orchard/src/circuit.rs

1215 lines
43 KiB
Rust
Raw Normal View History

//! The Orchard Action circuit implementation.
use core::fmt;
use group::{Curve, GroupEncoding};
use halo2_proofs::{
2022-06-08 17:01:10 -07:00
circuit::{floor_planner, Layouter, Value},
plonk::{
self, Advice, BatchVerifier, Column, Constraints, Expression, Instance as InstanceColumn,
Selector, SingleVerifier,
},
poly::Rotation,
transcript::{Blake2bRead, Blake2bWrite},
};
use memuse::DynamicUsage;
use pasta_curves::{arithmetic::CurveAffine, pallas, vesta};
use rand::RngCore;
use self::{
commit_ivk::{CommitIvkChip, CommitIvkConfig},
gadget::{
add_chip::{AddChip, AddConfig},
assign_free_advice,
},
note_commit::{NoteCommitChip, NoteCommitConfig},
};
use crate::{
builder::SpendInfo,
constants::{
OrchardCommitDomains, OrchardFixedBases, OrchardFixedBasesFull, OrchardHashDomains,
MERKLE_DEPTH_ORCHARD,
},
keys::{
CommitIvkRandomness, DiversifiedTransmissionKey, NullifierDerivingKey, SpendValidatingKey,
},
note::{
commitment::{NoteCommitTrapdoor, NoteCommitment},
nullifier::Nullifier,
ExtractedNoteCommitment, Note, Rho,
},
primitives::redpallas::{SpendAuth, VerificationKey},
spec::NonIdentityPallasPoint,
tree::{Anchor, MerkleHashOrchard},
value::{NoteValue, ValueCommitTrapdoor, ValueCommitment},
};
use halo2_gadgets::{
ecc::{
chip::{EccChip, EccConfig},
FixedPoint, NonIdentityPoint, Point, ScalarFixed, ScalarFixedShort, ScalarVar,
},
poseidon::{primitives as poseidon, Pow5Chip as PoseidonChip, Pow5Config as PoseidonConfig},
sinsemilla::{
chip::{SinsemillaChip, SinsemillaConfig},
merkle::{
chip::{MerkleChip, MerkleConfig},
MerklePath,
},
},
utilities::lookup_range_check::LookupRangeCheckConfig,
};
mod commit_ivk;
pub mod gadget;
mod note_commit;
/// Size of the Orchard circuit.
const K: u32 = 11;
// Absolute offsets for public inputs.
const ANCHOR: usize = 0;
const CV_NET_X: usize = 1;
const CV_NET_Y: usize = 2;
const NF_OLD: usize = 3;
const RK_X: usize = 4;
const RK_Y: usize = 5;
const CMX: usize = 6;
const ENABLE_SPEND: usize = 7;
const ENABLE_OUTPUT: usize = 8;
/// Configuration needed to use the Orchard Action circuit.
#[derive(Clone, Debug)]
pub struct Config {
primary: Column<InstanceColumn>,
q_orchard: Selector,
advices: [Column<Advice>; 10],
add_config: AddConfig,
ecc_config: EccConfig<OrchardFixedBases>,
poseidon_config: PoseidonConfig<pallas::Base, 3, 2>,
merkle_config_1: MerkleConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
merkle_config_2: MerkleConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
sinsemilla_config_1:
SinsemillaConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
sinsemilla_config_2:
SinsemillaConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
commit_ivk_config: CommitIvkConfig,
old_note_commit_config: NoteCommitConfig,
new_note_commit_config: NoteCommitConfig,
}
/// The Orchard Action circuit.
#[derive(Clone, Debug, Default)]
pub struct Circuit {
2022-06-08 17:01:10 -07:00
pub(crate) path: Value<[MerkleHashOrchard; MERKLE_DEPTH_ORCHARD]>,
pub(crate) pos: Value<u32>,
pub(crate) g_d_old: Value<NonIdentityPallasPoint>,
pub(crate) pk_d_old: Value<DiversifiedTransmissionKey>,
pub(crate) v_old: Value<NoteValue>,
pub(crate) rho_old: Value<Rho>,
2022-06-08 17:01:10 -07:00
pub(crate) psi_old: Value<pallas::Base>,
pub(crate) rcm_old: Value<NoteCommitTrapdoor>,
pub(crate) cm_old: Value<NoteCommitment>,
pub(crate) alpha: Value<pallas::Scalar>,
pub(crate) ak: Value<SpendValidatingKey>,
pub(crate) nk: Value<NullifierDerivingKey>,
pub(crate) rivk: Value<CommitIvkRandomness>,
pub(crate) g_d_new: Value<NonIdentityPallasPoint>,
pub(crate) pk_d_new: Value<DiversifiedTransmissionKey>,
pub(crate) v_new: Value<NoteValue>,
pub(crate) psi_new: Value<pallas::Base>,
pub(crate) rcm_new: Value<NoteCommitTrapdoor>,
pub(crate) rcv: Value<ValueCommitTrapdoor>,
}
impl Circuit {
/// This constructor is public to enable creation of custom builders.
