librustzcash/bls12_381/src/pairings.rs

881 lines
25 KiB
Rust

use crate::fp::Fp;
use crate::fp12::Fp12;
use crate::fp2::Fp2;
use crate::fp6::Fp6;
use crate::{G1Affine, G1Projective, G2Affine, G2Projective, Scalar, BLS_X, BLS_X_IS_NEGATIVE};
use core::borrow::Borrow;
use core::fmt;
use core::iter::Sum;
use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use group::Group;
use pairing::{Engine, MultiMillerLoop, PairingCurveAffine};
use rand_core::RngCore;
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// Represents results of a Miller loop, one of the most expensive portions
/// of the pairing function. `MillerLoopResult`s cannot be compared with each
/// other until `.final_exponentiation()` is called, which is also expensive.
#[derive(Copy, Clone, Debug)]
pub struct MillerLoopResult(pub(crate) Fp12);
impl ConditionallySelectable for MillerLoopResult {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
MillerLoopResult(Fp12::conditional_select(&a.0, &b.0, choice))
}
}
impl MillerLoopResult {
/// This performs a "final exponentiation" routine to convert the result
/// of a Miller loop into an element of `Gt` with help of efficient squaring
/// operation in the so-called `cyclotomic subgroup` of `Fq6` so that
/// it can be compared with other elements of `Gt`.
pub fn final_exponentiation(&self) -> Gt {
#[must_use]
fn fp4_square(a: Fp2, b: Fp2) -> (Fp2, Fp2) {
let t0 = a.square();
let t1 = b.square();
let mut t2 = t1.mul_by_nonresidue();
let c0 = t2 + t0;
t2 = a + b;
t2 = t2.square();
t2 -= t0;
let c1 = t2 - t1;
(c0, c1)
}
// Adaptation of Algorithm 5.5.4, Guide to Pairing-Based Cryptography
// Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions
// https://eprint.iacr.org/2009/565.pdf
#[must_use]
fn cyclotomic_square(f: Fp12) -> Fp12 {
let mut z0 = f.c0.c0;
let mut z4 = f.c0.c1;
let mut z3 = f.c0.c2;
let mut z2 = f.c1.c0;
let mut z1 = f.c1.c1;
let mut z5 = f.c1.c2;
let (t0, t1) = fp4_square(z0, z1);
// For A
z0 = t0 - z0;
z0 = z0 + z0 + t0;
z1 = t1 + z1;
z1 = z1 + z1 + t1;
let (mut t0, t1) = fp4_square(z2, z3);
let (t2, t3) = fp4_square(z4, z5);
// For C
z4 = t0 - z4;
z4 = z4 + z4 + t0;
z5 = t1 + z5;
z5 = z5 + z5 + t1;
// For B
t0 = t3.mul_by_nonresidue();
z2 = t0 + z2;
z2 = z2 + z2 + t0;
z3 = t2 - z3;
z3 = z3 + z3 + t2;
Fp12 {
c0: Fp6 {
c0: z0,
c1: z4,
c2: z3,
},
c1: Fp6 {
c0: z2,
c1: z1,
c2: z5,
},
}
}
#[must_use]
fn cycolotomic_exp(f: Fp12) -> Fp12 {
let x = BLS_X;
let mut tmp = Fp12::one();
let mut found_one = false;
for i in (0..64).rev().map(|b| ((x >> b) & 1) == 1) {
if found_one {
tmp = cyclotomic_square(tmp)
} else {
found_one = i;
}
if i {
tmp *= f;
}
}
tmp.conjugate()
}
let mut f = self.0;
let mut t0 = f
.frobenius_map()
.frobenius_map()
.frobenius_map()
.frobenius_map()
.frobenius_map()
.frobenius_map();
Gt(f.invert()
.map(|mut t1| {
let mut t2 = t0 * t1;
t1 = t2;
t2 = t2.frobenius_map().frobenius_map();
t2 *= t1;
t1 = cyclotomic_square(t2).conjugate();
let mut t3 = cycolotomic_exp(t2);
let mut t4 = cyclotomic_square(t3);
let mut t5 = t1 * t3;
t1 = cycolotomic_exp(t5);
t0 = cycolotomic_exp(t1);
let mut t6 = cycolotomic_exp(t0);
t6 *= t4;
t4 = cycolotomic_exp(t6);
t5 = t5.conjugate();
t4 *= t5 * t2;
t5 = t2.conjugate();
t1 *= t2;
t1 = t1.frobenius_map().frobenius_map().frobenius_map();
t6 *= t5;
t6 = t6.frobenius_map();
t3 *= t0;
t3 = t3.frobenius_map().frobenius_map();
t3 *= t1;
t3 *= t6;
f = t3 * t4;
f
})
// We unwrap() because `MillerLoopResult` can only be constructed
// by a function within this crate, and we uphold the invariant
// that the enclosed value is nonzero.
