orchard/src/circuit.rs

1067 lines
38 KiB
Rust

//! The Orchard Action circuit implementation.
use group::{Curve, GroupEncoding};
use halo2::{
circuit::{floor_planner, Layouter},
plonk::{self, Advice, Column, Expression, Instance as InstanceColumn, Selector},
poly::Rotation,
transcript::{Blake2bRead, Blake2bWrite},
};
use memuse::DynamicUsage;
use pasta_curves::{
arithmetic::{CurveAffine, FieldExt},
pallas, vesta,
};
use crate::{
constants::{
OrchardCommitDomains, OrchardFixedBases, OrchardHashDomains, MERKLE_DEPTH_ORCHARD,
},
keys::{
CommitIvkRandomness, DiversifiedTransmissionKey, NullifierDerivingKey, SpendValidatingKey,
},
note::{
commitment::{NoteCommitTrapdoor, NoteCommitment},
nullifier::Nullifier,
ExtractedNoteCommitment,
},
primitives::redpallas::{SpendAuth, VerificationKey},
spec::NonIdentityPallasPoint,
tree::{Anchor, MerkleHashOrchard},
value::{NoteValue, ValueCommitTrapdoor, ValueCommitment},
};
use ecc::{
chip::{EccChip, EccConfig},
gadget::{FixedPoint, NonIdentityPoint, Point},
};
use poseidon::{
gadget::{Hash as PoseidonHash, Word},
pow5t3::{Pow5T3Chip as PoseidonChip, Pow5T3Config as PoseidonConfig, StateWord},
primitive::{ConstantLength, P128Pow5T3},
};
use sinsemilla::{
chip::{SinsemillaChip, SinsemillaConfig},
merkle::{
chip::{MerkleChip, MerkleConfig},
MerklePath,
},
};
use utilities::{
copy, gen_const_array, lookup_range_check::LookupRangeCheckConfig, CellValue,
UtilitiesInstructions, Var,
};
use std::convert::TryInto;
mod commit_ivk;
pub(crate) mod gadget;
mod note_commit;
use commit_ivk::CommitIvkConfig;
use note_commit::NoteCommitConfig;
/// Size of the Orchard circuit.
const K: u32 = 11;
// Absolute offsets for public inputs.
const ANCHOR: usize = 0;
const CV_NET_X: usize = 1;
const CV_NET_Y: usize = 2;
const NF_OLD: usize = 3;
const RK_X: usize = 4;
const RK_Y: usize = 5;
const CMX: usize = 6;
const ENABLE_SPEND: usize = 7;
const ENABLE_OUTPUT: usize = 8;
/// Configuration needed to use the Orchard Action circuit.
#[derive(Clone, Debug)]
pub struct Config {
primary: Column<InstanceColumn>,
q_orchard: Selector,
// Selector for the field addition gate poseidon_hash(nk, rho_old) + psi_old.
q_add: Selector,
advices: [Column<Advice>; 10],
ecc_config: EccConfig,
poseidon_config: PoseidonConfig<pallas::Base>,
merkle_config_1: MerkleConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
merkle_config_2: MerkleConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
sinsemilla_config_1:
SinsemillaConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
sinsemilla_config_2:
SinsemillaConfig<OrchardHashDomains, OrchardCommitDomains, OrchardFixedBases>,
commit_ivk_config: CommitIvkConfig,
old_note_commit_config: NoteCommitConfig,
new_note_commit_config: NoteCommitConfig,
}
/// The Orchard Action circuit.
