
A multi-party protocol for constructing the public parameters of

the Pinocchio zk-SNARK

Sean Bowe, Ariel Gabizon, Matthew D. Green

Zcash

Abstract

Recent efficient constructions of zero-knowledge Succinct Non-interactive Arguments of Knowl-
edge (zk-SNARKs), require a setup phase in which a common-reference string (CRS) with a
certain structure is generated. This CRS is sometimes referred to as the public parameters of
the system, and is used for constructing and verifying proofs. A drawback of these constructions
is that whomever runs the setup phase subsequently possesses trapdoor information enabling
them to produce fraudulent pseudoproofs.

Building on a work of Ben-Sasson, Chiesa, Green, Tromer and Virza [BCG+15], we construct
a multi-party protocol for generating the CRS of the Pinocchio zk-SNARK [PHGR16], such that
as long as at least one participating party is not malicious, no party can later construct fraudulent
proofs except with negligible probability. The protocol also provides a strong zero-knowledge
guarantee even in the case that all participants are malicious.

This method has been used in practice to generate the required CRS for the Zcash cryp-
tocurrency blockchain.

1 Introduction

The recently deployed Zcash cryptocurrency supports shielded (private) transactions where sender,
receiver and amount are not revealed; and yet, an outside observer can still distinguish between a
valid and non-valid transaction. The “cryptographic engine” that enables these shielded transac-
tions is a zero-knowledge Succinct Non-interactive Argument of Knowledge (zk-SNARK); currently,
Zcash uses the Pinocchio zk-SNARK [PHGR16], or more precisely, the variant of it described in
[BCTV14] as implemented in libsnark[lib].

A potential weakness of Zcash, is that if anybody obtained the trapdoor information correspond-
ing to the Common Reference String (CRS) used for constructing and verifying the SNARKs, they
could forge unlimited amounts of the currency, potentially without anyone detecting they are doing
so.

Motivated by this, Zcash generated the required CRS in an elaborate “ceremony” [Wil] to
reduce the chance of this happening. The purpose of this technical report is to give a detailed
description of the multi-party protocol that was used in the ceremony.

Our results Ben-Sasson, Chiesa, Green, Tromer and Virza [BCG+15] presented a generic method
for computing CRSs of zk-SNARKs in a multi-party protocol, with the property that only if all
players collude together they can reconstruct the trapdoor, or, more generally, deduce any other
useful information beyond the resultant CRS.

1

Based on [BCG+15], we devise an arguably simpler method for generating the CRS of the
Pinocchio zk-SNARK [PHGR16] with a similar security guarantee: Namely, given that the CRS
generated by the protocol is later used to verify proofs; a party controlling all but one of the players
will not be able to construct fraudulent proofs except with negligible probability. See Theorem 4.8
for details.

Moreover, we show that even if a malicious party controls all players, statistical zero-knowledge
holds when constructing proofs according to the resultant parameters. Interestingly, this means the
protocol is useful also when run by one player ; as the transcript will provide proof to the prover
that sending her proof will not leak additional information.1

This property has been recently called subversion Zero-Knowledge [BFS16]. As opposed to the
soundness guarantee, zero-knowledge only requires the random oracle model; and in particular, no
knowledge assumptions in contrast to some recent works on subversion-ZK [Fuc17, ABLZ17]. On
the other hand, our proof only obtains statistical-ZK with polynomially small error as opposed to
the mentioned recent works that can obtain negligible error (again, using knowledge assumptions).
See Theorem 4.10 for details.

Organization of paper Section 2 introduces some terminology and auxiliary methods that will
be used in the protocol. Section 3 describes the protocol in detail. Section 4 describes the security
proof of the protocol.

2 Definitions, notation and auxiliary methods

Terminology: We always assume we are working with a field Fr for prime r chosen according to a
desired security parameter (more details on this in Section 4). We assume together with Fr we have
generated groups G1,G2,Gt, all cyclic of order r; where we write G1 and G2 in additive notation
and Gt in multiplicative notation. Furthermore, we have access to generators g1 ∈ G1, g2 ∈ G2,
and an efficiently computable pairing e : G1 × G2 → Gt, i.e., a non-trivial map such that for any
a, b ∈ Fr

e(a · g1, b · g2) = ga·bT ,

for a fixed generator gT ∈ Gt. We use the notations g := (g1, g2) and G∗ := G1 \ {0} ×G2 \ {0}.
We think of the field size r as a parameter against which we measure efficiency. In particular,

we say a circuit A is efficient if its size is polynomial in log r. More precisely, when we refer in
the security analysis to an efficient adversary or efficient algorithm, we mean it is a (non-uniform)
sequence of circuits indexed by r, of size poly log r. When we say “with probability p”, we mean
“with probability at least p”.

We assume we have at our disposal a function COMMIT taking as input strings of arbitrary
length; that, intuitively speaking, behaves like a commitment scheme. That is, it is infeasible to
deduce COMMIT’s input from seeing its output, and it is infeasible to find two inputs that COMMIT
maps to the same output. In our implementation we use the BLAKE-2 hash function as COMMIT.
For the actual security proof, we need to assume that COMMIT’s outputs are chosen by a random
oracle.

1Thanks to Eran Tromer for pointing this out, and more generally the connection to subversion zero-knowledge.

2

Symmetric definitions In the following sections we introduce several methods that receive as
parameters elements of both G1 and G2. We assume implicitly that whenever such a definition is
made, we also have the symmetric definition where the roles are reversed between what parameters
come from G1 and G2. For example, if we define a method receiving as input a vector of G1

elements and a pair of G2 elements. We assume thereafter that we also have the symmetric method
receiving as input a vector of G2 elements and a pair of G1 elements.

2.1 Comparing ratios of pairs using pairings

Definition 2.1. Given s ∈ F∗r, an s-pair is a pair (p, q) such that p, q ∈ G1 \{0}, or p, q ∈ G2 \{0};
and s · p = q. When not clear from the context whether p, q are in G1 or G2, we use the terms
G1-s-pair and G2-s-pair.

A recurring theme in the protocol will be to check that two pairs of elements in G1 and G2

respectively, “have the same ratio”, i.e., are s-pairs for the same s ∈ F∗r .
SameRatio((p, q), (f,H)):

1. If one of the elements p, q, f,H is zero; return rej.

2. Return acc if e(p,H) = e(q, f); return rej otherwise.

Claim 2.2. Given p, q ∈ G1 and f,H ∈ G2, SameRatio((p, q), (f,H)) = acc if and only if there
exists s ∈ F∗r such that (p, q) is a G1-s-pair and (f,H) is a G2-s-pair.

Proof. Suppose that s · p = q and s′ · f = H. Write p = a · g1, f = b · g2 for some a, b ∈ Fr. Note
that if one of {a, b, s, s′} is 0, we return rej in the first step.

Otherwise, we have
e(p,H) = (a · g1, bs′ · g2) = gabs

′
T ,

and
e(q, f) = (as · g1, b · g2) = gabsT ,

and thus SameRatio((p, q), (f,H)) = 1 if and only if s = s′ (mod r).

Let V = ((pi, qi))i∈[d], be a vector of pairs in G1. We say V is an s-vector in G1 if for each
i ∈ [d], (pi, qi) is a G1-s-pair, or is equal to (0, 0). We make the analogous definition for G2, and
similarly to above, sometimes omit the group name when it is clear from the context what group
the elements are in, simply using the term s-vector. In our protocol we often want to check if a
long vector ((pi, qi))i∈[d] is an s-vector for some s ∈ F∗r . The next claim enables us to do so with
just one pairing.

Claim 2.3. Suppose that ((pi, qi))i∈[d] is a vector of elements in G1 \ {0} that is not an s-vector.
Choose random c1, . . . , cd ∈ Fr and define

p ,
∑
i∈[d]

ci · pi, q ,
∑
i∈[d]

ci · qi.

Then, with probability at least 1− 2/r, both (p, q) 6= (0, 0) and (p, q) is not an s-pair

3

Proof. Write pi = ai · g1 for ai ∈ Fr, and qi = si · pi for some si ∈ Fr. Thus, we have p = a · g1
for a ,

∑
i∈[d] ciai and q = b · g1 for b ,

∑
i∈[d] αiaisi. Let us assume a 6= 0. This happens with

probability 1− 1/r. Write [d] as a disjoint union S ∪ T where S is the set of indices of the s-pairs.
That is S , {i ∈ [d]|si = s}. We have

b/a =

∑
i∈[d] ciaisi∑
i∈[d] ciai

= s+

∑
i∈T ci · (s− si)∑

i∈[d] ciai
= s+

∑
i∈T ci · (s− si)

a
.

