librustzcash/components/zcash_address/src/kind/unified/address.rs

431 lines
16 KiB
Rust

use zcash_protocol::{PoolType, ShieldedProtocol};
use super::{private::SealedItem, ParseError, Typecode};
use std::convert::{TryFrom, TryInto};
/// The set of known Receivers for Unified Addresses.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum Receiver {
Orchard([u8; 43]),
Sapling([u8; 43]),
P2pkh([u8; 20]),
P2sh([u8; 20]),
Unknown { typecode: u32, data: Vec<u8> },
}
impl TryFrom<(u32, &[u8])> for Receiver {
type Error = ParseError;
fn try_from((typecode, addr): (u32, &[u8])) -> Result<Self, Self::Error> {
match typecode.try_into()? {
Typecode::P2pkh => addr.try_into().map(Receiver::P2pkh),
Typecode::P2sh => addr.try_into().map(Receiver::P2sh),
Typecode::Sapling => addr.try_into().map(Receiver::Sapling),
Typecode::Orchard => addr.try_into().map(Receiver::Orchard),
Typecode::Unknown(_) => Ok(Receiver::Unknown {
typecode,
data: addr.to_vec(),
}),
}
.map_err(|e| {
ParseError::InvalidEncoding(format!("Invalid address for typecode {}: {}", typecode, e))
})
}
}
impl SealedItem for Receiver {
fn typecode(&self) -> Typecode {
match self {
Receiver::P2pkh(_) => Typecode::P2pkh,
Receiver::P2sh(_) => Typecode::P2sh,
Receiver::Sapling(_) => Typecode::Sapling,
Receiver::Orchard(_) => Typecode::Orchard,
Receiver::Unknown { typecode, .. } => Typecode::Unknown(*typecode),
}
}
fn data(&self) -> &[u8] {
match self {
Receiver::P2pkh(data) => data,
Receiver::P2sh(data) => data,
Receiver::Sapling(data) => data,
Receiver::Orchard(data) => data,
Receiver::Unknown { data, .. } => data,
}
}
}
/// A Unified Address.
///
/// # Examples
///
/// ```
/// # use std::convert::Infallible;
/// # use std::error::Error;
/// use zcash_address::{
/// unified::{self, Container, Encoding},
/// ConversionError, TryFromRawAddress, ZcashAddress,
/// };
///
/// # fn main() -> Result<(), Box<dyn Error>> {
/// # let address_from_user = || "u1pg2aaph7jp8rpf6yhsza25722sg5fcn3vaca6ze27hqjw7jvvhhuxkpcg0ge9xh6drsgdkda8qjq5chpehkcpxf87rnjryjqwymdheptpvnljqqrjqzjwkc2ma6hcq666kgwfytxwac8eyex6ndgr6ezte66706e3vaqrd25dzvzkc69kw0jgywtd0cmq52q5lkw6uh7hyvzjse8ksx";
/// let example_ua: &str = address_from_user();
///
/// // We can parse this directly as a `unified::Address`:
/// let (network, ua) = unified::Address::decode(example_ua)?;
///
/// // Or we can parse via `ZcashAddress` (which you should do):
/// struct MyUnifiedAddress(unified::Address);
/// impl TryFromRawAddress for MyUnifiedAddress {
/// // In this example we aren't checking the validity of the
/// // inner Unified Address, but your code should do so!
/// type Error = Infallible;
///
/// fn try_from_raw_unified(ua: unified::Address) -> Result<Self, ConversionError<Self::Error>> {
/// Ok(MyUnifiedAddress(ua))
/// }
/// }
/// let addr: ZcashAddress = example_ua.parse()?;
/// let parsed = addr.convert_if_network::<MyUnifiedAddress>(network)?;
/// assert_eq!(parsed.0, ua);
///
/// // We can obtain the receivers for the UA in preference order
/// // (the order in which wallets should prefer to use them):
/// let receivers: Vec<unified::Receiver> = ua.items();
///
/// // And we can create the UA from a list of receivers:
/// let new_ua = unified::Address::try_from_items(receivers)?;
/// assert_eq!(new_ua, ua);
/// # Ok(())
/// # }
/// ```
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Address(pub(crate) Vec<Receiver>);
impl Address {
/// Returns whether this address has the ability to receive transfers of the given pool type.
pub fn has_receiver_of_type(&self, pool_type: PoolType) -> bool {
self.0.iter().any(|r| match r {
Receiver::Orchard(_) => pool_type == PoolType::Shielded(ShieldedProtocol::Orchard),
Receiver::Sapling(_) => pool_type == PoolType::Shielded(ShieldedProtocol::Sapling),
Receiver::P2pkh(_) | Receiver::P2sh(_) => pool_type == PoolType::Transparent,
Receiver::Unknown { .. } => false,
})
}
/// Returns whether this address contains the given receiver.
pub fn contains_receiver(&self, receiver: &Receiver) -> bool {
self.0.contains(receiver)
}
/// Returns whether this address can receive a memo.
pub fn can_receive_memo(&self) -> bool {
self.0
.iter()
.any(|r| matches!(r, Receiver::Sapling(_) | Receiver::Orchard(_)))
}
}
impl super::private::SealedContainer for Address {
/// The HRP for a Bech32m-encoded mainnet Unified Address.
