//! Gadgets for elliptic curve operations. use ff::Field; use std::fmt::Debug; use halo2::{ arithmetic::{CurveAffine, FieldExt}, circuit::{Chip, Layouter}, plonk::Error, }; use crate::circuit::gadget::utilities::CellValue; pub mod chip; /// The set of circuit instructions required to use the ECC gadgets. pub trait EccInstructions: Chip { /// Variable representing an element of the elliptic curve's base field, that /// is used as a scalar in variable-base scalar mul. /// /// It is not true in general that a scalar field element fits in a curve's /// base field, and in particular it is untrue for the Pallas curve, whose /// scalar field `Fq` is larger than its base field `Fp`. /// /// However, the only use of variable-base scalar mul in the Orchard protocol /// is in deriving diversified addresses `[ivk] g_d`, and `ivk` is guaranteed /// to be in the base field of the curve. (See non-normative notes in /// https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents.) type ScalarVar: Clone + Debug; /// Variable representing a full-width element of the elliptic curve's /// scalar field, to be used for fixed-base scalar mul. type ScalarFixed: Clone + Debug; /// Variable representing a signed short element of the elliptic curve's /// scalar field, to be used for fixed-base scalar mul. /// /// A `ScalarFixedShort` must be in the range [-(2^64 - 1), 2^64 - 1]. type ScalarFixedShort: Clone + Debug; /// Variable representing an elliptic curve point. type Point: Clone + Debug; /// Variable representing the affine short Weierstrass x-coordinate of an /// elliptic curve point. type X: Clone + Debug; /// Enumeration of the set of fixed bases to be used in full-width scalar mul. type FixedPoints: Clone + Debug; /// Enumeration of the set of fixed bases to be used in short signed scalar mul. type FixedPointsShort: Clone + Debug; /// Constrains point `a` to be equal in value to point `b`. fn constrain_equal( &self, layouter: &mut impl Layouter, a: &Self::Point, b: &Self::Point, ) -> Result<(), Error>; /// Witnesses the given base field element as a private input to the circuit /// for variable-base scalar mul. fn witness_scalar_var( &self, layouter: &mut impl Layouter, value: Option, ) -> Result; /// Witnesses the given full-width scalar as a private input to the circuit /// for fixed-base scalar mul. fn witness_scalar_fixed( &self, layouter: &mut impl Layouter, value: Option, ) -> Result; /// Witnesses the given signed short scalar as a private input to the circuit /// for fixed-base scalar mul. fn witness_scalar_fixed_short( &self, layouter: &mut impl Layouter, value: Option, ) -> Result; /// Witnesses the given point as a private input to the circuit. /// This maps the identity to (0, 0) in affine coordinates. fn witness_point( &self, layouter: &mut impl Layouter, value: Option, ) -> Result; /// Extracts the x-coordinate of a point. fn extract_p(point: &Self::Point) -> &Self::X; /// Performs incomplete point addition, returning `a + b`. /// /// This returns an error in exceptional cases. fn add_incomplete( &self, layouter: &mut impl Layouter, a: &Self::Point, b: &Self::Point, ) -> Result; /// Performs complete point addition, returning `a + b`. fn add( &self, layouter: &mut impl Layouter, a: &Self::Point, b: &Self::Point, ) -> Result; /// Performs variable-base scalar multiplication, returning `[scalar] base`. /// Multiplication of the identity `[scalar] 𝒪 ` returns an error. fn mul( &self, layouter: &mut impl Layouter, scalar: &Self::ScalarVar, base: &Self::Point, ) -> Result; /// Performs fixed-base scalar multiplication using a full-width