Thus, b/a = s if and only if the fraction in the right hand side is zero. As the numerator is a
random combination of non-zero elements, this happens with probability 1/r.

We conclude that with probability at least 1− 2/r, (p, q) is not an s-pair

Claim 2.3 implies the correctness of sameRatio(V, (f,H)) that given an s-pair (f,H) in G2,
checks whether V is an s-vector in G1.
sameRatio(V = ((pi, qi))i∈[d], (f,H)):

1. If there exists a pair of the form (0, a) or (a, 0) for some a 6= 0 in V ; return rej.

2. “Put aside” all elements of the form (0, 0), and from now on assume all pairs in V are in
G1 \ {0}. (If all pairs are of the form (0, 0) then return acc).

3. Choose random c1, . . . , cd ∈ Fr.

4. Define p ,
∑

i∈[d] ci · pi, and q ,
∑

i∈[d] ci · qi.

5. If p = q = 0, return acc.

6. Otherwise, return SameRatio((p, q), (f,H)).

Corollary 2.4. Suppose rps in a G2-s-pair, and V is a vector of pairs of G1 elements. If V is an
s-vector, sameRatio(V, rps) accepts with probability one. If V is not an s-vector, sameRatio(V, rps)
accepts with probability at most 2/r.

Let V be a vector of G1-elements and rps be a pair of G2-elements. We also use a method
sameRatioSeq(V, rps) that given an s-pair rps, checks that each two consecutive elements of V are
an s-pair. It does so by calling sameRatio(V ′, rps) with V ′ = ((V0, V1), (V1, V2), . . . , (Vd−1, Vd)).

2.2 Schnorr NIZKs for knowledge of discrete log

We review and define notation for using the well-known Schnorr protocol [Sch89]. Given an s-pair
rps = (f,H = s · f), and a string h, we define the (randomized) string NIZK(rps, h) that can be
intepreted as a proof that the generator of the string knows s.

NIZK(rps, h):

1. Choose random a ∈ F∗r and let R := a · f .

2. Let c := COMMIT(R ◦ h) and interpret c as an element of Fr, e.g. by taking it’s first log r
bits.

4

3. Let u := a+ cs.

4. Define NIZK(rps, h) := (R, u).

Let us denote by π a string that is supposedly of the form NIZK(rps, h), for some string h.
VERIFY-NIZK(rps, π, h) is a boolean predicate that verifies that π is indeed of this form for

the same given h.

VERIFY-NIZK((f,H), π, h):

1. Let R, u be as in the description above.

2. Compute c := COMMIT(R ◦ h).

3. Return acc when u · f = R+ c ·H; and rej otherwise.

2.3 The random-coefficient subprotocol

A large part of the protocol will consist of invocations of the random-coefficient subprotocol. In this
subprotocol, we multiply a vector of G1 elements coordinate-wise by the same scalar α ∈ F∗r . α
here is a product of secret elements {αi}i∈[n], that we refer to later as comitted elements. By this
we mean, that before the subprotocol is invoked, for each i ∈ [n], Pi has broadcasted a G2-αi-pair,
denoted rpαi , that is accessible to the protocol verifier. (This will become clearer in the context of
Section 3).

RCPC(V, α):

Common Input: vector V ∈ Gd
1.

Individual inputs: element αi ∈ F∗r for each i ∈ [n].

Output: vector α · V ∈ Gd
1, where α =

∏n
i=1 αi.

1. P1 computes broadcasts V1 := α1 · V .

2. For i = 2, . . . , n, Pi broadcasts Vi := αi · Vi−1.

3. Players ouput Vn (which should equal α · V).

Before discussing the transcript verification we define one more useful notation. For vectors S, T ∈
Gd

1 and a G2-α-pair rpα, sameRatio((S, T), rpα) returns sameRatio(V, rpα), where Vi := (Si, Ti). The
transcript verification procedure receives as input V, V1, . . . , Vn, and for each i ∈ [n], the G2-αi-pair,
rpαi .

verifyRCPC(V, α):

Input: V , protocol transcript V1, . . . , Vn ∈ Gd
1, for each i ∈ [n] a G2-αi-pair rpαi .

5

Output: acc or rej.

1. Run sameRatio((V, V1), rpα1
).

2. For i = 2, . . . , n, run sameRatio((Vi−1, Vi), rpαi).

3. Return acc if all invocations returned acc; and return rej otherwise.

From the correctness of the sameRatio(,) method (Corollary 2.4) we have that

Claim 2.5. If the players follow the protocol correctly, the output is α·V , and transcript verification
outputs acc with probability one. Otherwise, transcript verification outputs acc with probability at
most 2/r.

3 Protocol description

The participants The protocol is conducted by n players, a coordinator, and a protocol verifier.
In the implementation the role of the coordinator and protocol verifier can be played by the same
server. We find it useful to separate these roles, though, as the actions of the protocol verifier may
be executed only after the protocol has terminated, if one wishes to reduce the time the players have
to be engaged. Moreover, any party wishing to check the validity of the transcript and generated
parameters can do so solely with access to the protocol transcript. On the other hand, this has the
disadvantage that non-valid messages will be detected only in hindsight, and the whole process will
have to be restarted if one wishes to generate valid SNARK parameters.

Similarly, the role of the coordinator is not strictly necessary if one assumes a blackboard model
where each player sees all messages broadcasted. (In our actual implementation the coordinator
passes messages between the players). Our security analysis holds when all messages are seen by all
players. However, even in such a blackboard model there is an advantage of having of a coordinator
role: At the beginning of Round 3 a heavy computation needs to performed (Subsection 3.3)
that in theory could be performed by the first player before he sends his message for that round.
However, as this heavy computation does not require access to any secrets of the players, having
the coordinator perform it can save much time, if the coordinator is run on a strong server, and
the players have weaker machines.

The protocol consists of four “round-robin” rounds, where for each i ∈ [n], player Pi can send his
message after receiving the message of Pi−1. P1 can send his message after receiving an “initializer
message” from the coordinator, which is empty in some of the rounds. An exception of this is
the first round, where all players may send their message to the coordinator in parallel. However,
security is not harmed if a player sees other players’ messages before sending his in that round.
Round 2 is divided into several parts for clarity, however the messages of a player Pi in all parts
of that round can be sent in parallel. Similarly, Round 3 and 4 consist of several one round round-
robin subprotocols; however, the messages of a player Pi in all these subprotocols can be sent in
parallel.

3.1 Round 1: commitments

For each i ∈ [n], Pi does the following.

6

1. Generate a set of uniform elements in F∗r

secretsi := {τi, ρA,i, ρB,i, αA,i, αB,i, αC,i, βi, γi} .

Omitting the index i for readability from now on, let

elementsi := {τ, ρA, ρB, αA, αB, αC , β, γ, ρAαA, ρBαB,

ρAρB, ρAρBαC , βγ}

2. Now Pi generates the set of group elements2

ei := (τ, ρA, ρAρB, ρAαA, ρAρBαB, ρAρBαC , γ, βγ) · g.

3. Pi computes hi := COMMIT(ei) and broadcasts hi.

3.2 Round 2

Part 1: Revealing commitments

For each i ∈ [n]

1. Pi broadcasts ei.

2. The protocol verifier checks that indeed hi = COMMIT(ei).

Committed elements From the end of Round 2, part 1 of the protocol, we refer to the elements
of elementsi for some i ∈ [n] as committed elements. The reason is that by this stage of the protocol,
for each s ∈ elementsi, Pi has sent an s-pair in both G1 and G2, effectively committing him to the
value of s. For each such element s, we refer to the s-pair in G1 by rps and the s-pair in G2 by rp2s .
We list the corresponding elements and s-pairs, omitting the i subscript for readability:

• τ : (rp1τ , rp
2
τ) = (g, τ · g).

• ρA: (rp1ρA , rp
2
ρA

) = (g, ρA · g).

• ρB: (rp1ρB , rp
2
ρB

) = (g, ρB · g).

• αA: (rp1αA , rp
2
αA

) = (ρA · g, ρAαA · g).