.unwrap())
}
}
impl<'a, 'b> Add<&'b MillerLoopResult> for &'a MillerLoopResult {
type Output = MillerLoopResult;
#[inline]
fn add(self, rhs: &'b MillerLoopResult) -> MillerLoopResult {
MillerLoopResult(self.0 * rhs.0)
}
}
impl_add_binop_specify_output!(MillerLoopResult, MillerLoopResult, MillerLoopResult);
/// This is an element of $\mathbb{G}_T$, the target group of the pairing function. As with
/// $\mathbb{G}_1$ and $\mathbb{G}_2$ this group has order $q$.
///
/// Typically, $\mathbb{G}_T$ is written multiplicatively but we will write it additively to
/// keep code and abstractions consistent.
#[derive(Copy, Clone, Debug, Default)]
pub struct Gt(pub(crate) Fp12);
impl fmt::Display for Gt {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self)
}
}
impl ConstantTimeEq for Gt {
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl ConditionallySelectable for Gt {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Gt(Fp12::conditional_select(&a.0, &b.0, choice))
}
}
impl Eq for Gt {}
impl PartialEq for Gt {
#[inline]
fn eq(&self, other: &Self) -> bool {
bool::from(self.ct_eq(other))
}
}
impl Gt {
/// Returns the group identity, which is $1$.
pub fn identity() -> Gt {
Gt(Fp12::one())
}
/// Doubles this group element.
pub fn double(&self) -> Gt {
Gt(self.0.square())
}
}
impl<'a> Neg for &'a Gt {
type Output = Gt;
#[inline]
fn neg(self) -> Gt {
// The element is unitary, so we just conjugate.
Gt(self.0.conjugate())
}
}
impl Neg for Gt {
type Output = Gt;
#[inline]
fn neg(self) -> Gt {
-&self
}
}
impl<'a, 'b> Add<&'b Gt> for &'a Gt {
type Output = Gt;
#[inline]
fn add(self, rhs: &'b Gt) -> Gt {
Gt(self.0 * rhs.0)
}
}
impl<'a, 'b> Sub<&'b Gt> for &'a Gt {
type Output = Gt;
#[inline]
fn sub(self, rhs: &'b Gt) -> Gt {
self + (-rhs)
}
}
impl<'a, 'b> Mul<&'b Scalar> for &'a Gt {
type Output = Gt;
fn mul(self, other: &'b Scalar) -> Self::Output {
let mut acc = Gt::identity();
// This is a simple double-and-add implementation of group element
// multiplication, moving from most significant to least
// significant bit of the scalar.
//
// We skip the leading bit because it's always unset for Fq
// elements.
for bit in other
.to_bytes()
.iter()
.rev()
.flat_map(|byte| (0..8).rev().map(move |i| Choice::from((byte >> i) & 1u8)))
.skip(1)
{
acc = acc.double();
acc = Gt::conditional_select(&acc, &(acc + self), bit);
}
acc
}
}
impl_binops_additive!(Gt, Gt);
impl_binops_multiplicative!(Gt, Scalar);
impl<T> Sum<T> for Gt
where
T: Borrow<Gt>,
{
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = T>,
{
iter.fold(Self::identity(), |acc, item| acc + item.borrow())
}
}
impl Group for Gt {
type Scalar = Scalar;
fn random<R: RngCore + ?Sized>(rng: &mut R) -> Self {
loop {
let inner = Fp12::random(rng);
// Not all elements of Fp12 are elements of the prime-order multiplicative
// subgroup. We run the random element through final_exponentiation to obtain
// a valid element, which requires that it is non-zero.