scalar, returning `[scalar] base`. fn mul_fixed( &self, layouter: &mut impl Layouter, scalar: &Self::ScalarFixed, base: &Self::FixedPoints, ) -> Result; /// Performs fixed-base scalar multiplication using a short signed scalar, returning `[scalar] base`. fn mul_fixed_short( &self, layouter: &mut impl Layouter, scalar: &Self::ScalarFixedShort, base: &Self::FixedPointsShort, ) -> Result; /// Performs fixed-base scalar multiplication using a base field element as the scalar. /// In the current implementation, this base field element must be output from another /// instruction. fn mul_fixed_base_field_elem( &self, layouter: &mut impl Layouter, base_field_elem: CellValue, base: &Self::FixedPoints, ) -> Result; } /// An element of the given elliptic curve's base field, that is used as a scalar /// in variable-base scalar mul. /// /// It is not true in general that a scalar field element fits in a curve's /// base field, and in particular it is untrue for the Pallas curve, whose /// scalar field `Fq` is larger than its base field `Fp`. /// /// However, the only use of variable-base scalar mul in the Orchard protocol /// is in deriving diversified addresses `[ivk] g_d`, and `ivk` is guaranteed /// to be in the base field of the curve. (See non-normative notes in /// https://zips.z.cash/protocol/nu5.pdf#orchardkeycomponents.) #[derive(Debug)] pub struct ScalarVar + Clone + Debug + Eq> { chip: EccChip, inner: EccChip::ScalarVar, } impl + Clone + Debug + Eq> ScalarVar { /// Constructs a new ScalarVar with the given value. pub fn new( chip: EccChip, mut layouter: impl Layouter, value: Option, ) -> Result { chip.witness_scalar_var(&mut layouter, value) .map(|inner| ScalarVar { chip, inner }) } } /// A full-width element of the given elliptic curve's scalar field, to be used for fixed-base scalar mul. #[derive(Debug)] pub struct ScalarFixed where EccChip: EccInstructions + Clone + Debug + Eq, { chip: EccChip, inner: EccChip::ScalarFixed, } impl ScalarFixed where EccChip: EccInstructions + Clone + Debug + Eq, { /// Constructs a new ScalarFixed with the given value. pub fn new( chip: EccChip, mut layouter: impl Layouter, value: Option, ) -> Result { chip.witness_scalar_fixed(&mut layouter, value) .map(|inner| ScalarFixed { chip, inner }) } } /// A signed short element of the given elliptic curve's scalar field, to be used for fixed-base scalar mul. #[derive(Debug)] pub struct ScalarFixedShort where EccChip: EccInstructions + Clone + Debug + Eq, { chip: EccChip, inner: EccChip::ScalarFixedShort, } impl ScalarFixedShort where EccChip: EccInstructions + Clone + Debug + Eq, { /// Constructs a new ScalarFixedShort with the given value. /// /// # Panics /// /// The short scalar must be in the range [-(2^64 - 1), (2^64 - 1)]. pub fn new( chip: EccChip, mut layouter: impl Layouter, value: Option, ) -> Result { // Check that the scalar is in the range [-(2^64 - 1), (2^64 - 1)] if let Some(value) = value { let mut sign = C::Scalar::one(); // T = (p-1) / 2 let t = (C::Scalar::zero() - C::Scalar::one()) * C::Scalar::TWO_INV; if value > t { sign = -sign; } let magnitude = value * sign; assert!