• αB: (rp1αB , rp
2
αB

) = (ρAρB · g, ρAρBαB · g).

• αC : (rp1αC , rp
2
αC

) = (ρAρB · g, ρAρBαC · g).

• β: (rp1β, rp
2
β) = (γ · g, βγ · g).

2In the actual code a more complex set of elements is used that can be efficiently derived from elementsi, as
described in Appendix A. The reason we use the more complex set is that it potentially provides more security as it
contains less information about secretsi. However, the proof works as well with this definition of ei and it provides a
significantly simpler presentation. We explain in Appendix A the slight modification for protocol and proof for using
the more complex element set.

7

• γ: (rp1γ , rp
2
γ) = (g, γ · g).

• ρAαA: (rp1ρAαA , rp
2
ρAαA

) = (g, ρAαA · g).

• ρBαB: (rp1ρBαB , rp
2
ρBαB

) = (ρA · g, ρAρBαB · g).

• ρAρB: (rp1ρAρB , rp
2
ρAρB

) = (g, ρAρB · g).

• ρAρBαC : (rp1ρAρBαC , rp
2
ρAρBαC

) = (g, ρAρBαC · g).

• βγ: (rp1βγ , rp
2
βγ) = (g, βγ · g).

Of course, we need to check that Pi has committed to the same element s ∈ F∗r by rps and rp2s .
This is done by the protocol verifier in the next stage.

Part 2: Checking commitment consistency between both groups

For each i ∈ [n], and s ∈ elementsi, the protocol verifier runs SameRatio(rps, rp
2
s), and outputs rej

if any invocation returned rej.

Part 3: Proving and verifying knowledge of discrete logs

Let h := COMMIT(h1 ◦ . . . ◦ hn) be the hash of the transcript of Round 1. P1 computes and
broadcasts h.

For each i ∈ [n]

1. For s ∈ secretsi, let hi,s := h ◦ rp1s. Note that both Pi and the protocol verifier, seeing the
transcript up to this point, can efficiently compute the elements {hi,s}.

2. For each s ∈ secretsi, Pi broadcasts πi,s := NIZK(rp1s, hi,s).

3. The protocol verifier checks for each s ∈ secretsi that VERIFY-NIZK(rp1s, πi,s, hi,s) = acc.

Part 4: The random powers subprotocol:

The purpose of the subprotocol is to output the vector

POWERSτ :=
(

(1, τ, τ2, . . . , τd) · g1, (1, τ, τ2, . . . , τd) · g2
)
,

where τ := τ1 · · · τn. Recall that τ1, . . . , τn are committed values from Round 1.
For a vector V ∈ Gd+1

1 , and a ∈ Fr, we use below the notation powerMult(V, a) ∈ Gd+1
1 , defined

as
powerMult(V, a)i , ai · V,

for i ∈ {0, . . . , d}. We use the analogous notation for a vector V ∈ Gd+1
2 .

8

Phase 1: Computing power vectors

1. P1 does the following.

(a) Computes V1 = (1, τ1, τ
2
1 , . . . , τ

d
1) · g1 and V ′1 = (1, τ1, τ

2
1 , . . . , τ

d
1) · g2.

(b) Broadcasts (V1, V
′
1).

2. For i = 2, . . . , n, Pi does the following:

(a) Compute Vi , powerMult(Vi−1, τi) and V ′i , powerMult(V ′i−1, τi−1).

(b) Broadcasts (Vi, V
′
i).

Phase 2: Checking power vectors are valid The protocol verifier performs the following
checks3 on the broadcasted data from Phase 1:

1. Check that
sameRatioSeq(V1, rp

2
τ1),

and
sameRatioSeq(V ′1 , (V1,0, V1,1))

2. For each i ∈ [n] \ {1} check that

sameRatioSeq(Vi, (V
′
i,0, V

′
i,1)),

sameRatioSeq(V ′i , (Vi,0, Vi,1)),

and
SameRatio((Vi−1,1, Vi,1), rp

2
τi

)

The protocol verifier rejects the transcript if one of the checks failed; otherwise, the coordinator
defines (PKH , Vn, PK

′
H , V ′n) is taken as the subprotocol output.

Phase 3: Checking we didn’t land in the zeros of Z The zero-knowledge property of the
SNARK requires we weren’t unlucky and τ landed in the zeroes of Z(X) := Xd − 1.

• Protocol verifier and all players check that Z(τ) · g1 = (τd − 1) · g1 = Vn,d − Vn,0 6= 1. If the
check fails the protocol is aborted and restarted.

3The checks below could be simplified if we had also used rp1τi . We do not use it as in the actual code, as explained
in Appendix A, we do not have a G1-τi-pair.

9

3.3 Coordinator after Round 2: Computing Lagrange basis using FFT, and
preparing the vectors ~A, ~B and ~C

To avoid a quadratic proving time the polynomials in the QAP must be evaluated in a Lagrange
basis. There seems to be no way of directly computing a Lagrange basis at τ in a 1-round MPC
in a similar way we did for the standard basis in the Random-Powers subprotocol. Thus we will
do ‘FFT in the coefficient’ to compute the Lagrange basis on the output of the random-powers
subprotocol. Details and definitions follow. Let ω ∈ Fr be a primitive root of unity of order d = 2`,
in code d is typically the first power of two larger or equal to the circuit size.

For i = 1, . . . , d, we define Li to be the i’th Lagrange polynomial over the points
{
ωi
}
i∈[d]. That

is, Li is the unique polynomial of degree smaller than d, such that Li(ω
i) = 1 and Li(ω

j) = 0, for
j ∈ [d] \ {i}.

Claim 3.1. For i ∈ [d] we have

Li(X) := cd ·
d−1∑
j=0

(X/ωi)j ,

for cd := 1
d .

Proof. Substituting X = ωi
′

for i′ 6= i we have a sum over all roots of unity of order d which is 0.
Substituting X = ωi we have a sum of d ones divided by d which is one.

For τ ∈ F∗r , denote by we denote by LAGτ ∈ Gd
1 ×Gd

2 the vector

LAGτ :=
(
(Li(τ) · g1)i∈[d], (Li(τ) · g2)i∈[d]

)
.

The purpose of the FFT-protocol is to compute LAGτ from POWERSτ . Let us focus for simplicity
how to compute the first half containing the G1 elements. Computing the second half is completely
analogous. We define the polynomial P (Y)(= Pτ (Y)) by

P (Y) :=
<d∑
j=0

(τ · Y)j .

It is easy to check that

Claim 3.2. For i ∈ [d]
Li(τ) = P (ω−i) = P (ωd−i),

and thus
LAGτ = (P (ω−i))i∈[d] · g

Thus our task reduces to computing the vector (P (ωi))i∈[d]·g1 (and then reordering accordingly).

We describe an algorithm to compute the vector (P (ωi))i∈[d] using the vector (1, τ, τ2, . . . , τd) as
input and only linear combination gates. This suffices as these linear combinations can be simulated
by scalar multiplication and addition in G1, when operating on POWERSτ . We proceed to review
standard FFT tricks that will be used.

10

For a polynomial P (Y) =
∑<d

i=0 ai · Y i of degree smaller than d, where d is even, we define the
polynomials

PEVEN(Y) :=

<d/2∑
i=0

a2i · Y i,

and

PODD(Y) :=

<d/2∑
i=0

a2i+1 · Y i.

It is easy to see that
P (Y) = PEVEN(Y 2) + Y · PODD(Y 2).

In particular, for i ∈ [d]
P (ωi) = PEVEN(ω2i) + ωi · PODD(ω2i)

For j = 0, . . . , `−1 denote ωj , ω2j . Note further that
{
ω2i
}
i∈[d] is a subgroup if size d/2 generated

by ω1. More generally, for j = 1, . . . , `− 1
{
ω2i
j−1

}
i∈[d]

is a subgroup of size 2d−j generated by ωj .

The above discussion suggests the following (well-known FFT) recursive algorithm.
FFT
input: Polynomial P , given as list of coefficients, element ω ∈ Fr generating a group of size d = 2`.
output: The vector V = (P (ωi))i∈[d].

1. If d = 2 compute V directly.

2. Otherwise,

(a) Call the method recursively twice; first with PEVEN and ω2 to obtain output E :=
(PEVEN(ω2i))i∈[d/2], and then with PODD and ω2 to obtain the vectorO := (PODD(ω2i))i∈[d/2].

