orchard/src/circuit/gadget/ecc/chip.rs

519 lines
17 KiB
Rust
Raw Normal View History

use super::EccInstructions;
use crate::{
circuit::gadget::utilities::{
copy, decompose_running_sum::RunningSumConfig, lookup_range_check::LookupRangeCheckConfig,
CellValue, UtilitiesInstructions, Var,
},
constants::{self, NullifierK, OrchardFixedBasesFull, ValueCommitV},
primitives::sinsemilla,
};
use arrayvec::ArrayVec;
use group::prime::PrimeCurveAffine;
use halo2::{
circuit::{Chip, Layouter},
plonk::{Advice, Column, ConstraintSystem, Error, Fixed, Selector},
};
use pasta_curves::{arithmetic::CurveAffine, pallas};
pub(super) mod add;
pub(super) mod add_incomplete;
pub(super) mod mul;
pub(super) mod mul_fixed;
pub(super) mod witness_point;
/// A curve point represented in affine (x, y) coordinates, or the
/// identity represented as (0, 0).
/// Each coordinate is assigned to a cell.
#[derive(Copy, Clone, Debug)]
pub struct EccPoint {
/// x-coordinate
x: CellValue<pallas::Base>,
/// y-coordinate
y: CellValue<pallas::Base>,
}
impl EccPoint {
/// Constructs a point from its coordinates, without checking they are on the curve.
///
/// This is an internal API that we only use where we know we have a valid curve point
/// (specifically inside Sinsemilla).
pub(in crate::circuit::gadget) fn from_coordinates_unchecked(
x: CellValue<pallas::Base>,
y: CellValue<pallas::Base>,
) -> Self {
EccPoint { x, y }
}
/// Returns the value of this curve point, if known.
pub fn point(&self) -> Option<pallas::Affine> {
match (self.x.value(), self.y.value()) {
(Some(x), Some(y)) => {
if x == pallas::Base::zero() && y == pallas::Base::zero() {
Some(pallas::Affine::identity())
} else {
Some(pallas::Affine::from_xy(x, y).unwrap())
}
}
_ => None,
}
}
/// The cell containing the affine short-Weierstrass x-coordinate,
/// or 0 for the zero point.
pub fn x(&self) -> CellValue<pallas::Base> {
self.x
}
/// The cell containing the affine short-Weierstrass y-coordinate,
/// or 0 for the zero point.
pub fn y(&self) -> CellValue<pallas::Base> {
self.y
}
#[cfg(test)]
fn is_identity(&self) -> Option<bool> {
self.x.value().map(|x| x == pallas::Base::zero())
}
}
/// A non-identity point represented in affine (x, y) coordinates.
/// Each coordinate is assigned to a cell.
#[derive(Copy, Clone, Debug)]
pub struct NonIdentityEccPoint {
/// x-coordinate
x: CellValue<pallas::Base>,
/// y-coordinate
y: CellValue<pallas::Base>,
}
impl NonIdentityEccPoint {
/// Constructs a point from its coordinates, without checking they are on the curve.
///
/// This is an internal API that we only use where we know we have a valid non-identity
/// curve point (specifically inside Sinsemilla).
pub(in crate::circuit::gadget) fn from_coordinates_unchecked(
x: CellValue<pallas::Base>,
y: CellValue<pallas::Base>,
) -> Self {
NonIdentityEccPoint { x, y }
}
/// Returns the value of this curve point, if known.
pub fn point(&self) -> Option<pallas::Affine> {
match (self.x.value(), self.y.value()) {
(Some(x), Some(y)) => {
assert!(x != pallas::Base::zero() && y != pallas::Base::zero());
Some(pallas::Affine::from_xy(x, y).unwrap())
}
_ => None,
}
}
/// The cell containing the affine short-Weierstrass x-coordinate.
pub fn x(&self) -> CellValue<pallas::Base> {
self.x
}
/// The cell containing the affine short-Weierstrass y-coordinate.
pub fn y(&self) -> CellValue<pallas::Base> {
self.y
}
}
impl From<NonIdentityEccPoint> for EccPoint {
fn from(non_id_point: NonIdentityEccPoint) -> Self {
Self {
x: non_id_point.x,
y: non_id_point.y,
}
}
}
/// Configuration for the ECC chip
#[derive(Clone, Debug, Eq, PartialEq)]
#[allow(non_snake_case)]
pub struct EccConfig {
/// Advice columns needed by instructions in the ECC chip.