(magnitude < C::Scalar::from_u128(1 << 64)); } chip.witness_scalar_fixed_short(&mut layouter, value) .map(|inner| ScalarFixedShort { chip, inner }) } } /// An elliptic curve point over the given curve. #[derive(Copy, Clone, Debug)] pub struct Point + Clone + Debug + Eq> { chip: EccChip, inner: EccChip::Point, } impl + Clone + Debug + Eq> Point { /// Constructs a new point with the given value. pub fn new( chip: EccChip, mut layouter: impl Layouter, value: Option, ) -> Result { let point = chip.witness_point(&mut layouter, value); point.map(|inner| Point { chip, inner }) } /// Constrains this point to be equal in value to another point. pub fn constrain_equal( &self, mut layouter: impl Layouter, other: &Self, ) -> Result<(), Error> { self.chip .constrain_equal(&mut layouter, &self.inner, &other.inner) } /// Extracts the x-coordinate of a point. pub fn extract_p(&self) -> X { X::from_inner(self.chip.clone(), EccChip::extract_p(&self.inner).clone()) } /// Wraps the given point (obtained directly from an instruction) in a gadget. pub fn from_inner(chip: EccChip, inner: EccChip::Point) -> Self { Point { chip, inner } } /// Returns `self + other` using complete addition. pub fn add(&self, mut layouter: impl Layouter, other: &Self) -> Result { assert_eq!(self.chip, other.chip); self.chip .add(&mut layouter, &self.inner, &other.inner) .map(|inner| Point { chip: self.chip.clone(), inner, }) } /// Returns `self + other` using incomplete addition. pub fn add_incomplete( &self, mut layouter: impl Layouter, other: &Self, ) -> Result { assert_eq!(self.chip, other.chip); self.chip .add_incomplete(&mut layouter, &self.inner, &other.inner) .map(|inner| Point { chip: self.chip.clone(), inner, }) } /// Returns `[by] self`. pub fn mul( &self, mut layouter: impl Layouter, by: &ScalarVar, ) -> Result { assert_eq!(self.chip, by.chip); self.chip .mul(&mut layouter, &by.inner, &self.inner) .map(|inner| Point { chip: self.chip.clone(), inner, }) } } /// The affine short Weierstrass x-coordinate of an elliptic curve point over the /// given curve. #[derive(Debug)] pub struct X + Clone + Debug + Eq> { chip: EccChip, inner: EccChip::X, } impl + Clone + Debug + Eq> X { /// Wraps the given x-coordinate (obtained directly from an instruction) in a gadget. pub fn from_inner(chip: EccChip, inner: EccChip::X) -> Self { X { chip, inner } } } /// A constant elliptic curve point over the given curve, for which window tables have /// been provided to make scalar multiplication more efficient. #[derive(Clone, Debug)] pub struct FixedPoint where EccChip: EccInstructions + Clone + Debug + Eq, { chip: EccChip, inner: EccChip::FixedPoints, } impl FixedPoint where EccChip: EccInstructions + Clone + Debug + Eq, { /// Returns `[by] self`. pub fn mul( &self, mut layouter: impl Layouter, by: &ScalarFixed, ) -> Result, Error> { assert_eq!(self.chip, by.chip); self.chip .mul_fixed(&mut layouter, &by.inner, &self.inner) .map(|inner| Point { chip: self.chip.clone(), inner, }) } /// Multiplies `self` using a value encoded in a base field element /// as the scalar. pub fn mul_base_field_elem( &self, mut layouter: impl Layouter, by: CellValue, ) -> Result, Error> { self.chip .mul_fixed_base_field_elem(&mut layouter, by, &self.inner) .map(|inner| Point { chip: self.chip.clone(), inner, }) } /// Wraps the given fixed base (obtained directly from an instruction) in a gadget. pub fn from_inner(chip: EccChip, inner: EccChip::FixedPoints) -> Self { FixedPoint { chip, inner } } } /// A constant elliptic curve point over the given curve, used in scalar multiplication /// with a short signed exponent #[derive(Clone, Debug)] pub struct FixedPointShort where EccChip: EccInstructions + Clone + Debug + Eq, { chip: EccChip, inner: EccChip::FixedPointsShort, } impl FixedPointShort where EccChip: EccInstructions + Clone + Debug + Eq, { /// Returns `[by] self`. pub fn mul( &self, mut layouter: impl Layouter, by: &ScalarFixedShort, ) -> Result, Error> { assert_eq!