#[derive(Debug, Default)]
pub struct Circuit {
pub(crate) path: Option<[MerkleHashOrchard; MERKLE_DEPTH_ORCHARD]>,
pub(crate) pos: Option<u32>,
pub(crate) g_d_old: Option<NonIdentityPallasPoint>,
pub(crate) pk_d_old: Option<DiversifiedTransmissionKey>,
pub(crate) v_old: Option<NoteValue>,
pub(crate) rho_old: Option<Nullifier>,
pub(crate) psi_old: Option<pallas::Base>,
pub(crate) rcm_old: Option<NoteCommitTrapdoor>,
pub(crate) cm_old: Option<NoteCommitment>,
pub(crate) alpha: Option<pallas::Scalar>,
pub(crate) ak: Option<SpendValidatingKey>,
pub(crate) nk: Option<NullifierDerivingKey>,
pub(crate) rivk: Option<CommitIvkRandomness>,
pub(crate) g_d_new_star: Option<[u8; 32]>,
pub(crate) pk_d_new_star: Option<[u8; 32]>,
pub(crate) v_new: Option<NoteValue>,
pub(crate) psi_new: Option<pallas::Base>,
pub(crate) rcm_new: Option<NoteCommitTrapdoor>,
pub(crate) rcv: Option<ValueCommitTrapdoor>,
}
impl UtilitiesInstructions<pallas::Base> for Circuit {
type Var = CellValue<pallas::Base>;
}
impl plonk::Circuit<pallas::Base> for Circuit {
type Config = Config;
type FloorPlanner = floor_planner::V1;
fn without_witnesses(&self) -> Self {
Self::default()
}
fn configure(meta: &mut plonk::ConstraintSystem<pallas::Base>) -> Self::Config {
// Advice columns used in the Orchard circuit.
let advices = [
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
meta.advice_column(),
];
// Constrain v_old - v_new = magnitude * sign
// Either v_old = 0, or anchor equals public input
// Constrain v_old = 0 or enable_spends = 1.
// Constrain v_new = 0 or enable_outputs = 1.
let q_orchard = meta.selector();
meta.create_gate("Orchard circuit checks", |meta| {
let q_orchard = meta.query_selector(q_orchard);
let v_old = meta.query_advice(advices[0], Rotation::cur());
let v_new = meta.query_advice(advices[1], Rotation::cur());
let magnitude = meta.query_advice(advices[2], Rotation::cur());
let sign = meta.query_advice(advices[3], Rotation::cur());
let anchor = meta.query_advice(advices[4], Rotation::cur());
let pub_input_anchor = meta.query_advice(advices[5], Rotation::cur());
let one = Expression::Constant(pallas::Base::one());
let not_enable_spends = one.clone() - meta.query_advice(advices[6], Rotation::cur());
let not_enable_outputs = one - meta.query_advice(advices[7], Rotation::cur());
std::array::IntoIter::new([
(
"v_old - v_new = magnitude * sign",
v_old.clone() - v_new.clone() - magnitude * sign,
),
(
"Either v_old = 0, or anchor equals public input",
v_old.clone() * (anchor - pub_input_anchor),
),
("v_old = 0 or enable_spends = 1", v_old * not_enable_spends),
(
"v_new = 0 or enable_outputs = 1",
v_new * not_enable_outputs,
),
])
.map(move |(name, poly)| (name, q_orchard.clone() * poly))
});
// Addition of two field elements poseidon_hash(nk, rho_old) + psi_old.
let q_add = meta.selector();
meta.create_gate("poseidon_hash(nk, rho_old) + psi_old", |meta| {
let q_add = meta.query_selector(q_add);
let sum = meta.query_advice(advices[6], Rotation::cur());
let hash_old = meta.query_advice(advices[7], Rotation::cur());
let psi_old = meta.query_advice(advices[8], Rotation::cur());
vec![q_add * (hash_old + psi_old - sum)]
});
// Fixed columns for the Sinsemilla generator lookup table
let table_idx = meta.lookup_table_column();
let lookup = (
table_idx,
meta.lookup_table_column(),
meta.lookup_table_column(),
);
// Instance column used for public inputs
let primary = meta.instance_column();
meta.enable_equality(primary.into());
// Permutation over all advice columns.
for advice in advices.iter() {
meta.enable_equality((*advice).into());
}
// Poseidon requires four advice columns, while ECC incomplete addition requires
// six, so we could choose to configure them in parallel. However, we only use a
// single Poseidon invocation, and we have the rows to accomodate it serially.
// Instead, we reduce the proof size by sharing fixed columns between the ECC and
// Poseidon chips.
let lagrange_coeffs = [
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
meta.fixed_column(),
];
let rc_a = lagrange_coeffs[2..5].try_into().unwrap();
let rc_b = lagrange_coeffs[5..8].try_into().unwrap();
// Also use the first Lagrange coefficient column for loading global constants.