pub advices: [Column<Advice>; 10],
/// Coefficients of interpolation polynomials for x-coordinates (used in fixed-base scalar multiplication)
pub lagrange_coeffs: [Column<Fixed>; constants::H],
/// Fixed z such that y + z = u^2 some square, and -y + z is a non-square. (Used in fixed-base scalar multiplication)
pub fixed_z: Column<Fixed>,
/// Incomplete addition
pub q_add_incomplete: Selector,
/// Complete addition
pub q_add: Selector,
/// Variable-base scalar multiplication (hi half)
pub q_mul_hi: (Selector, Selector, Selector),
/// Variable-base scalar multiplication (lo half)
pub q_mul_lo: (Selector, Selector, Selector),
/// Selector used to enforce boolean decomposition in variable-base scalar mul
pub q_mul_decompose_var: Selector,
/// Selector used to enforce switching logic on LSB in variable-base scalar mul
pub q_mul_lsb: Selector,
/// Variable-base scalar multiplication (overflow check)
pub q_mul_overflow: Selector,
/// Fixed-base full-width scalar multiplication
pub q_mul_fixed_full: Selector,
/// Fixed-base signed short scalar multiplication
pub q_mul_fixed_short: Selector,
/// Canonicity checks on base field element used as scalar in fixed-base mul
pub q_mul_fixed_base_field: Selector,
/// Running sum decomposition of a scalar used in fixed-base mul. This is used
/// when the scalar is a signed short exponent or a base-field element.
pub q_mul_fixed_running_sum: Selector,
/// Witness point (can be identity)
pub q_point: Selector,
/// Witness non-identity point
pub q_point_non_id: Selector,
/// Lookup range check using 10-bit lookup table
pub lookup_config: LookupRangeCheckConfig<pallas::Base, { sinsemilla::K }>,
/// Running sum decomposition.
pub running_sum_config: RunningSumConfig<pallas::Base, { constants::FIXED_BASE_WINDOW_SIZE }>,
}
/// A chip implementing EccInstructions
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct EccChip {
config: EccConfig,
}
impl Chip<pallas::Base> for EccChip {
type Config = EccConfig;
type Loaded = ();
fn config(&self) -> &Self::Config {
&self.config
}
fn loaded(&self) -> &Self::Loaded {
&()
}
}
impl UtilitiesInstructions<pallas::Base> for EccChip {
type Var = CellValue<pallas::Base>;
}
impl EccChip {
pub fn construct(config: <Self as Chip<pallas::Base>>::Config) -> Self {
Self { config }
}
/// # Side effects
///
/// All columns in `advices` will be equality-enabled.
#[allow(non_snake_case)]
pub fn configure(
meta: &mut ConstraintSystem<pallas::Base>,
advices: [Column<Advice>; 10],
lagrange_coeffs: [Column<Fixed>; 8],
range_check: LookupRangeCheckConfig<pallas::Base, { sinsemilla::K }>,
) -> <Self as Chip<pallas::Base>>::Config {
// The following columns need to be equality-enabled for their use in sub-configs:
//
// add::Config and add_incomplete::Config:
// - advices[0]: x_p,
// - advices[1]: y_p,
// - advices[2]: x_qr,
// - advices[3]: y_qr,
//
// mul_fixed::Config:
// - advices[4]: window
// - advices[5]: u
//
// mul_fixed::base_field_element::Config:
// - [advices[6], advices[7], advices[8]]: canon_advices
//
// mul::overflow::Config:
// - [advices[0], advices[1], advices[2]]: advices
//
// mul::incomplete::Config
// - advices[4]: lambda1
// - advices[9]: z
//
// mul::complete::Config:
// - advices[9]: z_complete
//
// TODO: Refactor away from `impl From<EccConfig> for _` so that sub-configs can
// equality-enable the columns they need to.