/// If you are not creating a custom builder, use [`Builder`] to compose
/// and authorize a transaction.
///
/// Constructs a `Circuit` from the following components:
/// - `spend`: [`SpendInfo`] of the note spent in scope of the action
/// - `output_note`: a note created in scope of the action
/// - `alpha`: a scalar used for randomization of the action spend validating key
/// - `rcv`: trapdoor for the action value commitment
///
/// Returns `None` if the `rho` of the `output_note` is not equal
/// to the nullifier of the spent note.
///
/// [`SpendInfo`]: crate::builder::SpendInfo
/// [`Builder`]: crate::builder::Builder
pub fn from_action_context(
spend: SpendInfo,
output_note: Note,
alpha: pallas::Scalar,
rcv: ValueCommitTrapdoor,
) -> Option<Circuit> {
(Rho::from_nf_old(spend.note.nullifier(&spend.fvk)) == output_note.rho())
.then(|| Self::from_action_context_unchecked(spend, output_note, alpha, rcv))
}
pub(crate) fn from_action_context_unchecked(
spend: SpendInfo,
output_note: Note,
alpha: pallas::Scalar,
rcv: ValueCommitTrapdoor,
) -> Circuit {
let sender_address = spend.note.recipient();
let rho_old = spend.note.rho();
let psi_old = spend.note.rseed().psi(&rho_old);
let rcm_old = spend.note.rseed().rcm(&rho_old);
let rho_new = output_note.rho();
let psi_new = output_note.rseed().psi(&rho_new);
let rcm_new = output_note.rseed().rcm(&rho_new);
Circuit {
path: Value::known(spend.merkle_path.auth_path()),
pos: Value::known(spend.merkle_path.position()),
g_d_old: Value::known(sender_address.g_d()),
pk_d_old: Value::known(*sender_address.pk_d()),
v_old: Value::known(spend.note.value()),
rho_old: Value::known(rho_old),
psi_old: Value::known(psi_old),
rcm_old: Value::known(rcm_old),
cm_old: Value::known(spend.note.commitment()),
alpha: Value::known(alpha),
ak: Value::known(spend.fvk.clone().into()),
nk: Value::known(*spend.fvk.nk()),
rivk: Value::known(spend.fvk.rivk(spend.scope)),
g_d_new: Value::known(output_note.recipient().g_d()),
pk_d_new: Value::known(*output_note.recipient().pk_d()),
v_new: Value::known(output_note.value()),
psi_new: Value::known(psi_new),
rcm_new: Value::known(rcm_new),
rcv: Value::known(rcv),
}
}
}
impl plonk::Circuit<pallas::Base> for Circuit {
type Config = Config;
type FloorPlanner = floor_planner::V1;
fn without_witnesses(&self) -> Self {
Self::default()
}
fn configure(meta: &mut plonk::ConstraintSystem<pallas::Base>) -> Self::Config {
// Advice columns used in the Orchard circuit.
let advices = [
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
];
// Constrain v_old - v_new = magnitude * sign (https://p.z.cash/ZKS:action-cv-net-integrity?partial).
// Either v_old = 0, or calculated root = anchor (https://p.z.cash/ZKS:action-merkle-path-validity?partial).
// Constrain v_old = 0 or enable_spends = 1 (https://p.z.cash/ZKS:action-enable-spend).
// Constrain v_new = 0 or enable_outputs = 1 (https://p.z.cash/ZKS:action-enable-output).
let q_orchard = meta.selector();
meta.create_gate("Orchard circuit checks", |meta| {
let q_orchard = meta.query_selector(q_orchard);
let v_old = meta.query_advice(advices[0], Rotation::cur());
let v_new = meta.query_advice(advices[1], Rotation::cur());
let magnitude = meta.query_advice(advices[2], Rotation::cur());
let sign = meta.query_advice(advices[3], Rotation::cur());
let root = meta.query_advice(advices[4], Rotation::cur());
let anchor = meta.query_advice(advices[5], Rotation::cur());
2022-04-29 13:24:28 -07:00
let enable_spends = meta.query_advice(advices[6], Rotation::cur());
let enable_outputs = meta.query_advice(advices[7], Rotation::cur());
let one = Expression::Constant(pallas::Base::one());
Constraints::with_selector(
q_orchard,
[
(
"v_old - v_new = magnitude * sign",
v_old.clone() - v_new.clone() - magnitude * sign,
),
(
"Either v_old = 0, or root = anchor",
v_old.clone() * (root - anchor),
),
2022-04-29 13:24:28 -07:00
(
"v_old = 0 or enable_spends = 1",
v_old * (one.clone() - enable_spends),
),
(
"v_new = 0 or enable_outputs = 1",
2022-04-29 13:24:28 -07:00
v_new * (one - enable_outputs),
),
],
)
});
// Addition of two field elements.
let add_config = AddChip::configure(meta, advices[7], advices[8], advices[6]);
// Fixed columns for the Sinsemilla generator lookup table
let table_idx = meta.lookup_table_column();
let lookup = (
table_idx,
meta.lookup_table_column(),
meta.lookup_table_column(),
);
// Instance column used for public inputs
let primary = meta.instance_column();
meta.enable_equality(primary);
// Permutation over all advice columns.
for advice in advices.iter() {
meta.enable_equality(*advice);
}
// Poseidon requires four advice columns, while ECC incomplete addition requires
// six, so we could choose to configure them in parallel. However, we only use a
2022-02-18 13:31:27 -08:00
// single Poseidon invocation, and we have the rows to accommodate it serially.