(b) Compute the vector V using E,O and the equality mentioned above. More specifically,
each element Vi of V is computed as

Vi = P (ωi) = PEVEN(ω2i) + ωi · PODD(ω2i) = Ei + ωi ·Oi,

(where we subtract d/2 from indices of E and O when they are larger than d/2).

In summary, we obtain LAGτ by applying the FFT and the polynomial P described above, with
coefficients 1, τ, . . . , τd−1 and an ω of order d - which should be the same ω used in the QAP
construction. After getting the result from the FFT, we reverse the order of the vector and multiply
each element by the scalar 1/d.

Preparing the vectors ~A, ~B and ~C We need to compute the vectors ~A := (Ai(τ))i∈[0..m+1] · g1,
~B := (Bi(τ))i∈[0..m+1] · g1, ~B2 := (Bi(τ))i∈[0..m+1] · g2, and ~C := (Ci(τ))i∈[0..m+1] · g1. We remark
that [BCTV14] use the same notation for vectors of polynomials, while we are looking at the vector
of these polynomials evaluated at τ .

11

Note that4 Am+1 = Bm+1 = Cm+1 := Z[τ] · g1 = (τd− 1) · g1. After the FFT, we have obtained
LAGτ , so each such element is a linear combination of elements of LAGτ ; except Z(τ) · g, that can
be computed using the elements τd · g in POWERSτ .

3.4 Round 3

After the random-powers subprotocol and the FFT, the MPC consists of a few invocations of
the random-coefficient subprotocol. These invocations add a total of two rounds to the MPC, as
sometimes and random-coefficient subprotocol will need the output of a previous random-coefficient
subprotocol as input.

Part 1: broadcasting result of FFT The coordinator broadcasts the vectors ~A, ~B, ~C, ~B2.

Part 2: Random coefficient subprotocol invocations We apply the random-coefficient sub-
protocol numerous times to obtain the different key elements. For an element αi ∈ elementsi, we
abuse notation here and denote α := α1 · · ·αn (as opposed to ommitting the index i and writing α
for αi which we did when describing Round 1).

1. PKA = RCPC(~A, ρA).

2. PKB = RCPC(~B2, ρB).

3. PKC = RCPC(~C, ρAρB).

4. PK ′A = RCPC(~A, ρAαA)

5. PK ′B = RCPC(~B, ρBαB).

6. PK ′C = RCPC(~C, ρAρBαC))

7. tempB = RCPC(~B, ρB)

8. V KZ = RCPC(g2 · Z(τ), ρAρB). We use that g2 · Z(τ) = g2 · (τd − 1) can be computed from
PK ′H that was computed in Round 2, part 2, as described in Section 3.2.

9. V KA = RCPC(g2, αA).

10. V KB = RCPC(g1, αB).

11. V KC = RCPC(g2, αC).

4A technicality is that in the protocol description in [BCTV14] Z(τ) · g2 is appended with index m+ 2 in ~B2, and
Z(τ) · g1 is appended in index m+ 3 in C. However in the actual libsnark code, they are appended in index m+ 1,
and the prover algorithm is slightly modified to take this into account. But for the security proof we assume later on
as in [BCTV14] that Am+1 = Cm+3 = Z(τ) · g1, Bm+2 = Z(τ) · g2, Am+2, Am+3, Bm+1, Bm+3, Cm+1, Cm+2 = 0.

12

3.5 Round 4: Computing key elements involving β, especially PKK

Each player (or just the coordinator) computes V := PKA + tempB + PKC . The players compute

1. PKK = RCPC(V, β)

2. V Kγ = RCPC(g2, γ)

3. V K1
βγ = RCPC(g1, βγ).

4. V K2
βγ = RCPC(g2, βγ).

Finally, the protocol verifier will run verifyRCPC(,) on the input and transcript of each subprotocol
executed in Round 3 or 4; and output acc if and only if all invocations of verifyRCPC(,) returned
acc.

4 Security proof

Fix a QAP instance φ and input x for φ. Let V be the snark verifier of [PHGR16]. We denote by
T ⊂ [n], |T | = n − 1, the subset of players controlled by the adversary B. Our goal is to show
that under certain cryptographic assumptions, most notably the Knowledge of Exponent (KEA)
assumption, if B can generate a proof that V(φ, x) accepts with non-negligible probability, when
V is using the parameters generated in the protocol, then there exists an extractor E generating a
witness ω satisfying (φ, x) with non-negligible probability. Our proofs hold in the random oracle
model where a random oracle R takes the place of COMMIT in the protocol.

Notational conventions To simplify notations we will refer to a fixed pair of groups (G1,G2).
of order r; we implicitly assume that we have a generator G that when given integer t as parameter,
returns a prime r with r = poly(t) and groups G1,G2,Gt of order r, with the property that for
all cryptographic problems described next (Knowledge of Exponent, Strong Diffie-Helman, Power
Diffie-Helman) an efficient adversary has negl(log r) success probability; where we remind that by
efficient adversary we mean a non-uniform (sequence of) circuit(s) of size poly(log r).

4.1 Cryptographic assumptions

We use bilinear versions of the Strong Diffie-Helman, Power Diffie-Helman, and Knowledge of
Exponent assumption as in [CFH+15]. It will be convenient to denote G∗ := G1 \ {0} ×G2 \ {0},
and as before by g = (g1, g2) a pair of generators for both groups.

Definition 4.1 (Knowledge of Exponent Assumption (KEA)). For any efficient A there exists an
efficient E such that the following holds. Fix positive integer d, and an efficient randomized circuit
S with input domain (G∗)2(d+1). Consider the following experiment.

τ, α ∈ F∗r and g ∈ G∗ are chosen uniformly. We denote V := (1, τ, . . . , τd, α, ατ, . . . , ατd) · g
Then A is given as input S(V); and outputs a pair of the form (c, d) in G1 \ {0}, which he “hopes”
is of the form (c, αc). E, given the same input, outputs a0, a1, . . . , ad ∈ Fr such that the probability
that both

1. A “succeeded”, i.e., d = α · c. But,

13

2. E “failed”, i.e., c 6= (
∑d

i=0 aiτ
i) · g1.

is negl(log r). The same holds when G1 \ {0} is replaced by G2 \ {0} and g1 is replaced by g2.

Remark 4.2. Bitansky et. al [BCPR14], in fact show that the above assumption is false, assuming
the existence of indistinguishability obfuscation, when allowing a general S. If one is troubled by
this, one may replace the general S in the above definition, by limiting S to be a circuit that
computes one of the functions in Claim 4.5, after computing its inputs from a uniformly chosen
vector secrets ∈ (F∗r)8.

We preferred to stick with the less cumbersome definition above, particularly, as the existence
of indistinguishability obfuscation is questionable.

Definition 4.3 (q-SDH assumption). Fix positive integer q. Consider the following experiment.
τ ∈ F∗r and g ∈ G∗ are chosen uniformly. Then an efficient A is given as input (1, τ, . . . , τ q) · g.

Then the probability that A outputs e(g1, g2)
1
τ+c , for some c ∈ F∗r is negl(log r).

Definition 4.4 (q-PDH assumption). Fix positive integer q. Consider the following experiment.
τ ∈ F∗r and g ∈ G∗ are chosen uniformly. Then an efficient A is given as input (1, τ, . . . , τ q, τ q+2, . . . , τ2q)·
g. Then the probability that A outputs τ q+1 · g1 is negl(log r).

4.2 The Pinocchio Theorem

We refer to Appendix B of [BCTV14] for a description of the Pinocchio protocol [PHGR16] with
notation close to what is used here. We also give a semi-formal description of the protocol in
Appendix B.