for column in &advices {
meta.enable_equality((*column).into());
}
let q_mul_fixed_running_sum = meta.selector();
let running_sum_config =
RunningSumConfig::configure(meta, q_mul_fixed_running_sum, advices[4]);
let config = EccConfig {
advices,
lagrange_coeffs,
fixed_z: meta.fixed_column(),
q_add_incomplete: meta.selector(),
q_add: meta.selector(),
q_mul_hi: (meta.selector(), meta.selector(), meta.selector()),
q_mul_lo: (meta.selector(), meta.selector(), meta.selector()),
q_mul_decompose_var: meta.selector(),
q_mul_overflow: meta.selector(),
q_mul_lsb: meta.selector(),
q_mul_fixed_full: meta.selector(),
q_mul_fixed_short: meta.selector(),
q_mul_fixed_base_field: meta.selector(),
q_mul_fixed_running_sum,
q_point: meta.selector(),
q_point_non_id: meta.selector(),
lookup_config: range_check,
running_sum_config,
};
// Create witness point gate
{
let config: witness_point::Config = (&config).into();
config.create_gate(meta);
}
// Create incomplete point addition gate
{
let config: add_incomplete::Config = (&config).into();
config.create_gate(meta);
}
// Create complete point addition gate
{
let add_config: add::Config = (&config).into();
add_config.create_gate(meta);
}
// Create variable-base scalar mul gates
{
let mul_config: mul::Config = (&config).into();
mul_config.create_gate(meta);
}
// Create gate that is used both in fixed-base mul using a short signed exponent,
// and fixed-base mul using a base field element.
{
// The const generic does not matter when creating gates.
let mul_fixed_config: mul_fixed::Config<{ constants::NUM_WINDOWS }> = (&config).into();
mul_fixed_config.running_sum_coords_gate(meta);
}
// Create gate that is only used in full-width fixed-base scalar mul.
{
let mul_fixed_full_config: mul_fixed::full_width::Config = (&config).into();
mul_fixed_full_config.create_gate(meta);
}
// Create gate that is only used in short fixed-base scalar mul.
{
let short_config: mul_fixed::short::Config = (&config).into();
short_config.create_gate(meta);
}
// Create gate that is only used in fixed-base mul using a base field element.
{
let base_field_config: mul_fixed::base_field_elem::Config = (&config).into();
base_field_config.create_gate(meta);
}
config
}
}
/// A full-width scalar used for fixed-base scalar multiplication.
/// This is decomposed into 85 3-bit windows in little-endian order,
/// i.e. `windows` = [k_0, k_1, ..., k_84] (for a 255-bit scalar)
/// where `scalar = k_0 + k_1 * (2^3) + ... + k_84 * (2^3)^84` and
/// each `k_i` is in the range [0..2^3).
#[derive(Clone, Debug)]
pub struct EccScalarFixed {
value: Option<pallas::Scalar>,
windows: ArrayVec<CellValue<pallas::Base>, { constants::NUM_WINDOWS }>,
}
/// A signed short scalar used for fixed-base scalar multiplication.
/// A short scalar must have magnitude in the range [0..2^64), with
/// a sign of either 1 or -1.
/// This is decomposed into 3-bit windows in little-endian order
/// using a running sum `z`, where z_{i+1} = (z_i - a_i) / (2^3)
/// for element α = a_0 + (2^3) a_1 + ... + (2^{3(n-1)}) a_{n-1}.
/// Each `a_i` is in the range [0..2^3).
///
/// `windows` = [k_0, k_1, ..., k_21] (for a 64-bit magnitude)
/// where `scalar = k_0 + k_1 * (2^3) + ... + k_84 * (2^3)^84` and
/// each `k_i` is in the range [0..2^3).
/// k_21 must be a single bit, i.e. 0 or 1.
#[derive(Clone, Debug)]
pub struct EccScalarFixedShort {
magnitude: CellValue<pallas::Base>,
sign: CellValue<pallas::Base>,
running_sum: ArrayVec<CellValue<pallas::Base>, { constants::NUM_WINDOWS_SHORT + 1 }>,
}
/// A base field element used for fixed-base scalar multiplication.
/// This is decomposed into 3-bit windows in little-endian order
/// using a running sum `z`, where z_{i+1} = (z_i - a_i) / (2^3)
/// for element α = a_0 + (2^3) a_1 + ... + (2^{3(n-1)}) a_{n-1}.
/// Each `a_i` is in the range [0..2^3).
///
/// `running_sum` = [z_0, ..., z_85], where we expect z_85 = 0.
/// Since z_0 is initialized as the scalar α, we store it as
/// `base_field_elem`.