// Instead, we reduce the proof size by sharing fixed columns between the ECC and
// Poseidon chips.
let lagrange_coeffs = [
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
];
let rc_a = lagrange_coeffs[2..5].try_into().unwrap();
let rc_b = lagrange_coeffs[5..8].try_into().unwrap();
// Also use the first Lagrange coefficient column for loading global constants.
// It's free real estate :)
meta.enable_constant(lagrange_coeffs[0]);
// We have a lot of free space in the right-most advice columns; use one of them
// for all of our range checks.
let range_check = LookupRangeCheckConfig::configure(meta, advices[9], table_idx);
// Configuration for curve point operations.
// This uses 10 advice columns and spans the whole circuit.
let ecc_config =
EccChip::<OrchardFixedBases>::configure(meta, advices, lagrange_coeffs, range_check);
// Configuration for the Poseidon hash.
let poseidon_config = PoseidonChip::configure::<poseidon::P128Pow5T3>(
meta,
// We place the state columns after the partial_sbox column so that the
2022-02-18 13:31:27 -08:00
// pad-and-add region can be laid out more efficiently.
advices[6..9].try_into().unwrap(),
advices[5],
rc_a,
rc_b,
);
// Configuration for a Sinsemilla hash instantiation and a
// Merkle hash instantiation using this Sinsemilla instance.
// Since the Sinsemilla config uses only 5 advice columns,
// we can fit two instances side-by-side.
let (sinsemilla_config_1, merkle_config_1) = {
let sinsemilla_config_1 = SinsemillaChip::configure(
meta,
advices[..5].try_into().unwrap(),
advices[6],
lagrange_coeffs[0],
lookup,
range_check,
);
let merkle_config_1 = MerkleChip::configure(meta, sinsemilla_config_1.clone());
(sinsemilla_config_1, merkle_config_1)
};
// Configuration for a Sinsemilla hash instantiation and a
// Merkle hash instantiation using this Sinsemilla instance.
// Since the Sinsemilla config uses only 5 advice columns,
// we can fit two instances side-by-side.
let (sinsemilla_config_2, merkle_config_2) = {
let sinsemilla_config_2 = SinsemillaChip::configure(
meta,
advices[5..].try_into().unwrap(),
advices[7],
lagrange_coeffs[1],
lookup,
range_check,
);
let merkle_config_2 = MerkleChip::configure(meta, sinsemilla_config_2.clone());
(sinsemilla_config_2, merkle_config_2)
};
// Configuration to handle decomposition and canonicity checking
// for CommitIvk.
let commit_ivk_config = CommitIvkChip::configure(meta, advices);
// Configuration to handle decomposition and canonicity checking
// for NoteCommit_old.
let old_note_commit_config =
NoteCommitChip::configure(meta, advices, sinsemilla_config_1.clone());
// Configuration to handle decomposition and canonicity checking
// for NoteCommit_new.
let new_note_commit_config =
NoteCommitChip::configure(meta, advices, sinsemilla_config_2.clone());
Config {
primary,
q_orchard,
advices,
add_config,
ecc_config,
poseidon_config,
merkle_config_1,
merkle_config_2,
sinsemilla_config_1,
sinsemilla_config_2,
commit_ivk_config,
old_note_commit_config,
new_note_commit_config,
}
}
#[allow(non_snake_case)]
fn synthesize(
&self,
config: Self::Config,
mut layouter: impl Layouter<pallas::Base>,
) -> Result<(), plonk::Error> {
// Load the Sinsemilla generator lookup table used by the whole circuit.
SinsemillaChip::load(config.sinsemilla_config_1.clone(), &mut layouter)?;
// Construct the ECC chip.
let ecc_chip = config.ecc_chip();
// Witness private inputs that are used across multiple checks.
let (psi_old, rho_old, cm_old, g_d_old, ak_P, nk, v_old, v_new) = {
// Witness psi_old
let psi_old = assign_free_advice(
layouter.namespace(|| "witness psi_old"),
config.advices[0],
self.psi_old,
)?;
// Witness rho_old
let rho_old = assign_free_advice(
layouter.namespace(|| "witness rho_old"),
config.advices[0],
self.rho_old.map(|rho| rho.into_inner()),
)?;
// Witness cm_old
let cm_old = Point::new(
ecc_chip.clone(),
layouter.namespace(|| "cm_old"),
self.cm_old.as_ref().map(|cm| cm.inner().to_affine()),
)?;
// Witness g_d_old
let g_d_old = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "gd_old"),
self.g_d_old.as_ref().map(|gd| gd.to_affine()),
)?;
// Witness ak_P.