///
/// Defined in [ZIP 316][zip-0316].
///
/// [zip-0316]: https://zips.z.cash/zip-0316
const MAINNET: &'static str = "u";
/// The HRP for a Bech32m-encoded testnet Unified Address.
///
/// Defined in [ZIP 316][zip-0316].
///
/// [zip-0316]: https://zips.z.cash/zip-0316
const TESTNET: &'static str = "utest";
/// The HRP for a Bech32m-encoded regtest Unified Address.
const REGTEST: &'static str = "uregtest";
fn from_inner(receivers: Vec<Self::Item>) -> Self {
Self(receivers)
}
}
impl super::Encoding for Address {}
impl super::Container for Address {
type Item = Receiver;
fn items_as_parsed(&self) -> &[Receiver] {
&self.0
}
}
#[cfg(feature = "test-dependencies")]
pub mod testing {
use proptest::{
array::{uniform11, uniform20, uniform32},
collection::vec,
prelude::*,
sample::select,
strategy::Strategy,
};
use zcash_encoding::MAX_COMPACT_SIZE;
use super::{Address, Receiver};
use crate::unified::Typecode;
prop_compose! {
fn uniform43()(a in uniform11(0u8..), b in uniform32(0u8..)) -> [u8; 43] {
let mut c = [0; 43];
c[..11].copy_from_slice(&a);
c[11..].copy_from_slice(&b);
c
}
}
/// A strategy to generate an arbitrary transparent typecode.
pub fn arb_transparent_typecode() -> impl Strategy<Value = Typecode> {
select(vec![Typecode::P2pkh, Typecode::P2sh])
}
/// A strategy to generate an arbitrary shielded (Sapling, Orchard, or unknown) typecode.
pub fn arb_shielded_typecode() -> impl Strategy<Value = Typecode> {
prop_oneof![
Just(Typecode::Sapling),
Just(Typecode::Orchard),
((<u32>::from(Typecode::Orchard) + 1)..MAX_COMPACT_SIZE).prop_map(Typecode::Unknown)
]
}
/// A strategy to generate an arbitrary valid set of typecodes without
/// duplication and containing only one of P2sh and P2pkh transparent
/// typecodes. The resulting vector will be sorted in encoding order.
pub fn arb_typecodes() -> impl Strategy<Value = Vec<Typecode>> {
prop::option::of(arb_transparent_typecode()).prop_flat_map(|transparent| {
prop::collection::hash_set(arb_shielded_typecode(), 1..4).prop_map(move |xs| {
let mut typecodes: Vec<_> = xs.into_iter().chain(transparent).collect();
typecodes.sort_unstable_by(Typecode::encoding_order);
typecodes
})
})
}
/// Generates an arbitrary Unified address containing receivers corresponding to the provided
/// set of typecodes. The receivers of this address are likely to not represent valid protocol
/// receivers, and should only be used for testing parsing and/or encoding functions that do
/// not concern themselves with the validity of the underlying receivers.
pub fn arb_unified_address_for_typecodes(
typecodes: Vec<Typecode>,
) -> impl Strategy<Value = Vec<Receiver>> {
typecodes
.into_iter()
.map(|tc| match tc {
Typecode::P2pkh => uniform20(0u8..).prop_map(Receiver::P2pkh).boxed(),
Typecode::P2sh => uniform20(0u8..).prop_map(Receiver::P2sh).boxed(),
Typecode::Sapling => uniform43().prop_map(Receiver::Sapling).boxed(),
Typecode::Orchard => uniform43().prop_map(Receiver::Orchard).boxed(),
Typecode::Unknown(typecode) => vec(any::<u8>(), 32..256)
.prop_map(move |data| Receiver::Unknown { typecode, data })
.boxed(),
})
.collect::<Vec<_>>()
}
/// Generates an arbitrary Unified address. The receivers of this address are likely to not
/// represent valid protocol receivers, and should only be used for testing parsing and/or
/// encoding functions that do not concern themselves with the validity of the underlying
/// receivers.