// It's free real estate :)
meta.enable_constant(lagrange_coeffs[0]);
// We have a lot of free space in the right-most advice columns; use one of them
// for all of our range checks.
let range_check = LookupRangeCheckConfig::configure(meta, advices[9], table_idx);
// Configuration for curve point operations.
// This uses 10 advice columns and spans the whole circuit.
let ecc_config = EccChip::<OrchardFixedBases>::configure(
meta,
advices,
lagrange_coeffs,
range_check.clone(),
);
// Configuration for the Poseidon hash.
let poseidon_config = PoseidonChip::configure(
meta,
P128Pow5T3,
// We place the state columns after the partial_sbox column so that the
// pad-and-add region can be layed out more efficiently.
advices[6..9].try_into().unwrap(),
advices[5],
rc_a,
rc_b,
);
// Configuration for a Sinsemilla hash instantiation and a
// Merkle hash instantiation using this Sinsemilla instance.
// Since the Sinsemilla config uses only 5 advice columns,
// we can fit two instances side-by-side.
let (sinsemilla_config_1, merkle_config_1) = {
let sinsemilla_config_1 = SinsemillaChip::configure(
meta,
advices[..5].try_into().unwrap(),
advices[6],
lagrange_coeffs[0],
lookup,
range_check.clone(),
);
let merkle_config_1 = MerkleChip::configure(meta, sinsemilla_config_1.clone());
(sinsemilla_config_1, merkle_config_1)
};
// Configuration for a Sinsemilla hash instantiation and a
// Merkle hash instantiation using this Sinsemilla instance.
// Since the Sinsemilla config uses only 5 advice columns,
// we can fit two instances side-by-side.
let (sinsemilla_config_2, merkle_config_2) = {
let sinsemilla_config_2 = SinsemillaChip::configure(
meta,
advices[5..].try_into().unwrap(),
advices[7],
lagrange_coeffs[1],
lookup,
range_check,
);
let merkle_config_2 = MerkleChip::configure(meta, sinsemilla_config_2.clone());
(sinsemilla_config_2, merkle_config_2)
};
// Configuration to handle decomposition and canonicity checking
// for CommitIvk.
let commit_ivk_config =
CommitIvkConfig::configure(meta, advices, sinsemilla_config_1.clone());
// Configuration to handle decomposition and canonicity checking
// for NoteCommit_old.
let old_note_commit_config =
NoteCommitConfig::configure(meta, advices, sinsemilla_config_1.clone());
// Configuration to handle decomposition and canonicity checking
// for NoteCommit_new.
let new_note_commit_config =
NoteCommitConfig::configure(meta, advices, sinsemilla_config_2.clone());
Config {
primary,
q_orchard,
q_add,
advices,
ecc_config,
poseidon_config,
merkle_config_1,
merkle_config_2,
sinsemilla_config_1,
sinsemilla_config_2,
commit_ivk_config,
old_note_commit_config,
new_note_commit_config,
}
}
fn synthesize(
&self,
config: Self::Config,
mut layouter: impl Layouter<pallas::Base>,
) -> Result<(), plonk::Error> {
// Load the Sinsemilla generator lookup table used by the whole circuit.
SinsemillaChip::load(config.sinsemilla_config_1.clone(), &mut layouter)?;
// Construct the ECC chip.
let ecc_chip = config.ecc_chip();
// Witness private inputs that are used across multiple checks.
let (psi_old, rho_old, cm_old, g_d_old, ak, nk, v_old, v_new) = {
// Witness psi_old
let psi_old = self.load_private(
layouter.namespace(|| "witness psi_old"),
config.advices[0],
self.psi_old,
)?;
// Witness rho_old
let rho_old = self.load_private(
layouter.namespace(|| "witness rho_old"),
config.advices[0],
self.rho_old.map(|rho| rho.0),
)?;
// Witness cm_old
let cm_old = Point::new(
ecc_chip.clone(),
layouter.namespace(|| "cm_old"),
self.cm_old.as_ref().map(|cm| cm.inner().to_affine()),
)?;
// Witness g_d_old
let g_d_old = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "gd_old"),
self.g_d_old.as_ref().map(|gd| gd.to_affine()),
)?;
// Witness ak.