2022-06-08 17:01:10 -07:00
let ak_P: Value<pallas::Point> = self.ak.as_ref().map(|ak| ak.into());
let ak_P = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness ak_P"),
ak_P.map(|ak_P| ak_P.to_affine()),
)?;
// Witness nk.
let nk = assign_free_advice(
layouter.namespace(|| "witness nk"),
config.advices[0],
self.nk.map(|nk| nk.inner()),
)?;
// Witness v_old.
let v_old = assign_free_advice(
layouter.namespace(|| "witness v_old"),
config.advices[0],
self.v_old,
)?;
// Witness v_new.
let v_new = assign_free_advice(
layouter.namespace(|| "witness v_new"),
config.advices[0],
self.v_new,
)?;
(psi_old, rho_old, cm_old, g_d_old, ak_P, nk, v_old, v_new)
};
// Merkle path validity check (https://p.z.cash/ZKS:action-merkle-path-validity?partial).
2022-04-29 13:24:28 -07:00
let root = {
let path = self
.path
.map(|typed_path| typed_path.map(|node| node.inner()));
let merkle_inputs = MerklePath::construct(
[config.merkle_chip_1(), config.merkle_chip_2()],
OrchardHashDomains::MerkleCrh,
self.pos,
path,
);
let leaf = cm_old.extract_p().inner().clone();
2022-04-29 13:24:28 -07:00
merkle_inputs.calculate_root(layouter.namespace(|| "Merkle path"), leaf)?
};
// Value commitment integrity (https://p.z.cash/ZKS:action-cv-net-integrity?partial).
let v_net_magnitude_sign = {
// Witness the magnitude and sign of v_net = v_old - v_new
let v_net_magnitude_sign = {
2022-06-08 17:01:10 -07:00
let v_net = self.v_old - self.v_new;
let magnitude_sign = v_net.map(|v_net| {
let (magnitude, sign) = v_net.magnitude_sign();
(
// magnitude is guaranteed to be an unsigned 64-bit value.
// Therefore, we can move it into the base field.
pallas::Base::from(magnitude),
match sign {
crate::value::Sign::Positive => pallas::Base::one(),
crate::value::Sign::Negative => -pallas::Base::one(),
},
)
});
let magnitude = assign_free_advice(
layouter.namespace(|| "v_net magnitude"),
config.advices[9],
magnitude_sign.map(|m_s| m_s.0),
)?;
let sign = assign_free_advice(
layouter.namespace(|| "v_net sign"),
config.advices[9],
magnitude_sign.map(|m_s| m_s.1),
)?;
(magnitude, sign)
};
let v_net = ScalarFixedShort::new(
ecc_chip.clone(),
layouter.namespace(|| "v_net"),
v_net_magnitude_sign.clone(),
)?;
let rcv = ScalarFixed::new(
ecc_chip.clone(),
layouter.namespace(|| "rcv"),
self.rcv.as_ref().map(|rcv| rcv.inner()),
)?;
let cv_net = gadget::value_commit_orchard(
layouter.namespace(|| "cv_net = ValueCommit^Orchard_rcv(v_net)"),
ecc_chip.clone(),
v_net,
rcv,
)?;
// Constrain cv_net to equal public input
layouter.constrain_instance(cv_net.inner().x().cell(), config.primary, CV_NET_X)?;
layouter.constrain_instance(cv_net.inner().y().cell(), config.primary, CV_NET_Y)?;
// Return the magnitude and sign so we can use them in the Orchard gate.
v_net_magnitude_sign
};
// Nullifier integrity (https://p.z.cash/ZKS:action-nullifier-integrity).
let nf_old = {
let nf_old = gadget::derive_nullifier(
layouter.namespace(|| "nf_old = DeriveNullifier_nk(rho_old, psi_old, cm_old)"),
config.poseidon_chip(),
config.add_chip(),
ecc_chip.clone(),
rho_old.clone(),
&psi_old,
&cm_old,
nk.clone(),
)?;
// Constrain nf_old to equal public input
layouter.constrain_instance(nf_old.inner().cell(), config.primary, NF_OLD)?;
nf_old
};
// Spend authority (https://p.z.cash/ZKS:action-spend-authority)
{
let alpha =
ScalarFixed::new(ecc_chip.clone(), layouter.namespace(|| "alpha"), self.alpha)?;
// alpha_commitment = [alpha] SpendAuthG
let (alpha_commitment, _) = {
let spend_auth_g = OrchardFixedBasesFull::SpendAuthG;
let spend_auth_g = FixedPoint::from_inner(ecc_chip.clone(), spend_auth_g);
spend_auth_g.mul(layouter.namespace(|| "[alpha] SpendAuthG"), alpha)?
};
// [alpha] SpendAuthG + ak_P
let rk = alpha_commitment.add(layouter.namespace(|| "rk"), &ak_P)?;
// Constrain rk to equal public input
layouter.constrain_instance(rk.inner().x().cell(), config.primary, RK_X)?;
layouter.constrain_instance(rk.inner().y().cell(), config.primary, RK_Y)?;
}
// Diversified address integrity (https://p.z.cash/ZKS:action-addr-integrity?partial).
let pk_d_old = {
let ivk = {
let ak = ak_P.extract_p().inner().clone();
let rivk = ScalarFixed::new(
ecc_chip.clone(),
layouter.namespace(|| "rivk"),
self.rivk.map(|rivk| rivk.inner()),
)?;
gadget::commit_ivk(
config.sinsemilla_chip_1(),
ecc_chip.clone(),
config.commit_ivk_chip(),
layouter.namespace(|| "CommitIvk"),
ak,
nk,
rivk,
)?