pub fn arb_unified_address() -> impl Strategy<Value = Address> {
arb_typecodes()
.prop_flat_map(arb_unified_address_for_typecodes)
.prop_map(Address)
}
}
#[cfg(any(test, feature = "test-dependencies"))]
pub mod test_vectors;
#[cfg(test)]
mod tests {
use assert_matches::assert_matches;
use crate::{
kind::unified::{private::SealedContainer, Container, Encoding},
unified::address::testing::arb_unified_address,
Network,
};
use proptest::{prelude::*, sample::select};
use super::{Address, ParseError, Receiver, Typecode};
proptest! {
#[test]
fn ua_roundtrip(
network in select(vec![Network::Main, Network::Test, Network::Regtest]),
ua in arb_unified_address(),
) {
let encoded = ua.encode(&network);
let decoded = Address::decode(&encoded);
prop_assert_eq!(&decoded, &Ok((network, ua)));
let reencoded = decoded.unwrap().1.encode(&network);
prop_assert_eq!(reencoded, encoded);
}
}
#[test]
fn padding() {
// The test cases below use `Address(vec![Receiver::Orchard([1; 43])])` as base.
// Invalid padding ([0xff; 16] instead of [0x75, 0x00, 0x00, 0x00...])
let invalid_padding = [
0xe6, 0x59, 0xd1, 0xed, 0xf7, 0x4b, 0xe3, 0x5e, 0x5a, 0x54, 0x0e, 0x41, 0x5d, 0x2f,
0x0c, 0x0d, 0x33, 0x42, 0xbd, 0xbe, 0x9f, 0x82, 0x62, 0x01, 0xc1, 0x1b, 0xd4, 0x1e,
0x42, 0x47, 0x86, 0x23, 0x05, 0x4b, 0x98, 0xd7, 0x76, 0x86, 0xa5, 0xe3, 0x1b, 0xd3,
0x03, 0xca, 0x24, 0x44, 0x8e, 0x72, 0xc1, 0x4a, 0xc6, 0xbf, 0x3f, 0x2b, 0xce, 0xa7,
0x7b, 0x28, 0x69, 0xc9, 0x84,
];
assert_eq!(
Address::parse_internal(Address::MAINNET, &invalid_padding[..]),
Err(ParseError::InvalidEncoding(
"Invalid padding bytes".to_owned()
))
);
// Short padding (padded to 15 bytes instead of 16)
let truncated_padding = [
0x9a, 0x56, 0x12, 0xa3, 0x43, 0x45, 0xe0, 0x82, 0x6c, 0xac, 0x24, 0x8b, 0x3b, 0x45,
0x72, 0x9a, 0x53, 0xd5, 0xf8, 0xda, 0xec, 0x07, 0x7c, 0xba, 0x9f, 0xa8, 0xd2, 0x97,
0x5b, 0xda, 0x73, 0x1b, 0xd2, 0xd1, 0x32, 0x6b, 0x7b, 0x36, 0xdd, 0x57, 0x84, 0x2a,
0xa0, 0x21, 0x23, 0x89, 0x73, 0x85, 0xe1, 0x4b, 0x3e, 0x95, 0xb7, 0xd4, 0x67, 0xbc,
0x4b, 0x31, 0xee, 0x5a,
];
assert_eq!(
Address::parse_internal(Address::MAINNET, &truncated_padding[..]),
Err(ParseError::InvalidEncoding(
"Invalid padding bytes".to_owned()
))
);
}
#[test]
fn truncated() {
// The test cases below start from an encoding of
// `Address(vec![Receiver::Orchard([1; 43]), Receiver::Sapling([2; 43])])`
// with the receiver data truncated, but valid padding.
// - Missing the last data byte of the Sapling receiver.
let truncated_sapling_data = [
0xaa, 0xb0, 0x6e, 0x7b, 0x26, 0x7a, 0x22, 0x17, 0x39, 0xfa, 0x07, 0x69, 0xe9, 0x32,
0x2b, 0xac, 0x8c, 0x9e, 0x5e, 0x8a, 0xd9, 0x24, 0x06, 0x5a, 0x13, 0x79, 0x3a, 0x8d,
0xb4, 0x52, 0xfa, 0x18, 0x4e, 0x33, 0x4d, 0x8c, 0x17, 0x77, 0x4d, 0x63, 0x69, 0x34,
0x22, 0x70, 0x3a, 0xea, 0x30, 0x82, 0x5a, 0x6b, 0x37, 0xd1, 0x0d, 0xbe, 0x20, 0xab,
0x82, 0x86, 0x98, 0x34, 0x6a, 0xd8, 0x45, 0x40, 0xd0, 0x25, 0x60, 0xbf, 0x1e, 0xb6,
0xeb, 0x06, 0x85, 0x70, 0x4c, 0x42, 0xbc, 0x19, 0x14, 0xef, 0x7a, 0x05, 0xa0, 0x71,
0xb2, 0x63, 0x80, 0xbb, 0xdc, 0x12, 0x08, 0x48, 0x28, 0x8f, 0x1c, 0x9e, 0xc3, 0x42,
0xc6, 0x5e, 0x68, 0xa2, 0x78, 0x6c, 0x9e,
];
assert_matches!(
Address::parse_internal(Address::MAINNET, &truncated_sapling_data[..]),
Err(ParseError::InvalidEncoding(_))
);
// - Truncated after the typecode of the Sapling receiver.