Furthermore, one may refer to [PHGR16] and [BCTV14] for definitions relating to quadratic
arithmetic programs (QAPs), that we assume familiarity with here. Given a QAP instance φ of
degree d, we typically denote by paramsφ a legitimate set of Pinocchio parameters, i.e., proving
key and verification key, for φ. We can think of paramsφ as a deterministic function of the values
τ, ρA, ρB, αA, αB, αC , γ, β ∈ F∗r ; or alternatively of a vector secrets ∈ (F∗r)8 consisting of these values.
Actually, for our security proof we need to define paramsφ to include all Pinocchio key elements
“given in both groups”. Specifically, denoting g := (g1, g2),

paramsφ(secrets) := (PH , Pφ, Pαφ, PK , V),

where PH :=
{
τ i · g

}
i∈[d] , Pφ := (PA, PB, PC), Pαφ := (PαA, PαB, PαC), PK := β · (PA + PB + PC),

where
PA := (Ai · gA)i∈[m], PαA := (AiαA · gA)i∈[m],

and PB, PαB, PC , PαC defined similarly, where gA := ρA · g, gB := ρB · g and gC := ρAρB · g, and

V := (ρA, ρB, αA, αB, αC , ρAρBZ(τ), γ, βγ) · g

The following claim enables us to use the knowledge of exponent assumption in the proof of
Theorem 4.6.

Claim 4.5. There are efficient (deterministic) functions FA, FB, FC such that the following holds.
Fix any vector secrets = (τ, ρA, ρB, αA, αB, αC , γ, β) in (F∗r)8 and instance φ. Denote by secretsA, secretsB
and secretsC the vector secrets when omitting the element αA, αB and αC respectively. Then

paramsφ(secrets) = FA(PH , PH · αA, secretsA, φ)

= FB(PH , PH · αB, secretsB, φ) = FC(PH , PH · αC , secretsC , φ)

14

Proof. By simple examination of the elements of paramsφ(secrets). For example, the only elements
in paramsφ(secrets) that are not a function of secretsA are PαA and αA · g ∈ V . Both are a joint
efficient function of ρA and PH ·αA: We can compute PH ·αA ·ρA =

{
τ iρAαA · g

}
i∈[d] and then PαA

elements are linear combinations of elements of this vector, and αA · g is simply the first element
of PH · αA.

Recall that V denotes the Pinocchio protocol verifier. The inputs of V include the QAP instance
φ, the instance input x, the CRS or public parameters paramsφ, and the purported proof π that
indeed x satisfies φ, and that the prover knows a witness showing this. A slight modification of the
security proof of [PHGR16] shows that

Theorem 4.6. [Pinocchio proof of knowledge] For any efficient A there exists an efficient extractor
E such that for any instance φ and input x the following holds. The probability over secrets ∈ (F∗r)8,
when A and E are given (φ, x) and paramsφ(secrets) as input that

1. A produces π such that V(φ, x, paramsφ(secrets), π) = acc, but

2. E does not output a witness ω satisfying (φ, x),

is negl(log r).

The proof is almost identical to that of [PHGR16], but we present it here for completeness, at
times referring to [PHGR16] for details. An advantage of this proof is that it works for the variant
of Pinocchio actually implemented in libsnark, as described in Appendix B of [BCTV14]. To our
knowledge, no proof for this variant is written elsewhere. We also recommend looking at the proofs
of [GGPR13, CFH+15] for intuition and clarifications.

Proof. We are given A and wish to construct E. We describe how E operates given inputs (φ, x)
and paramsφ(secrets). Recall that the purported proof π produced by A has the structure, in the
notation of [BCTV14],

π = (πA, πB, πC , π
′
A, π

′
B, π

′
C , πK , πH).

From the description of V, we know that whenever A produces a proof π accepted by V, we
have in particular, π′A = αA · πA, π′B = αB · πB and π′C = αC · πC , where αA, αB, αC are the
corresponding elements of the vector secrets. E works as follows. It gives paramsφ(secrets) as
input to the extractors EA, EB, EC that exist by the KEA assumption together with Claim 4.5
and Remark 4.2. Let a0, . . . , ad be EA’s output. Define Amid(X) :=

∑d
i=0 ai · Xi. Let Aio be

the polynomial of degree at most d defined by the io elements in x; i.e., when x = (c1, . . . , cn),
Aio(X) := A0(X)+

∑n
i=1 ci ·Ai(X). Define A(X) := Aio(X)+Amid(X). E does an analogous thing

with EB and EC to obtain polynomials B,C. Now, using linear algebra, E determines whether
there exists a set of coefficients c = (c0 = 1, c1, . . . , cm), such that

A(X) =

m∑
i=0

ci ·Ai(X), B(X) =

m∑
i=0

ci ·Bi(X), C(X) ·
m∑
i=0

ci · Ci(X).

From the non-degeneracy property5 [BCTV14], it follows that if there exists such c it coincides
with x on c1, . . . , cn. If such c exists, output any such c as the proposed QAP witness ω for (φ, x).

5One needs to make a stronger definition of non-degeneracy than given in [BCTV14]. Specifically, we require that
A0, . . . , An are linearly independent and their span is disjoint form the span of {An+1, . . . , Am} except for 0.

15

Otherwise, abort. Let η be the probability that A produced a valid proof but E did not produce a
valid assignment for (φ, x). Let q := 4d+4. We construct an efficient B with the following property.
Given a challenge challenge = challenges := (1, s, . . . , sq, sq+2, . . . , s2q) · g, where s is uniform in F∗r ,
B outputs with probability η − negl(log r) either

• sq+1 · g1, or

• e(g1, g2)
1
s+t , for some t ∈ F∗r .

This implies that η = negl(log r), as otherwise it would contradict the 2q − SDH or q − PDH
assumption. Thus, showing η = negl(log r) suffices to prove the theorem. 6

Description of B: Given challenge, B begins by constructing a valid set of parameters paramspin,
that are a randomized function paramspin(s) of s ∈ F∗r , as follows.

1. αA, αB, αC , ρ
′
A, ρ

′
B, γ

′ are chosen uniformly in F∗r

2. We define ρA := ρ′A · sd+1, ρB := ρ′B · s2(d+1)

3. For i ∈ [0..m], define the polynomial Pi(X) := ρ′AX
d+1 · Ai(X) + ρ′BX

2(d+1) · Bi(X) +
ρ′Aρ

′
BX

3(d+1) · Ci(X). Define V to be the Fr-linear space V := span {Pi}i∈[0..m] and U to be
the Fr-linear space of all polynomials f of degree at most 3d + 3 such that f · Pi has a zero
coefficient at Xq for each i ∈ [0..m].

4. Choose random f ∈ U , and let β := s · f(s).

5. Let γ := γ′ · sq+2.

6. output paramspin(s) := paramsφ(s, ρA, ρB, αA, αB, αC , γ, β).

It can be verified that

1. When s is uniform in F∗r , paramspin(s) is distributed as paramsφ(secrets) for uniform value of
secrets.

2. paramspin(s) can be efficiently computed from challenges.

The main point to see the second item is that the power sq+1 does not appear in any of the
elements of paramspin(s) (this is immediate for most elements, and requires a calculation for elements
containing β).

NowB runsA on (φ, x, paramspin(s)) to obtain a purported proof π = (πA, πB, πC , π
′
A, π

′
B, π

′
C , πK , πH).

B also runs EA, EB, EC on paramspin(s) to obtain polynomials A,B,C described above, and
attempts to find a vector c of coefficients as above. Because of Item 1, together with the KEA and
the reasoning above, we know that with probability at least η − negl(log r) over s,

Aio(s)ρA · g1 + πA = A(s)ρA · g1;πB = B(s)ρB · g2;πC = C(s)ρAρB · g1,

but one of the following happened

6For the completely precise argument one must also choose g ∈ G∗ randomly and take success probability over
that. To avoid having to “carry the g”, we implicitly assume that whenever a statement is made about fixed g it
happens with non-negligible probability over a uniform choice of g. e.g. in the theorem statement we are actually
assuming A produces a valid proof for (φ, x, paramsφ(secrets)) with probability δ, for a non-negligible fraction of
g ∈ G∗.

16

1. There does not exist a vector c as described above.

2. Such c exists but is not a valid QAP witness for (φ, x)

Define the polynomial

R(X) := ρ′AX
d+1 ·A(X) + ρ′BX

2(d+1) ·B(X) + ρ′Aρ
′
BX

3(d+1) · C(X).

These two cases are equivalent, respectively, to the following two.

1. R(X) is not in the subspace V .

2. P (X) := A(X) ·B(X)− C(X) is not a multiple of Z(X).

Suppose that R(X) is not in V . We show that in this case B can efficiently compute sq+1 · g1:
It follows from Lemma 10 of [GGPR13] that except with probability 1/r (over s and the inner
randomness of paramspin), R′(X) := X · f(X) ·R(X) has a non-zero coefficient at Xq+1. But note
that as π was valid,

πK = β · (ρA ·A(s) + ρB ·B(s) + ρAρB · C(s)) · g1 = R′(s) · g1.