};
let ivk =
ScalarVar::from_base(ecc_chip.clone(), layouter.namespace(|| "ivk"), ivk.inner())?;
// [ivk] g_d_old
// The scalar value is passed through and discarded.
let (derived_pk_d_old, _ivk) =
g_d_old.mul(layouter.namespace(|| "[ivk] g_d_old"), ivk)?;
// Constrain derived pk_d_old to equal witnessed pk_d_old
2022-04-29 13:24:28 -07:00
//
// This equality constraint is technically superfluous, because the assigned
// value of `derived_pk_d_old` is an equivalent witness. But it's nice to see
// an explicit connection between circuit-synthesized values, and explicit
// prover witnesses. We could get the best of both worlds with a write-on-copy
// abstraction (https://github.com/zcash/halo2/issues/334).
let pk_d_old = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness pk_d_old"),
self.pk_d_old.map(|pk_d_old| pk_d_old.inner().to_affine()),
)?;
derived_pk_d_old
.constrain_equal(layouter.namespace(|| "pk_d_old equality"), &pk_d_old)?;
pk_d_old
};
// Old note commitment integrity (https://p.z.cash/ZKS:action-cm-old-integrity?partial).
{
let rcm_old = ScalarFixed::new(
ecc_chip.clone(),
layouter.namespace(|| "rcm_old"),
self.rcm_old.as_ref().map(|rcm_old| rcm_old.inner()),
)?;
// g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)
let derived_cm_old = gadget::note_commit(
layouter.namespace(|| {
"g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)"
}),
config.sinsemilla_chip_1(),
config.ecc_chip(),
config.note_commit_chip_old(),
g_d_old.inner(),
pk_d_old.inner(),
v_old.clone(),
rho_old,
psi_old,
rcm_old,
)?;
// Constrain derived cm_old to equal witnessed cm_old
derived_cm_old.constrain_equal(layouter.namespace(|| "cm_old equality"), &cm_old)?;
}
// New note commitment integrity (https://p.z.cash/ZKS:action-cmx-new-integrity?partial).
{
// Witness g_d_new
let g_d_new = {
let g_d_new = self.g_d_new.map(|g_d_new| g_d_new.to_affine());
NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness g_d_new_star"),
g_d_new,
)?
};
// Witness pk_d_new
let pk_d_new = {
let pk_d_new = self.pk_d_new.map(|pk_d_new| pk_d_new.inner().to_affine());
NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness pk_d_new"),
pk_d_new,
)?
};
2022-04-29 13:24:28 -07:00
// ρ^new = nf^old
let rho_new = nf_old.inner().clone();
// Witness psi_new
let psi_new = assign_free_advice(
layouter.namespace(|| "witness psi_new"),
config.advices[0],
self.psi_new,
)?;
let rcm_new = ScalarFixed::new(
ecc_chip,
layouter.namespace(|| "rcm_new"),
self.rcm_new.as_ref().map(|rcm_new| rcm_new.inner()),
)?;
// g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)
let cm_new = gadget::note_commit(
layouter.namespace(|| {
"g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)"
}),
config.sinsemilla_chip_2(),
config.ecc_chip(),
config.note_commit_chip_new(),
g_d_new.inner(),
pk_d_new.inner(),
v_new.clone(),
2022-04-29 13:24:28 -07:00
rho_new,
psi_new,
rcm_new,
)?;
let cmx = cm_new.extract_p();
// Constrain cmx to equal public input
layouter.constrain_instance(cmx.inner().cell(), config.primary, CMX)?;
}
2022-04-29 13:24:28 -07:00
// Constrain the remaining Orchard circuit checks.
layouter.assign_region(
2022-04-29 13:24:28 -07:00
|| "Orchard circuit checks",
|mut region| {
v_old.copy_advice(|| "v_old", &mut region, config.advices[0], 0)?;
v_new.copy_advice(|| "v_new", &mut region, config.advices[1], 0)?;
v_net_magnitude_sign.0.copy_advice(
|| "v_net magnitude",
&mut region,
config.advices[2],
0,
)?;
v_net_magnitude_sign.1.copy_advice(
|| "v_net sign",
&mut region,
config.advices[3],
0,
)?;
2022-04-29 13:24:28 -07:00
root.copy_advice(|| "calculated root", &mut region, config.advices[4], 0)?;
region.assign_advice_from_instance(
|| "pub input anchor",
config.primary,
ANCHOR,
config.advices[5],
0,
)?;
region.assign_advice_from_instance(
|| "enable spends",
config.primary,
ENABLE_SPEND,
config.advices[6],
0,
)?;
region.assign_advice_from_instance(
|| "enable outputs",
config.primary,
ENABLE_OUTPUT,
config.advices[7],
0,
)?;
config.q_orchard.enable(&mut region, 0)
},
)?;
Ok(())
}
}
/// The verifying key for the Orchard Action circuit.