if !bool::from(inner.is_zero()) {
return MillerLoopResult(inner).final_exponentiation();
}
}
}
fn identity() -> Self {
Self::identity()
}
fn generator() -> Self {
// pairing(&G1Affine::generator(), &G2Affine::generator())
Gt(Fp12 {
c0: Fp6 {
c0: Fp2 {
c0: Fp::from_raw_unchecked([
0x1972_e433_a01f_85c5,
0x97d3_2b76_fd77_2538,
0xc8ce_546f_c96b_cdf9,
0xcef6_3e73_66d4_0614,
0xa611_3427_8184_3780,
0x13f3_448a_3fc6_d825,
]),
c1: Fp::from_raw_unchecked([
0xd263_31b0_2e9d_6995,
0x9d68_a482_f779_7e7d,
0x9c9b_2924_8d39_ea92,
0xf480_1ca2_e131_07aa,
0xa16c_0732_bdbc_b066,
0x083c_a4af_ba36_0478,
]),
},
c1: Fp2 {
c0: Fp::from_raw_unchecked([
0x59e2_61db_0916_b641,
0x2716_b6f4_b23e_960d,
0xc8e5_5b10_a0bd_9c45,
0x0bdb_0bd9_9c4d_eda8,
0x8cf8_9ebf_57fd_aac5,
0x12d6_b792_9e77_7a5e,
]),
c1: Fp::from_raw_unchecked([
0x5fc8_5188_b0e1_5f35,
0x34a0_6e3a_8f09_6365,
0xdb31_26a6_e02a_d62c,
0xfc6f_5aa9_7d9a_990b,
0xa12f_55f5_eb89_c210,
0x1723_703a_926f_8889,
]),
},
c2: Fp2 {
c0: Fp::from_raw_unchecked([
0x9358_8f29_7182_8778,
0x43f6_5b86_11ab_7585,
0x3183_aaf5_ec27_9fdf,
0xfa73_d7e1_8ac9_9df6,
0x64e1_76a6_a64c_99b0,
0x179f_a78c_5838_8f1f,
]),
c1: Fp::from_raw_unchecked([
0x672a_0a11_ca2a_ef12,
0x0d11_b9b5_2aa3_f16b,
0xa444_12d0_699d_056e,
0xc01d_0177_221a_5ba5,
0x66e0_cede_6c73_5529,
0x05f5_a71e_9fdd_c339,
]),
},
},
c1: Fp6 {
c0: Fp2 {
c0: Fp::from_raw_unchecked([
0xd30a_88a1_b062_c679,
0x5ac5_6a5d_35fc_8304,
0xd0c8_34a6_a81f_290d,
0xcd54_30c2_da37_07c7,
0xf0c2_7ff7_8050_0af0,
0x0924_5da6_e2d7_2eae,
]),
c1: Fp::from_raw_unchecked([
0x9f2e_0676_791b_5156,
0xe2d1_c823_4918_fe13,
0x4c9e_459f_3c56_1bf4,
0xa3e8_5e53_b9d3_e3c1,
0x820a_121e_21a7_0020,
0x15af_6183_41c5_9acc,
]),
},
c1: Fp2 {
c0: Fp::from_raw_unchecked([
0x7c95_658c_2499_3ab1,
0x73eb_3872_1ca8_86b9,
0x5256_d749_4774_34bc,
0x8ba4_1902_ea50_4a8b,
0x04a3_d3f8_0c86_ce6d,
0x18a6_4a87_fb68_6eaa,
]),
c1: Fp::from_raw_unchecked([
0xbb83_e71b_b920_cf26,
0x2a52_77ac_92a7_3945,
0xfc0e_e59f_94f0_46a0,
0x7158_cdf3_7860_58f7,
0x7cc1_061b_82f9_45f6,
0x03f8_47aa_9fdb_e567,
]),
},
c2: Fp2 {
c0: Fp::from_raw_unchecked([
0x8078_dba5_6134_e657,
0x1cd7_ec9a_4399_8a6e,
0xb1aa_599a_1a99_3766,
0xc9a0_f62f_0842_ee44,
0x8e15_9be3_b605_dffa,
0x0c86_ba0d_4af1_3fc2,
]),
c1: Fp::from_raw_unchecked([
0xe80f_f2a0_6a52_ffb1,
0x7694_ca48_721a_906c,
0x7583_183e_03b0_8514,
0xf567_afdd_40ce_e4e2,
0x9a6d_96d2_e526_a5fc,
0x197e_9f49_861f_2242,
]),
},
},
})
}
fn is_identity(&self) -> Choice {
self.ct_eq(&Self::identity())
}
#[must_use]
fn double(&self) -> Self {
self.double()
}
}
#[cfg(feature = "alloc")]
#[derive(Clone, Debug)]
/// This structure contains cached computations pertaining to a $\mathbb{G}_2$
/// element as part of the pairing function (specifically, the Miller loop) and
/// so should be computed whenever a $\mathbb{G}_2$ element is being used in
/// multiple pairings or is otherwise known in advance. This should be used in
/// conjunction with the [`multi_miller_loop`](crate::multi_miller_loop)
/// function provided by this crate.