let ak: Option<pallas::Point> = self.ak.as_ref().map(|ak| ak.into());
let ak = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "ak"),
ak.map(|ak| ak.to_affine()),
)?;
// Witness nk.
let nk = self.load_private(
layouter.namespace(|| "witness nk"),
config.advices[0],
self.nk.map(|nk| nk.inner()),
)?;
// Witness v_old.
let v_old = self.load_private(
layouter.namespace(|| "witness v_old"),
config.advices[0],
self.v_old
.map(|v_old| pallas::Base::from_u64(v_old.inner())),
)?;
// Witness v_new.
let v_new = self.load_private(
layouter.namespace(|| "witness v_new"),
config.advices[0],
self.v_new
.map(|v_new| pallas::Base::from_u64(v_new.inner())),
)?;
(psi_old, rho_old, cm_old, g_d_old, ak, nk, v_old, v_new)
};
// Merkle path validity check.
let anchor = {
let path = self.path.map(|typed_path| {
// TODO: Replace with array::map once MSRV is 1.55.0.
gen_const_array(|i| typed_path[i].inner())
});
let merkle_inputs = MerklePath::new(
config.merkle_chip_1(),
config.merkle_chip_2(),
OrchardHashDomains::MerkleCrh,
self.pos,
path,
);
let leaf = *cm_old.extract_p().inner();
merkle_inputs.calculate_root(layouter.namespace(|| "MerkleCRH"), leaf)?
};
// Value commitment integrity.
let v_net = {
// v_net = v_old - v_new
let v_net = {
// v_old, v_new are guaranteed to be 64-bit values. Therefore, we can
// move them into the base field.
let v_old = self
.v_old
.map(|v_old| pallas::Base::from_u64(v_old.inner()));
let v_new = self
.v_new
.map(|v_new| pallas::Base::from_u64(v_new.inner()));
let magnitude_sign = v_old.zip(v_new).map(|(v_old, v_new)| {
let is_negative = v_old < v_new;
let magnitude = if is_negative {
v_new - v_old
} else {
v_old - v_new
};
let sign = if is_negative {
-pallas::Base::one()
} else {
pallas::Base::one()
};
(magnitude, sign)
});
let magnitude = self.load_private(
layouter.namespace(|| "v_net magnitude"),
config.advices[9],
magnitude_sign.map(|m_s| m_s.0),
)?;
let sign = self.load_private(
layouter.namespace(|| "v_net sign"),
config.advices[9],
magnitude_sign.map(|m_s| m_s.1),
)?;
(magnitude, sign)
};
// commitment = [v_net] ValueCommitV
let (commitment, _) = {
let value_commit_v = OrchardFixedBases::ValueCommitV;
let value_commit_v = FixedPoint::from_inner(ecc_chip.clone(), value_commit_v);
value_commit_v.mul_short(layouter.namespace(|| "[v_net] ValueCommitV"), v_net)?
};
// blind = [rcv] ValueCommitR
let (blind, _rcv) = {
let rcv = self.rcv.as_ref().map(|rcv| rcv.inner());
let value_commit_r = OrchardFixedBases::ValueCommitR;
let value_commit_r = FixedPoint::from_inner(ecc_chip.clone(), value_commit_r);
// [rcv] ValueCommitR
value_commit_r.mul(layouter.namespace(|| "[rcv] ValueCommitR"), rcv)?
};
// [v_net] ValueCommitV + [rcv] ValueCommitR
let cv_net = commitment.add(layouter.namespace(|| "cv_net"), &blind)?;
// Constrain cv_net to equal public input
layouter.constrain_instance(cv_net.inner().x().cell(), config.primary, CV_NET_X)?;
layouter.constrain_instance(cv_net.inner().y().cell(), config.primary, CV_NET_Y)?;
v_net
};
// Nullifier integrity
let nf_old = {
// hash_old = poseidon_hash(nk, rho_old)
let hash_old = {
let message = [nk, rho_old];
let poseidon_message = layouter.assign_region(
|| "load message",
|mut region| {
let mut message_word = |i: usize| {
let value = message[i].value();
let var = region.assign_advice(
|| format!("load message_{}", i),
config.poseidon_config.state()[i],
0,
|| value.ok_or(plonk::Error::SynthesisError),
)?;
region.constrain_equal(var, message[i].cell())?;
Ok(Word::<_, _, P128Pow5T3, 3, 2>::from_inner(StateWord::new(
var, value,
)))
};
Ok([message_word(0)?, message_word(1)?])