#[derive(Debug)]
pub struct VerifyingKey {
pub(crate) params: halo2_proofs::poly::commitment::Params<vesta::Affine>,
pub(crate) vk: plonk::VerifyingKey<vesta::Affine>,
}
impl VerifyingKey {
/// Builds the verifying key.
pub fn build() -> Self {
let params = halo2_proofs::poly::commitment::Params::new(K);
let circuit: Circuit = Default::default();
let vk = plonk::keygen_vk(&params, &circuit).unwrap();
VerifyingKey { params, vk }
}
}
/// The proving key for the Orchard Action circuit.
#[derive(Debug)]
pub struct ProvingKey {
params: halo2_proofs::poly::commitment::Params<vesta::Affine>,
pk: plonk::ProvingKey<vesta::Affine>,
}
impl ProvingKey {
/// Builds the proving key.
pub fn build() -> Self {
let params = halo2_proofs::poly::commitment::Params::new(K);
let circuit: Circuit = Default::default();
let vk = plonk::keygen_vk(&params, &circuit).unwrap();
let pk = plonk::keygen_pk(&params, vk, &circuit).unwrap();
ProvingKey { params, pk }
}
}
/// Public inputs to the Orchard Action circuit.
2021-11-04 20:30:43 -07:00
#[derive(Clone, Debug)]
pub struct Instance {
pub(crate) anchor: Anchor,
pub(crate) cv_net: ValueCommitment,
pub(crate) nf_old: Nullifier,
pub(crate) rk: VerificationKey<SpendAuth>,
pub(crate) cmx: ExtractedNoteCommitment,
pub(crate) enable_spend: bool,
pub(crate) enable_output: bool,
}
impl Instance {
/// Constructs an [`Instance`] from its constituent parts.
///
/// This API can be used in combination with [`Proof::verify`] to build verification
/// pipelines for many proofs, where you don't want to pass around the full bundle.
/// Use [`Bundle::verify_proof`] instead if you have the full bundle.
///
/// [`Bundle::verify_proof`]: crate::Bundle::verify_proof
pub fn from_parts(
anchor: Anchor,
cv_net: ValueCommitment,
nf_old: Nullifier,
rk: VerificationKey<SpendAuth>,
cmx: ExtractedNoteCommitment,
enable_spend: bool,
enable_output: bool,
) -> Self {
Instance {
anchor,
cv_net,
nf_old,
rk,
cmx,
enable_spend,
enable_output,
}
}
fn to_halo2_instance(&self) -> [[vesta::Scalar; 9]; 1] {
let mut instance = [vesta::Scalar::zero(); 9];
instance[ANCHOR] = self.anchor.inner();
instance[CV_NET_X] = self.cv_net.x();
instance[CV_NET_Y] = self.cv_net.y();
instance[NF_OLD] = self.nf_old.0;
let rk = pallas::Point::from_bytes(&self.rk.clone().into())
.unwrap()
.to_affine()
.coordinates()
.unwrap();
instance[RK_X] = *rk.x();
instance[RK_Y] = *rk.y();
instance[CMX] = self.cmx.inner();
instance[ENABLE_SPEND] = vesta::Scalar::from(u64::from(self.enable_spend));
instance[ENABLE_OUTPUT] = vesta::Scalar::from(u64::from(self.enable_output));
[instance]
}
}
/// A proof of the validity of an Orchard [`Bundle`].
///
/// [`Bundle`]: crate::bundle::Bundle
#[derive(Clone)]
pub struct Proof(Vec<u8>);
impl fmt::Debug for Proof {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if f.alternate() {
f.debug_tuple("Proof").field(&self.0).finish()
} else {
// By default, only show the proof length, not its contents.
f.debug_tuple("Proof")
.field(&format_args!("{} bytes", self.0.len()))
.finish()
}
}
}
2021-05-05 10:37:56 -07:00
impl AsRef<[u8]> for Proof {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl DynamicUsage for Proof {
fn dynamic_usage(&self) -> usize {
self.0.dynamic_usage()
}
fn dynamic_usage_bounds(&self) -> (usize, Option<usize>) {
self.0.dynamic_usage_bounds()
}
}
impl Proof {
/// Creates a proof for the given circuits and instances.
pub fn create(
pk: &ProvingKey,
circuits: &[Circuit],
instances: &[Instance],
mut rng: impl RngCore,
) -> Result<Self, plonk::Error> {
let instances: Vec<_> = instances.iter().map(|i| i.to_halo2_instance()).collect();
let instances: Vec<Vec<_>> = instances
.iter()
.map(|i| i.iter().map(|c| &c[..]).collect())
.collect();
let instances: Vec<_> = instances.iter().map(|i| &i[..]).collect();
2021-06-01 09:37:44 -07:00
let mut transcript = Blake2bWrite::<_, vesta::Affine, _>::init(vec![]);
plonk::create_proof(
&pk.params,
&pk.pk,
circuits,
&instances,
&mut rng,
&mut transcript,
)?;
Ok(Proof(transcript.finalize()))
}
/// Verifies this proof with the given instances.
pub fn verify(&self, vk: &VerifyingKey, instances: &[Instance]) -> Result<(), plonk::Error> {
let instances: Vec<_> = instances.iter().map(|i| i.to_halo2_instance()).collect();
let instances: Vec<Vec<_>> = instances
.iter()
.map(|i| i.iter().map(|c| &c[..]).collect())
.collect();
let instances: Vec<_> = instances.iter().map(|i| &i[..]).collect();
let strategy = SingleVerifier::new(&vk.params);
let mut transcript = Blake2bRead::init(&self.0[..]);
plonk::verify_proof(&vk.params, &vk.vk, strategy, &instances, &mut transcript)
}
/// Adds this proof to the given batch for verification with the given instances.