///
/// Requires the `alloc` and `pairing` crate features to be enabled.
pub struct G2Prepared {
infinity: Choice,
coeffs: Vec<(Fp2, Fp2, Fp2)>,
}
#[cfg(feature = "alloc")]
impl From<G2Affine> for G2Prepared {
fn from(q: G2Affine) -> G2Prepared {
struct Adder {
cur: G2Projective,
base: G2Affine,
coeffs: Vec<(Fp2, Fp2, Fp2)>,
}
impl MillerLoopDriver for Adder {
type Output = ();
fn doubling_step(&mut self, _: Self::Output) -> Self::Output {
let coeffs = doubling_step(&mut self.cur);
self.coeffs.push(coeffs);
}
fn addition_step(&mut self, _: Self::Output) -> Self::Output {
let coeffs = addition_step(&mut self.cur, &self.base);
self.coeffs.push(coeffs);
}
fn square_output(_: Self::Output) -> Self::Output {}
fn conjugate(_: Self::Output) -> Self::Output {}
fn one() -> Self::Output {}
}
let is_identity = q.is_identity();
let q = G2Affine::conditional_select(&q, &G2Affine::generator(), is_identity);
let mut adder = Adder {
cur: G2Projective::from(q),
base: q,
coeffs: Vec::with_capacity(68),
};
miller_loop(&mut adder);
assert_eq!(adder.coeffs.len(), 68);
G2Prepared {
infinity: is_identity,
coeffs: adder.coeffs,
}
}
}
#[cfg(feature = "alloc")]
/// Computes $$\sum_{i=1}^n \textbf{ML}(a_i, b_i)$$ given a series of terms
/// $$(a_1, b_1), (a_2, b_2), ..., (a_n, b_n).$$
///
/// Requires the `alloc` and `pairing` crate features to be enabled.
pub fn multi_miller_loop(terms: &[(&G1Affine, &G2Prepared)]) -> MillerLoopResult {
struct Adder<'a, 'b, 'c> {
terms: &'c [(&'a G1Affine, &'b G2Prepared)],
index: usize,
}
impl<'a, 'b, 'c> MillerLoopDriver for Adder<'a, 'b, 'c> {
type Output = Fp12;
fn doubling_step(&mut self, mut f: Self::Output) -> Self::Output {
let index = self.index;
for term in self.terms {
let either_identity = term.0.is_identity() | term.1.infinity;
let new_f = ell(f, &term.1.coeffs[index], term.0);
f = Fp12::conditional_select(&new_f, &f, either_identity);
}
self.index += 1;
f
}
fn addition_step(&mut self, mut f: Self::Output) -> Self::Output {
let index = self.index;
for term in self.terms {
let either_identity = term.0.is_identity() | term.1.infinity;
let new_f = ell(f, &term.1.coeffs[index], term.0);
f = Fp12::conditional_select(&new_f, &f, either_identity);
}
self.index += 1;
f
}
fn square_output(f: Self::Output) -> Self::Output {
f.square()
}
fn conjugate(f: Self::Output) -> Self::Output {
f.conjugate()
}
fn one() -> Self::Output {
Fp12::one()
}
}
let mut adder = Adder { terms, index: 0 };
let tmp = miller_loop(&mut adder);
MillerLoopResult(tmp)
}
/// Invoke the pairing function without the use of precomputation and other optimizations.
pub fn pairing(p: &G1Affine, q: &G2Affine) -> Gt {
struct Adder {
cur: G2Projective,
base: G2Affine,
p: G1Affine,
}
impl MillerLoopDriver for Adder {
type Output = Fp12;
fn doubling_step(&mut self, f: Self::Output) -> Self::Output {
let coeffs = doubling_step(&mut self.cur);
ell(f, &coeffs, &self.p)
}
fn addition_step(&mut self, f: Self::Output) -> Self::Output {
let coeffs = addition_step(&mut self.cur, &self.base);
ell(f, &coeffs, &self.p)
}
fn square_output(f: Self::Output) -> Self::Output {
f.square()
}
fn conjugate(f: Self::Output) -> Self::Output {
f.conjugate()
}
fn one() -> Self::Output {
Fp12::one()
}
}
let either_identity = p.is_identity() | q.is_identity();
let p = G1Affine::conditional_select(&p, &G1Affine::generator(), either_identity);
let q = G2Affine::conditional_select(&q, &G2Affine::generator(), either_identity);
let mut adder = Adder {
cur: G2Projective::from(q),
base: q,
p,
};
let tmp = miller_loop(&mut adder);
let tmp = MillerLoopResult(Fp12::conditional_select(
&tmp,
&Fp12::one(),
either_identity,
));
tmp.final_exponentiation()
}
trait MillerLoopDriver {
type Output;
fn doubling_step(&mut self, f: Self::Output) -> Self::Output;
fn addition_step(&mut self, f: Self::Output) -> Self::Output;
fn square_output(f: Self::Output) -> Self::Output;
fn conjugate(f: Self::Output) -> Self::Output;
fn one() -> Self::Output;
}
/// This is a "generic" implementation of the Miller loop to avoid duplicating code
/// structure elsewhere; instead, we'll write concrete instantiations of
/// `MillerLoopDriver` for whatever purposes we need (such as caching modes).