let truncated_after_sapling_typecode = [
0x87, 0x7a, 0xdf, 0x79, 0x6b, 0xe3, 0xb3, 0x40, 0xef, 0xe4, 0x5d, 0xc2, 0x91, 0xa2,
0x81, 0xfc, 0x7d, 0x76, 0xbb, 0xb0, 0x58, 0x98, 0x53, 0x59, 0xd3, 0x3f, 0xbc, 0x4b,
0x86, 0x59, 0x66, 0x62, 0x75, 0x92, 0xba, 0xcc, 0x31, 0x1e, 0x60, 0x02, 0x3b, 0xd8,
0x4c, 0xdf, 0x36, 0xa1, 0xac, 0x82, 0x57, 0xed, 0x0c, 0x98, 0x49, 0x8f, 0x49, 0x7e,
0xe6, 0x70, 0x36, 0x5b, 0x7b, 0x9e,
];
assert_matches!(
Address::parse_internal(Address::MAINNET, &truncated_after_sapling_typecode[..]),
Err(ParseError::InvalidEncoding(_))
);
}
#[test]
fn duplicate_typecode() {
// Construct and serialize an invalid UA. This must be done using private
// methods, as the public API does not permit construction of such invalid values.
let ua = Address(vec![Receiver::Sapling([1; 43]), Receiver::Sapling([2; 43])]);
let encoded = ua.to_jumbled_bytes(Address::MAINNET);
assert_eq!(
Address::parse_internal(Address::MAINNET, &encoded[..]),
Err(ParseError::DuplicateTypecode(Typecode::Sapling))
);
}
#[test]
fn p2pkh_and_p2sh() {
// Construct and serialize an invalid UA. This must be done using private
// methods, as the public API does not permit construction of such invalid values.
let ua = Address(vec![Receiver::P2pkh([0; 20]), Receiver::P2sh([0; 20])]);
let encoded = ua.to_jumbled_bytes(Address::MAINNET);
// ensure that decoding catches the error
assert_eq!(
Address::parse_internal(Address::MAINNET, &encoded[..]),
Err(ParseError::BothP2phkAndP2sh)
);
}
#[test]
fn addresses_out_of_order() {
// Construct and serialize an invalid UA. This must be done using private
// methods, as the public API does not permit construction of such invalid values.
let ua = Address(vec![Receiver::Sapling([0; 43]), Receiver::P2pkh([0; 20])]);
let encoded = ua.to_jumbled_bytes(Address::MAINNET);
// ensure that decoding catches the error
assert_eq!(
Address::parse_internal(Address::MAINNET, &encoded[..]),
Err(ParseError::InvalidTypecodeOrder)
);
}
#[test]
fn only_transparent() {
// Encoding of `Address(vec![Receiver::P2pkh([0; 20])])`.
let encoded = vec![
0xf0, 0x9e, 0x9d, 0x6e, 0xf5, 0xa6, 0xac, 0x16, 0x50, 0xf0, 0xdb, 0xe1, 0x2c, 0xa5,
0x36, 0x22, 0xa2, 0x04, 0x89, 0x86, 0xe9, 0x6a, 0x9b, 0xf3, 0xff, 0x6d, 0x2f, 0xe6,
0xea, 0xdb, 0xc5, 0x20, 0x62, 0xf9, 0x6f, 0xa9, 0x86, 0xcc,
];
// We can't actually exercise this error, because at present the only transparent
// receivers we can use are P2PKH and P2SH (which cannot be used together), and
// with only one of them we don't have sufficient data for F4Jumble (so we hit a
// different error).
assert_matches!(
Address::parse_internal(Address::MAINNET, &encoded[..]),
Err(ParseError::InvalidEncoding(_))
);
}
#[test]
fn receivers_are_sorted() {
// Construct a UA with receivers in an unsorted order.
let ua = Address(vec![
Receiver::P2pkh([0; 20]),
Receiver::Orchard([0; 43]),
Receiver::Unknown {
typecode: 0xff,
data: vec![],
},
Receiver::Sapling([0; 43]),
]);
// `Address::receivers` sorts the receivers in priority order.
assert_eq!(
ua.items(),
vec![
Receiver::Orchard([0; 43]),
Receiver::Sapling([0; 43]),
Receiver::P2pkh([0; 20]),
Receiver::Unknown {
typecode: 0xff,
data: vec![],
},
]
)
}
}