///
/// Use this API if you want more control over how proof batches are processed. If you
/// just want to batch-validate Orchard bundles, use [`bundle::BatchValidator`].
///
/// [`bundle::BatchValidator`]: crate::bundle::BatchValidator
pub fn add_to_batch(&self, batch: &mut BatchVerifier<vesta::Affine>, instances: Vec<Instance>) {
let instances = instances
.iter()
.map(|i| {
i.to_halo2_instance()
.into_iter()
.map(|c| c.into_iter().collect())
.collect()
})
.collect();
batch.add_proof(instances, self.0.clone());
}
2021-05-05 10:37:56 -07:00
/// Constructs a new Proof value.
pub fn new(bytes: Vec<u8>) -> Self {
Proof(bytes)
}
}
#[cfg(test)]
mod tests {
use core::iter;
use ff::Field;
2022-06-08 17:01:10 -07:00
use halo2_proofs::{circuit::Value, dev::MockProver};
use pasta_curves::pallas;
use rand::{rngs::OsRng, RngCore};
use super::{Circuit, Instance, Proof, ProvingKey, VerifyingKey, K};
use crate::{
keys::SpendValidatingKey,
note::{Note, Rho},
tree::MerklePath,
value::{ValueCommitTrapdoor, ValueCommitment},
};
fn generate_circuit_instance<R: RngCore>(mut rng: R) -> (Circuit, Instance) {
let (_, fvk, spent_note) = Note::dummy(&mut rng, None);
let sender_address = spent_note.recipient();
let nk = *fvk.nk();
let rivk = fvk.rivk(fvk.scope_for_address(&spent_note.recipient()).unwrap());
let nf_old = spent_note.nullifier(&fvk);
let rho = Rho::from_nf_old(nf_old);
let ak: SpendValidatingKey = fvk.into();
let alpha = pallas::Scalar::random(&mut rng);
let rk = ak.randomize(&alpha);
let (_, _, output_note) = Note::dummy(&mut rng, Some(rho));
let cmx = output_note.commitment().into();
let value = spent_note.value() - output_note.value();
let rcv = ValueCommitTrapdoor::random(&mut rng);
let cv_net = ValueCommitment::derive(value, rcv.clone());
let path = MerklePath::dummy(&mut rng);
let anchor = path.root(spent_note.commitment().into());
(
Circuit {
2022-06-08 17:01:10 -07:00
path: Value::known(path.auth_path()),
pos: Value::known(path.position()),
g_d_old: Value::known(sender_address.g_d()),
pk_d_old: Value::known(*sender_address.pk_d()),
v_old: Value::known(spent_note.value()),
rho_old: Value::known(spent_note.rho()),
psi_old: Value::known(spent_note.rseed().psi(&spent_note.rho())),
rcm_old: Value::known(spent_note.rseed().rcm(&spent_note.rho())),
cm_old: Value::known(spent_note.commitment()),
alpha: Value::known(alpha),
ak: Value::known(ak),
nk: Value::known(nk),
rivk: Value::known(rivk),
g_d_new: Value::known(output_note.recipient().g_d()),
pk_d_new: Value::known(*output_note.recipient().pk_d()),
v_new: Value::known(output_note.value()),
psi_new: Value::known(output_note.rseed().psi(&output_note.rho())),
rcm_new: Value::known(output_note.rseed().rcm(&output_note.rho())),
rcv: Value::known(rcv),
},
Instance {
anchor,
cv_net,
nf_old,
rk,
cmx,
enable_spend: true,
enable_output: true,
},
)
}
// TODO: recast as a proptest
#[test]
fn round_trip() {
let mut rng = OsRng;
let (circuits, instances): (Vec<_>, Vec<_>) = iter::once(())
.map(|()| generate_circuit_instance(&mut rng))
.unzip();
let vk = VerifyingKey::build();
// Test that the pinned verification key (representing the circuit)
// is as expected.