fn miller_loop<D: MillerLoopDriver>(driver: &mut D) -> D::Output {
let mut f = D::one();
let mut found_one = false;
for i in (0..64).rev().map(|b| (((BLS_X >> 1) >> b) & 1) == 1) {
if !found_one {
found_one = i;
continue;
}
f = driver.doubling_step(f);
if i {
f = driver.addition_step(f);
}
f = D::square_output(f);
}
f = driver.doubling_step(f);
if BLS_X_IS_NEGATIVE {
f = D::conjugate(f);
}
f
}
fn ell(f: Fp12, coeffs: &(Fp2, Fp2, Fp2), p: &G1Affine) -> Fp12 {
let mut c0 = coeffs.0;
let mut c1 = coeffs.1;
c0.c0 *= p.y;
c0.c1 *= p.y;
c1.c0 *= p.x;
c1.c1 *= p.x;
f.mul_by_014(&coeffs.2, &c1, &c0)
}
fn doubling_step(r: &mut G2Projective) -> (Fp2, Fp2, Fp2) {
// Adaptation of Algorithm 26, https://eprint.iacr.org/2010/354.pdf
let tmp0 = r.x.square();
let tmp1 = r.y.square();
let tmp2 = tmp1.square();
let tmp3 = (tmp1 + r.x).square() - tmp0 - tmp2;
let tmp3 = tmp3 + tmp3;
let tmp4 = tmp0 + tmp0 + tmp0;
let tmp6 = r.x + tmp4;
let tmp5 = tmp4.square();
let zsquared = r.z.square();
r.x = tmp5 - tmp3 - tmp3;
r.z = (r.z + r.y).square() - tmp1 - zsquared;
r.y = (tmp3 - r.x) * tmp4;
let tmp2 = tmp2 + tmp2;
let tmp2 = tmp2 + tmp2;
let tmp2 = tmp2 + tmp2;
r.y -= tmp2;
let tmp3 = tmp4 * zsquared;
let tmp3 = tmp3 + tmp3;
let tmp3 = -tmp3;
let tmp6 = tmp6.square() - tmp0 - tmp5;
let tmp1 = tmp1 + tmp1;
let tmp1 = tmp1 + tmp1;
let tmp6 = tmp6 - tmp1;
let tmp0 = r.z * zsquared;
let tmp0 = tmp0 + tmp0;
(tmp0, tmp3, tmp6)
}
fn addition_step(r: &mut G2Projective, q: &G2Affine) -> (Fp2, Fp2, Fp2) {
// Adaptation of Algorithm 27, https://eprint.iacr.org/2010/354.pdf
let zsquared = r.z.square();
let ysquared = q.y.square();
let t0 = zsquared * q.x;
let t1 = ((q.y + r.z).square() - ysquared - zsquared) * zsquared;
let t2 = t0 - r.x;
let t3 = t2.square();
let t4 = t3 + t3;
let t4 = t4 + t4;
let t5 = t4 * t2;
let t6 = t1 - r.y - r.y;
let t9 = t6 * q.x;
let t7 = t4 * r.x;
r.x = t6.square() - t5 - t7 - t7;
r.z = (r.z + t2).square() - zsquared - t3;
let t10 = q.y + r.z;
let t8 = (t7 - r.x) * t6;
let t0 = r.y * t5;
let t0 = t0 + t0;
r.y = t8 - t0;
let t10 = t10.square() - ysquared;
let ztsquared = r.z.square();
let t10 = t10 - ztsquared;
let t9 = t9 + t9 - t10;
let t10 = r.z + r.z;
let t6 = -t6;
let t1 = t6 + t6;
(t10, t1, t9)
}
impl PairingCurveAffine for G1Affine {
type Pair = G2Affine;
type PairingResult = Gt;
fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
pairing(self, other)
}
}
impl PairingCurveAffine for G2Affine {
type Pair = G1Affine;
type PairingResult = Gt;
fn pairing_with(&self, other: &Self::Pair) -> Self::PairingResult {
pairing(other, self)
}
}
/// A [`pairing::Engine`] for BLS12-381 pairing operations.