},
)?;
let poseidon_hasher = PoseidonHash::init(
config.poseidon_chip(),
layouter.namespace(|| "Poseidon init"),
ConstantLength::<2>,
)?;
let poseidon_output = poseidon_hasher.hash(
layouter.namespace(|| "Poseidon hash (nk, rho_old)"),
poseidon_message,
)?;
let poseidon_output: CellValue<pallas::Base> = poseidon_output.inner().into();
poseidon_output
};
// Add hash output to psi.
// `scalar` = poseidon_hash(nk, rho_old) + psi_old.
//
let scalar = layouter.assign_region(
|| " `scalar` = poseidon_hash(nk, rho_old) + psi_old",
|mut region| {
config.q_add.enable(&mut region, 0)?;
copy(
&mut region,
|| "copy hash_old",
config.advices[7],
0,
&hash_old,
)?;
copy(
&mut region,
|| "copy psi_old",
config.advices[8],
0,
&psi_old,
)?;
let scalar_val = hash_old
.value()
.zip(psi_old.value())
.map(|(hash_old, psi_old)| hash_old + psi_old);
let cell = region.assign_advice(
|| "poseidon_hash(nk, rho_old) + psi_old",
config.advices[6],
0,
|| scalar_val.ok_or(plonk::Error::SynthesisError),
)?;
Ok(CellValue::new(cell, scalar_val))
},
)?;
// Multiply scalar by NullifierK
// `product` = [poseidon_hash(nk, rho_old) + psi_old] NullifierK.
//
let product = {
let nullifier_k =
FixedPoint::from_inner(ecc_chip.clone(), OrchardFixedBases::NullifierK);
nullifier_k.mul_base_field(
layouter.namespace(|| "[poseidon_output + psi_old] NullifierK"),
scalar,
)?
};
// Add cm_old to multiplied fixed base to get nf_old
// cm_old + [poseidon_output + psi_old] NullifierK
let nf_old = cm_old
.add(layouter.namespace(|| "nf_old"), &product)?
.extract_p();
// Constrain nf_old to equal public input
layouter.constrain_instance(nf_old.inner().cell(), config.primary, NF_OLD)?;
nf_old
};
// Spend authority
{
// alpha_commitment = [alpha] SpendAuthG
let (alpha_commitment, _) = {
let spend_auth_g = OrchardFixedBases::SpendAuthG;
let spend_auth_g = FixedPoint::from_inner(ecc_chip.clone(), spend_auth_g);
spend_auth_g.mul(layouter.namespace(|| "[alpha] SpendAuthG"), self.alpha)?
};
// [alpha] SpendAuthG + ak
let rk = alpha_commitment.add(layouter.namespace(|| "rk"), &ak)?;
// Constrain rk to equal public input
layouter.constrain_instance(rk.inner().x().cell(), config.primary, RK_X)?;
layouter.constrain_instance(rk.inner().y().cell(), config.primary, RK_Y)?;
}
// Diversified address integrity.
let pk_d_old = {
let commit_ivk_config = config.commit_ivk_config.clone();
let ivk = {
let rivk = self.rivk.map(|rivk| rivk.inner());
commit_ivk_config.assign_region(
config.sinsemilla_chip_1(),
ecc_chip.clone(),
layouter.namespace(|| "CommitIvk"),
*ak.extract_p().inner(),
nk,
rivk,
)?
};
// [ivk] g_d_old
// The scalar value is passed through and discarded.
let (derived_pk_d_old, _ivk) =
g_d_old.mul(layouter.namespace(|| "[ivk] g_d_old"), ivk.inner())?;
// Constrain derived pk_d_old to equal witnessed pk_d_old
let pk_d_old = NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness pk_d_old"),
self.pk_d_old.map(|pk_d_old| pk_d_old.inner().to_affine()),
)?;
derived_pk_d_old
.constrain_equal(layouter.namespace(|| "pk_d_old equality"), &pk_d_old)?;
pk_d_old
};
// Old note commitment integrity.