B can thus use challenge to erase all elements of R′(s) · g1 of powers different than q+ 1, obtaining
sq+1 · g1.

Now suppose that P (X) is not a multiple of Z(X). The same argument as in [PHGR16] can

now be used to obtain e(g1, g2)
1
s+t , for some t ∈ F∗r .

We say an adversary A defeats the protocol, if it is able to produce a set of parameters for which
it can construct a valid proof, when COMMIT is replaced by a random oracle. More formally,

Definition 4.7. Let B be an adversary controlling n − 1 out of n players in our protocol. We
assume B is deterministic (as we can fix its randomness to maximize its success probability as
defined next). Let P ∈ {P1, . . . , Pn} be the player not controlled by B. We say B δ-defeats
the protocol on (φ, x) if with probability at least δ over the randomness of P in the protocol,
and over the choices of a random oracle choosing the output values of COMMIT in the protocol
description, the protocol verifier accepts the transcript, and B afterwards produces a proof π such
that V(φ, x, π, paramsBφ) = acc, where paramsBφ are the Pinocchio parameters for instance φ that
were generated by the protocol.

The correctness of the protocol lies in the following theorem.

Theorem 4.8. For any efficient B controlling some subset of n − 1 out of n players, there is an
efficient A such that the following holds. Fix any instance φ and input x. Suppose that B δ-defeats
the protocol on (φ, x). Then A δ

poly(log r) -defeats Pinocchio on (φ, x). In particular, if B’s success
probability is non-negligible, so is A’s success probability.

Before proving the theorem note that an immediate corollary of Theorems 4.6 and 4.8 is

Corollary 4.9. [Knowledge Soundness of Protocol] For any efficient B controlling some subset
of n − 1 out of n players, there is an efficient extractor E such that the following holds. Fix any
instance φ and input x. Suppose that B δ-defeats the protocol on (φ, x). Then E produces a witness
ω satisfying (φ, x) with probability δ

poly(log r) over secrets ∈ (F∗r)8, when given (φ, x, paramsφ(secrets))
as input.

We proceed to prove Theorem 4.8.

17

Proof of Theorem 4.8

For ease of notation, we assume that B controls P2, . . . , Pn. Also, we describe a non-uniform
algorithm making choices depending on (φ, x). However, inspection shows that making all these
choices uniformly (and independently of (φ,x)) succeeds with probability δ/poly log r. We denote
by R the random oracle that chooses the values of COMMIT in the protocol. We assume the range
(i.e. domain of replies) of R is of size M = poly(r) which is exponential in our prespective. We will
denote by π the purported proof and paramsBφ the Pinocchio parameters generated in the protocol
when B is participating. (These are randomized functions of various elements as will be discussed
below). We will say paramsBφ and π are accepted by V, if V(φ, x, paramsBφ , π) = acc. It will be
convenient to view the protocol as divided into two main phases.

1. The commit and prove phase which consists of Round 1 and Parts 1− 3 of Round 2, i.e., all
parts of Round 2 except the random powers subprotocol.

2. the compute parameters phase which consists of the random powers subprotocol in Round 2,
together with Rounds 3 and 4.

Let e = {ei}i∈[n] be the set of elements broadcast in Round 2 Part 1 during some execution of
the protocol. Inspection of the protocol shows that

1. If all players follow the protocol, the transcript of the compute parameters phase is a deter-
ministic function comp-transcript(e) of e.

2. Using the correctness of the sameRatio(,) method, given the value of e in the commit and prove
phase, if one of the players writes a message that does not coincide with comp-transcript(e) in
the compute parameters phase, the transcript will be accepted by the protocol verifier with
probability at most 2/r. Thus, we assume that after the commit and prove phase, B follows
the protocol correctly in the compute parameters phase; as otherwise we may replace him by
another adversary B’ that does so, and δ − negl(log r)-defeats the protocol.

3. In Round 2 Part 3, whenever B broadcasts an element R in one of the nizks, if he has not
queried R(R◦h) where h will be the appropriate element hs,j , the transcript will be accepted
with probability at most 1/M = negl(log r). Thus we can assume B always makes these
queries, as otherwise he may be replaced with an B’ that does and δ− negl(log r) defeats the
protocol.

4. Similarly, if B has not queried R(ei) before broadcasting hi, and has not indeed broadcasted
R(ei) as hi, where ei is what he will broadcast in Round 2 Part 1 his success probability is
negligible, and we can assume this is not the case.

Note that P1, acting honestly makes 10 calls to R- one in the first round to compute his message
h1, and 9 to compute the elements h, {h1,s} in Round 2 Part 3. Let us assume B makes exactly
Q′ queries to R during Round one and two, and let Q := Q′ + 10 be the total number of queries
made to R. Note that Q = poly(log r) since the size of B is poly(log r). Denote the answers of R
by C := {c1, . . . , cQ}. Denote the queries by q1, . . . , qQ. Assume q1, . . . , qQ/2 are exactly the ones
made before the broadcast of e1 in Round 2. Denote by M the set of messages of P1 in the Round
2 part of the commit and prove phase, that are not outputs of R- so M consists of the values ei
and the outputs {π1,s} of the nizks from Round 2 Part 3.

18

Under this assumption, together with items 2 and 3 above, the whole protocol transcript, and
in particular the Pinocchio parameters paramsBφ and the purported proof π generated by B, are a

deterministic function F of (C,M); i.e., we can denote (paramsBφ , π) = F (C,M). From the fact that
B δ-defeats the protocol, we know that there is a set of density δ of sequences (C,M) that cause
B to produce a valid proof π when V uses paramsBφ . We can thus, using an averaging argument, fix
a set of values S for (C,M) such that

1. S has probability mass δ′ = δ−negl(log r) in the space of all possible values for (C,M), when
C is random, and M is distributed according to an honest player P1’s messages.

2. C contains all distinct elements.

3. For any (C,M) ∈ S, F (C,M) is accepted by V.

Denote E := ∪i∈[2..n]secretsi, and enumerate the elements of E somehow as E1, . . . , E`, where
` := 8 · (n − 1). Note that the elements of E are determined (although not efficiently) by the
protocol transcript and thus by (C,M). Note that in Round 2, B has to present Schnorr nizk
proofs for all elements of E, each requiring a query to R on the corresponding element R ◦ h. By
another averaging argument similar to the “forking lemma”, there exists a permutation σ on [`] and
indices 1 ≤ i1 < . . . < i` ≤ Q such that there is a subset of T ⊂ S of density (meaning probability
mass) δ′′ := δ′/Q` (in the space of all values for (C,M)) such that for each (C,M) ∈ T

1. F (C,M) is accepted by V.

2. When executing the protocol with (C,M), for each j ∈ [`], B uses the value cij for the
challenge c in the nizk of Eσ(j).

We assume from now on that σ is the identity for simplicity of notation. Yet another averaging
argument, using the non-negligibility of δ′′, allows us to construct a string C∗ such that

1. (C∗,M) ∈ T with probability δ′′ over M .

2. For any j ∈ [`], there are strings (C ′,M ′), (C ′′,M ′) ∈ T , i.e., that agree on the M ′ part, such
that C ′ and C ′′ agree with C∗ on first ij −1 indices, but disagree with each other on the ij ’th
coordinate.

We now note an important point:
Fix some j ∈ [`]. Then any string (C ′,M ′) ∈ T in which C ′ agrees with C∗ on indices 1, . . . , ij−1,

must lead to the same value of Ej . This is because conditioned on being in T , the query qij to R
will contain rp1Ej - which uniquely determines Ej , and the value of qij is a deterministic function

of c1, . . . , cij−1, when ij ≤ Q/2, and otherwise using item 4 Ej is determined by c1, . . . , cQ/2. The
second property above about the elements (C ′,M ′), (C ′′,M ′) ∈ T implies we have access to two
valid Schnorr nizks for Ej with the same R but different challenges c, which implies using the
well-known Schnorr extractability property that A can extract the value Ej used by B given any
(C∗,M) ∈ T .