(self.chip, by.chip); self.chip .mul_fixed_short(&mut layouter, &by.inner, &self.inner) .map(|inner| Point { chip: self.chip.clone(), inner, }) } /// Wraps the given fixed base (obtained directly from an instruction) in a gadget. pub fn from_inner(chip: EccChip, inner: EccChip::FixedPointsShort) -> Self { FixedPointShort { chip, inner } } } #[cfg(test)] mod tests { use group::{prime::PrimeCurveAffine, Curve, Group}; use halo2::{ circuit::{layouter::SingleChipLayouter, Layouter}, dev::MockProver, plonk::{Assignment, Circuit, ConstraintSystem, Error}, }; use pasta_curves::pallas; use super::chip::{EccChip, EccConfig}; struct MyCircuit {} #[allow(non_snake_case)] impl Circuit for MyCircuit { type Config = EccConfig; fn configure(meta: &mut ConstraintSystem) -> Self::Config { let advices = [ meta.advice_column(), meta.advice_column(), meta.advice_column(), meta.advice_column(), meta.advice_column(), meta.advice_column(), meta.advice_column(), meta.advice_column(), meta.advice_column(), meta.advice_column(), ]; let constants = [meta.fixed_column(), meta.fixed_column()]; let perm = meta.permutation( &advices .iter() .map(|advice| (*advice).into()) .chain(constants.iter().map(|fixed| (*fixed).into())) .collect::>(), ); let lookup_table = meta.fixed_column(); EccChip::configure(meta, advices, lookup_table, constants, perm) } fn synthesize( &self, cs: &mut impl Assignment, config: Self::Config, ) -> Result<(), Error> { let mut layouter = SingleChipLayouter::new(cs)?; let chip = EccChip::construct(config.clone()); // Load 10-bit lookup table. In the Action circuit, this will be // provided by the Sinsemilla chip. config.lookup_config.load(&mut layouter)?; // Generate a random point P let p_val = pallas::Point::random(rand::rngs::OsRng).to_affine(); // P let p = super::Point::new(chip.clone(), layouter.namespace(|| "P"), Some(p_val))?; let p_neg = -p_val; let p_neg = super::Point::new(chip.clone(), layouter.namespace(|| "-P"), Some(p_neg))?; // Generate a random point Q let q_val = pallas::Point::random(rand::rngs::OsRng).to_affine(); // Q let q = super::Point::new(chip.clone(), layouter.namespace(|| "Q"), Some(q_val))?; // Make sure P and Q are not the same point. assert_ne!(p_val, q_val); // Generate a (0,0) point to be used in other tests. let zero = { super::Point::new( chip.clone(), layouter.namespace(|| "identity"), Some(pallas::Affine::identity()), )? }; // Test complete addition { super::chip::add::tests::test_add( chip.clone(), layouter.namespace(|| "complete addition"), &zero, p_val, &p, q_val, &q, &p_neg, )?; } // Test incomplete addition { super::chip::add_incomplete::tests::test_add_incomplete( chip.clone(), layouter.namespace(|| "incomplete addition"), &zero, p_val, &p, q_val, &q, &p_neg, )?; } // Test variable-base scalar multiplication { super::chip::mul::tests::test_mul( chip.clone(), layouter.namespace(|| "variable-base scalar mul"), &zero, &p, )?; } // Test full-width fixed-base scalar multiplication { super::chip::mul_fixed::full_width::tests::test_mul_fixed( chip.clone(), layouter.namespace(|| "full-width fixed-base scalar mul"), )?; } // Test signed short fixed-base scalar multiplication { super::chip::mul_fixed::short::tests::test_mul_fixed_short( chip.clone(), layouter.namespace(|| "signed short fixed-base scalar mul"), )?; } // Test fixed-base scalar multiplication with a base field element { super::chip::mul_fixed::base_field_elem::tests::test_mul_fixed_base_field( chip, layouter.namespace(|| "fixed-base scalar mul with base field element"), )?; } Ok(()) } } #[test] fn ecc() { let k = 13; let circuit = MyCircuit {}; let prover = MockProver::run(k, &circuit, vec![]).unwrap(); assert_eq!(prover.verify(), Ok(())) } }