x7d, 0x37, 0xa5, 0x9f, 0x8b, 0x62, 0x78, 0xf6, 0x50, 0x18, 0x63, 0xe4, 0x51, 0x14, 0xae, 0x89, 0x41, 0x86, 0xd4, 0x9f, 0x10, 0x4b, 0x66, 0x2b, 0xf9, 0x46, 0x9c, 0xeb, 0xe8, 0x90, 0x8, 0xad, 0xd9, 0x6c, 0x6a, 0xf1, 0xed, 0xeb, 0x72, 0x44, 0x43, 0x8e, 0xc0, 0x3e, 0x9f, 0xf4, 0xf1, 0x80, 0x32, 0xcf, 0x2f, 0x7e, 0x7f, 0x91, ]; assert_eq!( Ufvk::parse_internal(Ufvk::MAINNET, &truncated_padding[..]), Err(ParseError::InvalidEncoding( "Invalid padding bytes".to_owned() )) ); } #[test] fn truncated() { // The test cases below start from an encoding of // `Ufvk(vec![Fvk::Orchard([1; 96]), Fvk::Sapling([2; 96])])` // with the fvk data truncated, but valid padding. // - Missing the last data byte of the Sapling fvk. let truncated_sapling_data = vec![ 0x43, 0xbf, 0x17, 0xa2, 0xb7, 0x85, 0xe7, 0x8e, 0xa4, 0x6d, 0x36, 0xa5, 0xf1, 0x1d, 0x74, 0xd1, 0x40, 0x6e, 0xed, 0xbd, 0x6b, 0x51, 0x6a, 0x36, 0x9c, 0xb3, 0x28, 0xd, 0x90, 0xa1, 0x1e, 0x3a, 0x67, 0xa2, 0x15, 0xc5, 0xfb, 0x82, 0x96, 0xf4, 0x35, 0x57, 0x71, 0x5d, 0xbb, 0xac, 0x30, 0x1d, 0x1, 0x6d, 0xdd, 0x2e, 0xf, 0x8, 0x4b, 0xcf, 0x5, 0xfe, 0x86, 0xd7, 0xa0, 0x9d, 0x94, 0x9f, 0x16, 0x5e, 0xa0, 0x3, 0x58, 0x81, 0x71, 0x40, 0xe4, 0xb8, 0xfc, 0x64, 0x75, 0x80, 0x46, 0x4f, 0x51, 0x2d, 0xb2, 0x51, 0xf, 0x22, 0x49, 0x53, 0x95, 0xbd, 0x7b, 0x66, 0xd9, 0x17, 0xda, 0x15, 0x62, 0xe0, 0xc6, 0xf8, 0x5c, 0xdf, 0x75, 0x6d, 0x7, 0xb, 0xf7, 0xab, 0xfc, 0x20, 0x61, 0xd0, 0xf4, 0x79, 0xfa, 0x4, 0xd3, 0xac, 0x8b, 0xf, 0x3c, 0x30, 0x23, 0x32, 0x37, 0x51, 0xc5, 0xfc, 0x66, 0x7e, 0xe1, 0x9c, 0xa8, 0xec, 0x52, 0x57, 0x7e, 0xc0, 0x31, 0x83, 0x1c, 0x31, 0x5, 0x1b, 0xc3, 0x70, 0xd3, 0x44, 0x74, 0xd2, 0x8a, 0xda, 0x32, 0x4, 0x93, 0xd2, 0xbf, 0xb4, 0xbb, 0xa, 0x9e, 0x8c, 0xe9, 0x8f, 0xe7, 0x8a, 0x95, 0xc8, 0x21, 0xfa, 0x12, 0x41, 0x2e, 0x69, 0x54, 0xf0, 0x7a, 0x9e, 0x20, 0x94, 0xa3, 0xaa, 0xc3, 0x50, 0x43, 0xc5, 0xe2, 0x32, 0x8b, 0x2e, 0x4f, 0xbb, 0xb4, 0xc0, 0x7f, 0x47, 0x35, 0xab, 0x89, 0x8c, 0x7a, 0xbf, 0x7b, 0x9a, 0xdd, 0xee, 0x18, 0x2c, 0x2d, 0xc2, 0xfc, ]; assert_matches!