Now let T ′ be the subset of T consisting of elements beginning with C∗

Now let paramsφ = paramsφ(secrets) be the parameters given as a challenge to A (for which he
should construct an accepting proof). Let secrets1 := secrets/(secrets2 · · · secretsn) be the coordinate
wise division of the corresponding secrets vectors. Recall E = secrets2 ∪ . . . ∪ secretsn is fixed

19

conditioned on (C,M) ∈ T ′, and A has extracted the values E. Inspection of the protocol shows
that A can efficiently play the role of P1 when he chooses this value of secrets1, just from knowing7

E and paramsφ(secrets), with one potential exception: Constructing valid nizks of the elements of
secrets1 which he does not know. However, he can do this also using his ability to program R. He
will choose random Fr elements as the answers u in the nizks and then compute R := c ·H − u · f .
and set R(R) = c, unless R(R) has been queried by B in which case he aborts. He then conducts
the protocol with B using the values (C∗,M), and outputs the proof π generated by B. Note
that when following this strategy secrets1 and all the corresponding R’s in the nizks are uniformly
distributed. Thus the probability that (C∗,M) ∈ T ′ when M is derived from the R’s and secrets1
is at least δ′′. Thus the probability that F (C∗,M) will satisfy V when using this strategy is at least
δ′′ which is non-negligible when δ is non-negligible.

4.3 Zero-Knowledge

Campanelli, Gennaro, Goldfeder and Nizzardo [CGGN17] have recently noted that a malicious
choice of paramsφ can potentially break the zero-knowledge guarantee of the Pinocchio protocol. We
prove that statistical zero-knowledge holds when using the parameters generated by our protocol,
even in the case that all n players are malicious and colluding, provided the prover verifies the
protocol transcript before sending her proof.

Denote by P the (honest) prover of the Pinocchio protocol. We can think of P as a randomized
function P(φ, x, paramsφ, ω) generating a proof according to the instance, input, public parameters
and witness. (See Appendix B of [BCTV14] for a full description of P.) We slightly alter P and
think of it as an algorithm P(φ, x, transcript, ω) that also receives a protocol transcript transcript,
and first applies the protocol verifier on transcript. If the protocol verifier rejects, P outputs rej and
nothing else. If the protocol verifier accepts, P derives the parameters paramsφ from the transcript,
and outputs P(φ, x, paramsφ, ω) for the original prover P. We will assume further for simplicity that
P applies a deterministic protocol verifier. This mean she will not use the more efficient randomized
checking of whether a vector is an s-vector as described in Claim 2.3, but will check each s-pair
separately as described in Claim 2.2.

Theorem 4.10. [Statistical Zero-Knowledge] For any polynomial P and positive integer8 n, there
is an efficient sim such that the following holds. Fix any efficient B controlling all n players in
the protocol, instance φ, input x and witness ω. Let D be the distribution obtained by outputting
the protocol transcript transcript(B) concatenated with the proof P(φ, x, transcript(B), ω) (over the
randomness of B in the protocol, the randomness of the oracle R, and that of P in generating the
proof). Then the distribution Dsim of the output of simB has distance at most 1/P (log r) to D.

Proof. Note that if we can simulate D with error 1/P (log r) conditioned on every fixing of the
randomness of B, we can simulate the fully randomized B with the same error. So the simulator
begins by choosing the randomness of B uniformly, and we can assume we are working with a
deterministic B. Assume B always makes exactly Q queries to the random oracle R emulating
COMMIT (if this is just an upper bound we can think of B not reading the last answers sometimes).
As before, we denote by M the range size of R and assume r ≤ M ≤ poly(r). The transcript output

7This is the place where it is essential that paramsφ(secrets) contains an extended CRS with elements in both
groups; otherwise this claim would be false.

8Examining the proof shows that it works also for n = poly log r but since our soundness proof requires constant
n, we state the theorem here also for constant n.

20

transcript(B) is a deterministic function of a sequence r of answers of R to queries of B. We denote
this transcript transcript(r). The corresponding set of queries {q1, . . . , qQ} of B to R is also a
deterministic function of r. More specifically, the first i+ 1 queries are a deterministic function of
the first i elements of r. We denote by Dr the distribution of P(φ, x, transcript(r), ω).

We will show that for a (1 − 1/P (log r))-fraction of the sequences r, sim can simulate Dr with
error negl(log r) given r. Clearly this suffices - as sim can choose a random r, output transcript(r)
and then try to simulate Dr using this method.

sim begins by sampling a random sequence r and characterizing it as either good, negligible or
bad. This characterization will have the property that a bad sequence r will have Dr be rej with
probability 1− negl(log r), and the negligible r together will have probability negl(log r).

Characterizing r: If r has repetitions it is labeled negligible - because since Q = poly log r, such
sequences are a negl(log r) fraction. Otherwise sim executes B(r). If B aborts before producing a
full transcript, r is labeled bad. In particular, sim has checked if the values {ei}i∈[n] and nizk proofs
{πi,s}i∈[n],s∈secretsi are present in the Round 2 part of the transcript and otherwise labeled r bad.

It then checks if the queries {R(ei)}i∈[n],h := R(R(e1)◦. . .◦R(en)),
{
R(Rs ◦ h ◦ rp1s)

}
i∈[n],s∈secretsi

were made (recall that B’s sequence of queries is a deterministic function of r that can be efficiently
derived given blackbox access to B); here Rs is the first part of πi,s. If not all queries were made,
r is labeled as bad - as the transcript is correct only if

• the values {hi} in the transcript are equal to {R(ei)},

• the nizk proofs πi,s are verified with challenges
{
ci,s(r) := R(Rs ◦ h ◦ rp1s)

}
, which in turn

determine a unique uniformly distributed correct second element of πi,s,

and this requires guessing in advance at least one output ofR, that can succeed only with probability
1/M.

If all queries were made, sim derives the sequence of indices I = I(r) of the queriesR(e1), . . . ,R(en),
and a sequence of indices J = J(r) where the queries {ci,s} were made. Note that in this case the
transcript validity is a deterministic function of transcript(r) and r; as r contains all queries to R of
the protocol verifier. sim checks if the protocol verifier accepts and if not labels r bad. sim checks
if the query to h was made after all queries in I, if not r is labeled negligible as the transcript will
only be valid if for some i ∈ [n], denoting the query R(h1 ◦ . . . ◦ hn), hi corresponds to the later
determined R(ei). sim then checks if I < J in the sense that all elements of I are smaller than all
elements of J . If this is not the case, r is labeled negligible - as in this case the transcript is valid only
if for some i ∈ [n] the value h in the queries R(Rs ◦h ◦ rp1s) equals the value R(R(e1), ◦ . . . ◦R(en))
determined later in the sequence r. If r has been labeled so far sim outputs rej. If sim has not
been labeled so far (as bad or neutral), it is labeled good. In this case we can define the vector
secrets(r), such that the parameters derived from transcript(r) are paramsφ(secrets), which is the
vector of secrets uniquely determined by the product of secrets of each player which in turn are
uniquely determined by the elements e1, . . . , en in transcript(r).

The proof now follows from two claims. The first tells us that for a good r, Dr can be simulated
given secrets(r). The second tells us that for a (1 − 1/P (log r))-fraction of good r, we can obtain
secrets(r) with probability 1− 1/r.

Claim 4.11. For any polynomial P , there is an algorithm alg that for a (1− 1/P (log r))-fraction
of good r, obtains secrets(r) given r with probability 1− 1/r in time poly log r.

21

Proof. Denote S = ∪i∈[n]secretsi, where secretsi is the vector of variables τi, ρA,i, ρB,i, αA,i, αB,i, αC,i, γi, βi.
For good r, and s ∈ S we denote by is(r) the index corresponding to s in I(r) and by js(r) the index
corresponding to s in J(r). Note that for good r we always have is(r) < js(r).

For j ∈ [Q], and r ∈ [M]Q, we denote by W |r\j the strings r′ ∈ [M]Q that are equal to r outside

of j. For s ∈ S and good r, we denote by Wr,s the set of good r′ ∈ [M]Q that are equal to r outside
of js(r), and have is(r

′) = is(r) and js(r
′) = js(r). Note that the set Wr,s is determined by the

two indices is(r), js(r) and the values of r outside of js(r); thus, there are at most MQ−1 ·Q2 such
distinct sets. Note also that Wr,s ⊆W |r\js(r).