{
let old_note_commit_config = config.old_note_commit_config.clone();
let rcm_old = self.rcm_old.as_ref().map(|rcm_old| rcm_old.inner());
// g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)
let derived_cm_old = old_note_commit_config.assign_region(
layouter.namespace(|| {
"g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)"
}),
config.sinsemilla_chip_1(),
config.ecc_chip(),
g_d_old.inner(),
pk_d_old.inner(),
v_old,
rho_old,
psi_old,
rcm_old,
)?;
// Constrain derived cm_old to equal witnessed cm_old
derived_cm_old.constrain_equal(layouter.namespace(|| "cm_old equality"), &cm_old)?;
}
// New note commitment integrity.
{
let new_note_commit_config = config.new_note_commit_config.clone();
// Witness g_d_new_star
let g_d_new = {
let g_d_new = self
.g_d_new_star
.map(|bytes| pallas::Affine::from_bytes(&bytes).unwrap());
NonIdentityPoint::new(
ecc_chip.clone(),
layouter.namespace(|| "witness g_d_new_star"),
g_d_new,
)?
};
// Witness pk_d_new_star
let pk_d_new = {
let pk_d_new = self
.pk_d_new_star
.map(|bytes| pallas::Affine::from_bytes(&bytes).unwrap());
NonIdentityPoint::new(
ecc_chip,
layouter.namespace(|| "witness pk_d_new"),
pk_d_new,
)?
};
// Witness psi_new
let psi_new = self.load_private(
layouter.namespace(|| "witness psi_new"),
config.advices[0],
self.psi_new,
)?;
let rcm_new = self.rcm_new.as_ref().map(|rcm_new| rcm_new.inner());
// g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)
let cm_new = new_note_commit_config.assign_region(
layouter.namespace(|| {
"g★_d || pk★_d || i2lebsp_{64}(v) || i2lebsp_{255}(rho) || i2lebsp_{255}(psi)"
}),
config.sinsemilla_chip_2(),
config.ecc_chip(),
g_d_new.inner(),
pk_d_new.inner(),
v_new,
*nf_old.inner(),
psi_new,
rcm_new,
)?;
let cmx = cm_new.extract_p();
// Constrain cmx to equal public input
layouter.constrain_instance(cmx.inner().cell(), config.primary, CMX)?;
}
// Constrain v_old - v_new = magnitude * sign
// Either v_old = 0, or anchor equals public input
layouter.assign_region(
|| "v_old - v_new = magnitude * sign",
|mut region| {
copy(&mut region, || "v_old", config.advices[0], 0, &v_old)?;
copy(&mut region, || "v_new", config.advices[1], 0, &v_new)?;
let (magnitude, sign) = v_net;
copy(
&mut region,
|| "v_net magnitude",
config.advices[2],
0,
&magnitude,
)?;
copy(&mut region, || "v_net sign", config.advices[3], 0, &sign)?;
copy(&mut region, || "anchor", config.advices[4], 0, &anchor)?;
region.assign_advice_from_instance(
|| "pub input anchor",
config.primary,
ANCHOR,
config.advices[5],
0,
)?;
region.assign_advice_from_instance(
|| "enable spends",
config.primary,
ENABLE_SPEND,
config.advices[6],
0,
)?;
region.assign_advice_from_instance(
|| "enable outputs",
config.primary,
ENABLE_OUTPUT,
config.advices[7],
0,
)?;
config.q_orchard.enable(&mut region, 0)
},
)?;
Ok(())
}
}
/// The verifying key for the Orchard Action circuit.
#[derive(Debug)]
pub struct VerifyingKey {
params: halo2::poly::commitment::Params<vesta::Affine>,
vk: plonk::VerifyingKey<vesta::Affine>,
}
impl VerifyingKey {
/// Builds the verifying key.
pub fn build() -> Self {
let params = halo2::poly::commitment::Params::new(K);
let circuit: Circuit = Default::default();
let vk = plonk::keygen_vk(&params, &circuit).unwrap();
VerifyingKey { params, vk }
}
}
/// The proving key for the Orchard Action circuit.