{
// panic!("{:#?}", vk.vk.pinned());
assert_eq!(
format!("{:#?}\n", vk.vk.pinned()),
include_str!("circuit_description").replace("\r\n", "\n")
);
}
// Test that the proof size is as expected.
let expected_proof_size = {
let circuit_cost =
halo2_proofs::dev::CircuitCost::<pasta_curves::vesta::Point, _>::measure(
K,
&circuits[0],
);
assert_eq!(usize::from(circuit_cost.proof_size(1)), 4992);
assert_eq!(usize::from(circuit_cost.proof_size(2)), 7264);
usize::from(circuit_cost.proof_size(instances.len()))
};
for (circuit, instance) in circuits.iter().zip(instances.iter()) {
assert_eq!(
MockProver::run(
K,
circuit,
instance
.to_halo2_instance()
.iter()
.map(|p| p.to_vec())
.collect()
)
.unwrap()
.verify(),
Ok(())
);
}
let pk = ProvingKey::build();
let proof = Proof::create(&pk, &circuits, &instances, &mut rng).unwrap();
assert!(proof.verify(&vk, &instances).is_ok());
assert_eq!(proof.0.len(), expected_proof_size);
}
#[test]
fn serialized_proof_test_case() {
use std::io::{Read, Write};
let vk = VerifyingKey::build();
fn write_test_case<W: Write>(
mut w: W,
instance: &Instance,
proof: &Proof,
) -> std::io::Result<()> {
w.write_all(&instance.anchor.to_bytes())?;
w.write_all(&instance.cv_net.to_bytes())?;
w.write_all(&instance.nf_old.to_bytes())?;
w.write_all(&<[u8; 32]>::from(instance.rk.clone()))?;
w.write_all(&instance.cmx.to_bytes())?;
w.write_all(&[
u8::from(instance.enable_spend),
u8::from(instance.enable_output),
])?;
w.write_all(proof.as_ref())?;
Ok(())
}
fn read_test_case<R: Read>(mut r: R) -> std::io::Result<(Instance, Proof)> {
let read_32_bytes = |r: &mut R| {
let mut ret = [0u8; 32];
r.read_exact(&mut ret).unwrap();
ret
};
let read_bool = |r: &mut R| {
let mut byte = [0u8; 1];
r.read_exact(&mut byte).unwrap();
match byte {
[0] => false,
[1] => true,
_ => panic!("Unexpected non-boolean byte"),
}
};
let anchor = crate::Anchor::from_bytes(read_32_bytes(&mut r)).unwrap();
let cv_net = ValueCommitment::from_bytes(&read_32_bytes(&mut r)).unwrap();
let nf_old = crate::note::Nullifier::from_bytes(&read_32_bytes(&mut r)).unwrap();
let rk = read_32_bytes(&mut r).try_into().unwrap();
let cmx =
crate::note::ExtractedNoteCommitment::from_bytes(&read_32_bytes(&mut r)).unwrap();
let enable_spend = read_bool(&mut r);
let enable_output = read_bool(&mut r);
let instance =
Instance::from_parts(anchor, cv_net, nf_old, rk, cmx, enable_spend, enable_output);
let mut proof_bytes = vec![];
r.read_to_end(&mut proof_bytes)?;
let proof = Proof::new(proof_bytes);
Ok((instance, proof))
}
if std::env::var_os("ORCHARD_CIRCUIT_TEST_GENERATE_NEW_PROOF").is_some() {
let create_proof = || -> std::io::Result<()> {
let mut rng = OsRng;
let (circuit, instance) = generate_circuit_instance(OsRng);
let instances = &[instance.clone()];
let pk = ProvingKey::build();
let proof = Proof::create(&pk, &[circuit], instances, &mut rng).unwrap();
assert!(proof.verify(&vk, instances).is_ok());
let file = std::fs::File::create("circuit_proof_test_case.bin")?;
write_test_case(file, &instance, &proof)
};
create_proof().expect("should be able to write new proof");
}
// Parse the hardcoded proof test case.
let (instance, proof) = {
let test_case_bytes = include_bytes!("circuit_proof_test_case.bin");
read_test_case(&test_case_bytes[..]).expect("proof must be valid")
};
assert_eq!(proof.0.len(), 4992);
assert!(proof.verify(&vk, &[instance]).is_ok());
}
#[cfg(feature = "dev-graph")]
#[test]
fn print_action_circuit() {
use plotters::prelude::*;
let root = BitMapBackend::new("action-circuit-layout.png", (1024, 768)).into_drawing_area();
root.fill(&WHITE).unwrap();
let root = root
.titled("Orchard Action Circuit", ("sans-serif", 60))
.unwrap();
let circuit = Circuit {
2022-06-08 17:01:10 -07:00
path: Value::unknown(),
pos: Value::unknown(),
g_d_old: Value::unknown(),
pk_d_old: Value::unknown(),
v_old: Value::unknown(),
rho_old: Value::unknown(),
psi_old: Value::unknown(),
rcm_old: Value::unknown(),
cm_old: Value::unknown(),
alpha: Value::unknown(),
ak: Value::unknown(),
nk: Value::unknown(),
rivk: Value::unknown(),
g_d_new: Value::unknown(),
pk_d_new: Value::unknown(),
v_new: Value::unknown(),
psi_new: Value::unknown(),
rcm_new: Value::unknown(),
rcv: Value::unknown(),
};
halo2_proofs::dev::CircuitLayout::default()
.show_labels(false)
.view_height(0..(1 << 11))
2021-11-23 16:21:44 -08:00
.render(K, &circuit, &root)
.unwrap();
}
}