Now given good r, alg does the following. Denote P ′ := 2P · Q2. For each s ∈ S, letting
j := js(r), alg samples 2P ′(log r) · log r strings r’ from W |r\j . For each one he checks if r′ ∈ Wr,s

and if r′j 6= rj . If both checks hold, it means, that in transcript(r) and transcript(r′) he possesses two
valid nizk proofs for s with the same first prover message Rs but different challenges. This means
he can obtain s(r) using Schnorr’s extractability property.

Now the question is what is the probability of not finding a sequence r’ enabling extraction
of s(r). We claim this is at most 1/r, when the density of Wr,s in W |r\j is at least 1/P ′(log r):
In this case the density of elements of Wr,s such that r′j 6= rj is at least 1/P ′(log r) − 1/M ≥
1/2P ′(log r) for large enough r. Thus, the probability that no such element r’ is found is at most
(1− 1/2P ′(log r))2P

′(log r)·log r ≤ 1/r.
Using the union bound, alg extracts all secrets with probability 1 − 8n/r for r such that the

density of Wr,s in W |r\js(r) is at least 1/P ′(log r) for each s ∈ S. Now we must bound the density
of good r that do not have this property. Each such r belongs to a set Wr,s containing at most
M/P ′(log r) elements. Thus, there at most

M ·MQ−1 ·Q2

P ′(log r)
=

MQ ·Q2

2P (log r) ·Q2
=

MQ

2P (log r)

such elements, which is a 1/2P (log r) fraction of the space.

Claim 4.12. Suppose that r is good. Then given secrets(r), Dr can be efficiently simulated with no
error

Proof. The proof is similar to that of Theorem 13 in [GGPR13]. Note that when r is good the
elements Am+1 = Bm+2 = Cm+3 in paramsφ(secrets(r)) are non-zero, as this is required for the
transcript to be accepted.

We abuse notation and denote the discrete logs of the proof elements by themselves. As
Am+1, Bm+2, Cm+3 are non-zero, πA, πB, πC are uniformly distributed in Fr since cm+1, cm+2, cm+3

are chosen uniformly by P. Now, in a valid proof the other proof elements π′A, π
′
B, π

′
C , πK , πH are

deterministic functions of πA, πB, πC , derived from the verification constraints (see Appendix B).
Moreover, given secrets and the discrete logs of πA, πB, πC , they can be efficiently derived: Defining
Aio as in the proof of Theorem 4.6, we have

1. π′A = αA · πA

2. π′B = αB · πB

3. π′C = αC · πC

4. πH = ((Aio(s) + πA) · πB − πC)/Z(s)

22

5. πK = β · ((Aio(s) + πA) + πB + πC)

Thus, given the value of secrets(r), sim can efficiently simulate the distribution Dr.

Acknowledgements

We thank Eli Ben-Sasson, Alessandro Chiesa, Jens Groth, Daira Hopwood, Hovav Shacham, Eran
Tromer, Madars Virza, Nathan Wilcox and Zooko Wilcox for helpful discussions. We thank Daira
Hopwood for pointing out some technical inaccuracies. We thank Eran Tromer for bringing to our
attention the work of [CGGN17], and the relevance of our protocol to that work, and the connection
to subversion zero-knowledge in general.

References

[ABLZ17] B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajc. A subversion-resistant snark.
2017.

[BCG+15] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. Secure sampling of
public parameters for succinct zero knowledge proofs. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 287–304,
2015.

[BCPR14] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. On the existence of extractable
one-way functions. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 505–514, 2014.

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero
knowledge for a von neumann architecture. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014., pages 781–796, 2014.

[BFS16] M. Bellare, G. Fuchsbauer, and A. Scafuro. Nizks with an untrusted CRS: security in
the face of parameter subversion. IACR Cryptology ePrint Archive, 2016:372, 2016.

[CFH+15] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno,
and S. Zahur. Geppetto: Versatile verifiable computation. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270,
2015.

[CGGN17] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo. Zero-knowledge contingent
payments revisited: Attacks and payments for services. Commun. ACM, 2017.

[Fuc17] G. Fuchsbauer. Subversion zero-knowledge snarks. 2017.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and suc-
cinct nizks without pcps. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

23

[lib] https://github.com/scipr-lab/libsnark,https://github.com/zcash/libsnark.

[PHGR16] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: nearly practical verifiable
computation. Commun. ACM, 59(2):103–112, 2016.

[Sch89] C. Schnorr. Efficient identification and signatures for smart cards. In Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, pages 239–252, 1989.

[Wil] Z. Wilcox. https://z.cash/blog/the-design-of-the-ceremony.html.

A Actual, more complicated version of ei in code

For each i ∈ [n], Pi first constructs elementsi as in Subsection 3.1. That is

1. As described in Generate a set of uniform elements in F∗r

secretsi := {τi, ρA,i, ρB,i, αA,i, αB,i, αC,i, βi, γi}

, and let
elementsi := {τi, ρA,i, ρB,i, αA,i, αB,i, αC,i, βi, γi, ρA,iαA,i, ρB,iαB,i,

ρA,iρB,i, ρA,iρB,iαC,i, βiγi}

2. Now each player generates a somewhat complex set of group elements from its set of secrets.
We omit the index i for clarity of notation, but it should be appended to all elements below:

(a) Pi chooses random elements f1, f2, f3 ∈ G2 \ {0} and random elements f4, f5, f6, f7, f8 ∈
G1 \ {0}.

(b) Pi stores the sets of G2 elements

e2i := {f1, f1 · ρA, f1 · ρAαA, f1 · ρAρBαC , f1 · ρAρB, f1 · ρAρBαB,

f2, f2 · β, f2 · βγ, f3, f3 · τ},

and the set of G1 elements

e1i := {f4, f4 · αA, f5, f5 · αC , f6, f6 · ρB, f7, f7 · ρA, f8, f8 · γ} .

3. Finally, define ei := e1i ◦ e2i .

Validity of more complicated definition The only requirement for ei to run the protocol is
that we always have the needed s-pair for each s ∈ elementsi. Inspection shows this is the case with
the definition here. For example, Pi has broadcasted (omitting index i) f1, f1ρA and f1ρAρB as part
of e2i , out of which we can construct the ρA-pair (f1, f1ρA), the ρB-pair (f1ρA, f1ρAρB), and the
ρAρB-pair (f1, f1ρAρB). Since here we don’t have a G1-s-pair and G2-s-pair for each s ∈ elementsi,
less consistency checks are performed in Part 2 of Round 2. (Note that to run the protocol we
don’t need an s-pair for each s ∈ elementsi in each group. For example, we only need a G2-ρA-pair
which is used in Round 3 to compute PKA, but we never use a G1-ρA-pair).

24

B Implementation details

In our implementation we use the libsnark alt_bn128 curve implementation where

1. G1 = E/Fq is a BN curve over Fq. That is the set of solutions in F2
q of an equation of the

form y2 = x3 + b.

2. G2 = E′/Fq2 is a subgroup of order r of a sextic twist of G1. Where a sextic twist of G1

means the set of solutions in Fq2 of y2 = x3 + b/ξ , where ξ ∈ Fq2 \Fq is an element such that
the polynomial W 6 − ξ is irreducible over Fq2 .

3. Gt is a subgroup of order r in Fq12 .

C Pinocchio reminder

We give a brief reminder of how the proof and verification procedure of [PHGR16] look like using
the notation of [BCG+15]. The prover has in his hand a QAP solution (c0 = 1, c1, . . . , cm) that
coincides with the public input x = (c1, . . . , cn) and satisfies the following. If we define A :=∑m

i=0 ci · Ai, B :=
∑m

i=0 ci · Bi, and C :=
∑m

i=0 ci · Ci; then the polynomial P := A · B − C will be
divisble by the target polynomial Z. Given paramsφ(secrets), V will compute

1. πA := ρAA(s) · g1, π′A := αAρAA(s) · g2.

2. πB := ρBB(s) · g2, π′B := αBρBB(s) · g1.

3. πC := ρAρBC(s) · g1, π′C := αCρAρBC(s) · g2.

4. πK := β(ρAA(s) + ρBB(s) + ρAρBC(s)) · g1.

5. πH := (P (s)/Z(s)) · g1.

Now, abuse notation and denote the discrete log of each element above in base g1 or g2 by the
element itself. The verifier, using pairings and the verification key V , will check the following.

1. π′A = αAπA.

2. π′B = αBπB.

3. π′C = αCπC .

4. πK = β(πA + πB + πC).

5. πA · πB − πC = πH · Z(s)ρAρB.

25