#[derive(Debug)]
pub struct ProvingKey {
params: halo2::poly::commitment::Params<vesta::Affine>,
pk: plonk::ProvingKey<vesta::Affine>,
}
impl ProvingKey {
/// Builds the proving key.
pub fn build() -> Self {
let params = halo2::poly::commitment::Params::new(K);
let circuit: Circuit = Default::default();
let vk = plonk::keygen_vk(&params, &circuit).unwrap();
let pk = plonk::keygen_pk(&params, vk, &circuit).unwrap();
ProvingKey { params, pk }
}
}
/// Public inputs to the Orchard Action circuit.
#[derive(Debug)]
pub struct Instance {
pub(crate) anchor: Anchor,
pub(crate) cv_net: ValueCommitment,
pub(crate) nf_old: Nullifier,
pub(crate) rk: VerificationKey<SpendAuth>,
pub(crate) cmx: ExtractedNoteCommitment,
pub(crate) enable_spend: bool,
pub(crate) enable_output: bool,
}
impl Instance {
fn to_halo2_instance(&self) -> [[vesta::Scalar; 9]; 1] {
let mut instance = [vesta::Scalar::zero(); 9];
instance[ANCHOR] = self.anchor.inner();
instance[CV_NET_X] = self.cv_net.x();
instance[CV_NET_Y] = self.cv_net.y();
instance[NF_OLD] = self.nf_old.0;
let rk = pallas::Point::from_bytes(&self.rk.clone().into())
.unwrap()
.to_affine()
.coordinates()
.unwrap();
instance[RK_X] = *rk.x();
instance[RK_Y] = *rk.y();
instance[CMX] = self.cmx.inner();
instance[ENABLE_SPEND] = vesta::Scalar::from_u64(self.enable_spend.into());
instance[ENABLE_OUTPUT] = vesta::Scalar::from_u64(self.enable_output.into());
[instance]
}
}
/// A proof of the validity of an Orchard [`Bundle`].
///
/// [`Bundle`]: crate::bundle::Bundle
#[derive(Debug, Clone)]
pub struct Proof(Vec<u8>);
impl AsRef<[u8]> for Proof {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl DynamicUsage for Proof {
fn dynamic_usage(&self) -> usize {
self.0.dynamic_usage()
}
fn dynamic_usage_bounds(&self) -> (usize, Option<usize>) {
self.0.dynamic_usage_bounds()
}
}
impl Proof {
/// Creates a proof for the given circuits and instances.
pub fn create(
pk: &ProvingKey,
circuits: &[Circuit],
instances: &[Instance],
) -> Result<Self, plonk::Error> {
let instances: Vec<_> = instances.iter().map(|i| i.to_halo2_instance()).collect();
let instances: Vec<Vec<_>> = instances
.iter()
.map(|i| i.iter().map(|c| &c[..]).collect())
.collect();
let instances: Vec<_> = instances.iter().map(|i| &i[..]).collect();
let mut transcript = Blake2bWrite::<_, vesta::Affine, _>::init(vec![]);
plonk::create_proof(&pk.params, &pk.pk, circuits, &instances, &mut transcript)?;
Ok(Proof(transcript.finalize()))
}
/// Verifies this proof with the given instances.
pub fn verify(&self, vk: &VerifyingKey, instances: &[Instance]) -> Result<(), plonk::Error> {
let instances: Vec<_> = instances.iter().map(|i| i.to_halo2_instance()).collect();
let instances: Vec<Vec<_>> = instances
.iter()
.map(|i| i.iter().map(|c| &c[..]).collect())
.collect();
let instances: Vec<_> = instances.iter().map(|i| &i[..]).collect();
let msm = vk.params.empty_msm();
let mut transcript = Blake2bRead::init(&self.0[..]);
let guard = plonk::verify_proof(&vk.params, &vk.vk, msm, &instances, &mut transcript)?;
let msm = guard.clone().use_challenges();
if msm.eval() {
Ok(())
} else {
Err(plonk::Error::ConstraintSystemFailure)
}
}
/// Constructs a new Proof value.