( Ufvk::parse_internal(Ufvk::MAINNET, &truncated_sapling_data[..]), Err(ParseError::InvalidEncoding(_)) ); // - Truncated after the typecode of the Sapling fvk. let truncated_after_sapling_typecode = vec![ 0xac, 0x26, 0x5b, 0x19, 0x8f, 0x88, 0xb0, 0x7, 0xb3, 0x0, 0x91, 0x19, 0x52, 0xe1, 0x73, 0x48, 0xff, 0x66, 0x7a, 0xef, 0xcf, 0x57, 0x9c, 0x65, 0xe4, 0x6a, 0x7a, 0x1d, 0x19, 0x75, 0x6b, 0x43, 0xdd, 0xcf, 0xb9, 0x9a, 0xf3, 0x7a, 0xf8, 0xb, 0x23, 0x96, 0x64, 0x8c, 0x57, 0x56, 0x67, 0x9, 0x40, 0x35, 0xcb, 0xb1, 0xa4, 0x91, 0x4f, 0xdc, 0x39, 0x0, 0x98, 0x56, 0xa8, 0xf7, 0x25, 0x1a, 0xc8, 0xbc, 0xd7, 0xb3, 0xb0, 0xfa, 0x78, 0x6, 0xe8, 0x50, 0xfe, 0x92, 0xec, 0x5b, 0x1f, 0x74, 0xb9, 0xcf, 0x1f, 0x2e, 0x3b, 0x41, 0x54, 0xd1, 0x9e, 0xec, 0x8b, 0xef, 0x35, 0xb8, 0x44, 0xdd, 0xab, 0x9a, 0x8d, ]; assert_matches!( Ufvk::parse_internal(Ufvk::MAINNET, &truncated_after_sapling_typecode[..]), Err(ParseError::InvalidEncoding(_)) ); } #[test] fn duplicate_typecode() { // Construct and serialize an invalid Ufvk. This must be done using private // methods, as the public API does not permit construction of such invalid values. let ufvk = Ufvk(vec![Fvk::Sapling([1; 128]), Fvk::Sapling([2; 128])]); let encoded = ufvk.to_jumbled_bytes(Ufvk::MAINNET); assert_eq!( Ufvk::parse_internal(Ufvk::MAINNET, &encoded[..]), Err(ParseError::DuplicateTypecode(Typecode::Sapling)) ); } #[test] fn only_transparent() { // Raw encoding of `Ufvk(vec![Fvk::P2pkh([0; 65])])`. let encoded = vec![ 0xc4, 0x70, 0xc8, 0x7a, 0xcc, 0xe6, 0x6b, 0x1a, 0x62, 0xc7, 0xcd, 0x5f, 0x76, 0xd8, 0xcc, 0x9c, 0x50, 0xbd, 0xce, 0x85, 0x80, 0xd7, 0x78, 0x25, 0x3e, 0x47, 0x9, 0x57, 0x7d, 0x6a, 0xdb, 0x10, 0xb4, 0x11, 0x80, 0x13, 0x4c, 0x83, 0x76, 0xb4, 0x6b, 0xbd, 0xef, 0x83, 0x5c, 0xa7, 0x68, 0xe6, 0xba, 0x41, 0x12, 0xbd, 0x43, 0x24, 0xf5, 0xaa, 0xa0, 0xf5, 0xf8, 0xe1, 0x59, 0xa0, 0x95, 0x85, 0x86, 0xf1, 0x9e, 0xcf, 0x8f, 0x94, 0xf4, 0xf5, 0x16, 0xef, 0x5c, 0xe0, 0x26, 0xbc, 0x23, 0x73, 0x76, 0x3f, 0x4b, ]; assert_eq!( Ufvk::parse_internal(Ufvk::MAINNET, &encoded[..]), Err(ParseError::OnlyTransparent) ); } #[test] fn fvks_are_sorted() { // Construct a UFVK with fvks in an unsorted order. let ufvk = Ufvk(vec![ Fvk::P2pkh([0; 65]), Fvk::Orchard([0; 96]), Fvk::Unknown { typecode: 0xff, data: vec![], }, Fvk::Sapling([0; 128]), ]); // `Ufvk::items` sorts the fvks in priority order. assert_eq!( ufvk.items(), vec![ Fvk::Orchard([0; 96]), Fvk::Sapling([0; 128]), Fvk::P2pkh([0; 65]), Fvk::Unknown { typecode: 0xff, data: vec![], }, ] ) } }