#[derive(Clone, Debug)]
struct EccBaseFieldElemFixed {
base_field_elem: CellValue<pallas::Base>,
running_sum: ArrayVec<CellValue<pallas::Base>, { constants::NUM_WINDOWS + 1 }>,
}
impl EccBaseFieldElemFixed {
fn base_field_elem(&self) -> CellValue<pallas::Base> {
self.base_field_elem
}
}
impl EccInstructions<pallas::Affine> for EccChip {
type ScalarFixed = EccScalarFixed;
type ScalarFixedShort = EccScalarFixedShort;
type ScalarVar = CellValue<pallas::Base>;
type Point = EccPoint;
type NonIdentityPoint = NonIdentityEccPoint;
type X = CellValue<pallas::Base>;
type FixedPoints = OrchardFixedBasesFull;
type FixedPointsBaseField = NullifierK;
type FixedPointsShort = ValueCommitV;
fn constrain_equal(
&self,
layouter: &mut impl Layouter<pallas::Base>,
a: &Self::Point,
b: &Self::Point,
) -> Result<(), Error> {
layouter.assign_region(
|| "constrain equal",
|mut region| {
// Constrain x-coordinates
region.constrain_equal(a.x().cell(), b.x().cell())?;
// Constrain x-coordinates
region.constrain_equal(a.y().cell(), b.y().cell())
},
)
}
fn witness_point(
&self,
layouter: &mut impl Layouter<pallas::Base>,
value: Option<pallas::Affine>,
) -> Result<Self::Point, Error> {
let config: witness_point::Config = self.config().into();
layouter.assign_region(
|| "witness point",
|mut region| config.point(value, 0, &mut region),
)
}
fn witness_point_non_id(
&self,
layouter: &mut impl Layouter<pallas::Base>,
value: Option<pallas::Affine>,
) -> Result<Self::NonIdentityPoint, Error> {
let config: witness_point::Config = self.config().into();
layouter.assign_region(
|| "witness non-identity point",
|mut region| config.point_non_id(value, 0, &mut region),
)
}
fn extract_p<Point: Into<Self::Point> + Clone>(point: &Point) -> Self::X {
let point: EccPoint = (point.clone()).into();
point.x()
}
fn add_incomplete(
&self,
layouter: &mut impl Layouter<pallas::Base>,
a: &Self::NonIdentityPoint,
b: &Self::NonIdentityPoint,
) -> Result<Self::NonIdentityPoint, Error> {
let config: add_incomplete::Config = self.config().into();
layouter.assign_region(
|| "incomplete point addition",
|mut region| config.assign_region(a, b, 0, &mut region),
)
}
fn add<A: Into<Self::Point> + Clone, B: Into<Self::Point> + Clone>(
&self,
layouter: &mut impl Layouter<pallas::Base>,
a: &A,
b: &B,
) -> Result<Self::Point, Error> {
let config: add::Config = self.config().into();
layouter.assign_region(
|| "complete point addition",
|mut region| {
config.assign_region(&(a.clone()).into(), &(b.clone()).into(), 0, &mut region)
},
)
}
fn mul(
&self,
layouter: &mut impl Layouter<pallas::Base>,
scalar: &Self::Var,
base: &Self::NonIdentityPoint,
) -> Result<(Self::Point, Self::ScalarVar), Error> {
let config: mul::Config = self.config().into();
config.assign(
layouter.namespace(|| "variable-base scalar mul"),
*scalar,
base,
)
}
fn mul_fixed(
&self,
layouter: &mut impl Layouter<pallas::Base>,
scalar: Option<pallas::Scalar>,
base: &Self::FixedPoints,
) -> Result<(Self::Point, Self::ScalarFixed), Error> {
let config: mul_fixed::full_width::Config = self.config().into();
config.assign(
layouter.namespace(|| format!("fixed-base mul of {:?}", base)),
scalar,
*base,
)
}
fn mul_fixed_short(
&self,
layouter: &mut impl Layouter<pallas::Base>,
magnitude_sign: (CellValue<pallas::Base>, CellValue<pallas::Base>),
base: &Self::FixedPointsShort,
) -> Result<(Self::Point, Self::ScalarFixedShort), Error> {
let config: mul_fixed::short::Config = self.config().into();
config.assign(
layouter.namespace(|| format!("short fixed-base mul of {:?}", base)),
magnitude_sign,
base,
)
}
fn mul_fixed_base_field_elem(
&self,
layouter: &mut impl Layouter<pallas::Base>,
base_field_elem: CellValue<pallas::Base>,
base: &Self::FixedPointsBaseField,
) -> Result<Self::Point, Error> {
let config: mul_fixed::base_field_elem::Config = self.config().into();
config.assign(
layouter.namespace(|| format!("base-field elem fixed-base mul of {:?}", base)),
base_field_elem,
*base,
)
}
}