pub fn new(bytes: Vec<u8>) -> Self {
Proof(bytes)
}
}
#[cfg(test)]
mod tests {
use ff::Field;
use group::GroupEncoding;
use halo2::dev::MockProver;
use pasta_curves::pallas;
use rand::rngs::OsRng;
use std::iter;
use super::{Circuit, Instance, Proof, ProvingKey, VerifyingKey, K};
use crate::{
keys::SpendValidatingKey,
note::Note,
tree::MerklePath,
value::{ValueCommitTrapdoor, ValueCommitment},
};
// TODO: recast as a proptest
#[test]
fn round_trip() {
let mut rng = OsRng;
let (circuits, instances): (Vec<_>, Vec<_>) = iter::once(())
.map(|()| {
let (_, fvk, spent_note) = Note::dummy(&mut rng, None);
let sender_address = fvk.default_address();
let nk = *fvk.nk();
let rivk = *fvk.rivk();
let nf_old = spent_note.nullifier(&fvk);
let ak: SpendValidatingKey = fvk.into();
let alpha = pallas::Scalar::random(&mut rng);
let rk = ak.randomize(&alpha);
let (_, _, output_note) = Note::dummy(&mut rng, Some(nf_old));
let cmx = output_note.commitment().into();
let value = spent_note.value() - output_note.value();
let cv_net = ValueCommitment::derive(value.unwrap(), ValueCommitTrapdoor::zero());
let path = MerklePath::dummy(&mut rng);
let anchor = path.root(spent_note.commitment().into());
(
Circuit {
path: Some(path.auth_path()),
pos: Some(path.position()),
g_d_old: Some(sender_address.g_d()),
pk_d_old: Some(*sender_address.pk_d()),
v_old: Some(spent_note.value()),
rho_old: Some(spent_note.rho()),
psi_old: Some(spent_note.rseed().psi(&spent_note.rho())),
rcm_old: Some(spent_note.rseed().rcm(&spent_note.rho())),
cm_old: Some(spent_note.commitment()),
alpha: Some(alpha),
ak: Some(ak),
nk: Some(nk),
rivk: Some(rivk),
g_d_new_star: Some((*output_note.recipient().g_d()).to_bytes()),
pk_d_new_star: Some(output_note.recipient().pk_d().to_bytes()),
v_new: Some(output_note.value()),
psi_new: Some(output_note.rseed().psi(&output_note.rho())),
rcm_new: Some(output_note.rseed().rcm(&output_note.rho())),
rcv: Some(ValueCommitTrapdoor::zero()),
},
Instance {
anchor,
cv_net,
nf_old,
rk,
cmx,
enable_spend: true,
enable_output: true,
},
)
})
.unzip();
let vk = VerifyingKey::build();
// Test that the pinned verification key (representing the circuit)
// is as expected.
{
// panic!("{:#?}", vk.vk.pinned());
assert_eq!(
format!("{:#?}\n", vk.vk.pinned()),
include_str!("circuit_description").replace("\r\n", "\n")
);
}
for (circuit, instance) in circuits.iter().zip(instances.iter()) {
assert_eq!(
MockProver::run(
K,
circuit,
instance
.to_halo2_instance()
.iter()
.map(|p| p.to_vec())
.collect()
)
.unwrap()
.verify(),
Ok(())
);
}
let pk = ProvingKey::build();
let proof = Proof::create(&pk, &circuits, &instances).unwrap();
assert!(proof.verify(&vk, &instances).is_ok());
}
#[cfg(feature = "dev-graph")]
#[test]
fn print_action_circuit() {
use plotters::prelude::*;
let root = BitMapBackend::new("action-circuit-layout.png", (1024, 768)).into_drawing_area();
root.fill(&WHITE).unwrap();
let root = root
.titled("Orchard Action Circuit", ("sans-serif", 60))
.unwrap();
let circuit = Circuit {
path: None,
pos: None,
g_d_old: None,
pk_d_old: None,
v_old: None,
rho_old: None,
psi_old: None,
rcm_old: None,
cm_old: None,
alpha: None,
ak: None,
nk: None,
rivk: None,
g_d_new_star: None,
pk_d_new_star: None,
v_new: None,
psi_new: None,
rcm_new: None,
rcv: None,
};
halo2::dev::CircuitLayout::default()
.show_labels(false)
.view_height(0..(1 << 11))
.render(K as usize, &circuit, &root)
.unwrap();
}
}