#[derive(Clone, Debug)]
pub struct Bls12;
impl Engine for Bls12 {
type Fr = Scalar;
type G1 = G1Projective;
type G1Affine = G1Affine;
type G2 = G2Projective;
type G2Affine = G2Affine;
type Gt = Gt;
fn pairing(p: &Self::G1Affine, q: &Self::G2Affine) -> Self::Gt {
pairing(p, q)
}
}
impl pairing::MillerLoopResult for MillerLoopResult {
type Gt = Gt;
fn final_exponentiation(&self) -> Self::Gt {
self.final_exponentiation()
}
}
impl MultiMillerLoop for Bls12 {
type G2Prepared = G2Prepared;
type Result = MillerLoopResult;
fn multi_miller_loop(terms: &[(&Self::G1Affine, &Self::G2Prepared)]) -> Self::Result {
multi_miller_loop(terms)
}
}
#[test]
fn test_gt_generator() {
assert_eq!(
Gt::generator(),
pairing(&G1Affine::generator(), &G2Affine::generator())
);
}
#[test]
fn test_bilinearity() {
use crate::Scalar;
let a = Scalar::from_raw([1, 2, 3, 4]).invert().unwrap().square();
let b = Scalar::from_raw([5, 6, 7, 8]).invert().unwrap().square();
let c = a * b;
let g = G1Affine::from(G1Affine::generator() * a);
let h = G2Affine::from(G2Affine::generator() * b);
let p = pairing(&g, &h);
assert!(p != Gt::identity());
let expected = G1Affine::from(G1Affine::generator() * c);
assert_eq!(p, pairing(&expected, &G2Affine::generator()));
assert_eq!(
p,
pairing(&G1Affine::generator(), &G2Affine::generator()) * c
);
}
#[test]
fn test_unitary() {
let g = G1Affine::generator();
let h = G2Affine::generator();
let p = -pairing(&g, &h);
let q = pairing(&g, &-h);
let r = pairing(&-g, &h);
assert_eq!(p, q);
assert_eq!(q, r);
}
#[cfg(feature = "alloc")]
#[test]
fn test_multi_miller_loop() {
let a1 = G1Affine::generator();
let b1 = G2Affine::generator();
let a2 = G1Affine::from(
G1Affine::generator() * Scalar::from_raw([1, 2, 3, 4]).invert().unwrap().square(),
);
let b2 = G2Affine::from(
G2Affine::generator() * Scalar::from_raw([4, 2, 2, 4]).invert().unwrap().square(),
);
let a3 = G1Affine::identity();
let b3 = G2Affine::from(
G2Affine::generator() * Scalar::from_raw([9, 2, 2, 4]).invert().unwrap().square(),
);
let a4 = G1Affine::from(
G1Affine::generator() * Scalar::from_raw([5, 5, 5, 5]).invert().unwrap().square(),
);
let b4 = G2Affine::identity();
let a5 = G1Affine::from(
G1Affine::generator() * Scalar::from_raw([323, 32, 3, 1]).invert().unwrap().square(),
);
let b5 = G2Affine::from(
G2Affine::generator() * Scalar::from_raw([4, 2, 2, 9099]).invert().unwrap().square(),
);
let b1_prepared = G2Prepared::from(b1);
let b2_prepared = G2Prepared::from(b2);
let b3_prepared = G2Prepared::from(b3);
let b4_prepared = G2Prepared::from(b4);
let b5_prepared = G2Prepared::from(b5);
let expected = pairing(&a1, &b1)
+ pairing(&a2, &b2)
+ pairing(&a3, &b3)
+ pairing(&a4, &b4)
+ pairing(&a5, &b5);
let test = multi_miller_loop(&[
(&a1, &b1_prepared),
(&a2, &b2_prepared),
(&a3, &b3_prepared),
(&a4, &b4_prepared),
(&a5, &b5_prepared),
])
.final_exponentiation();
assert_eq!(expected, test);
}