
A Proof of Security for the Sapling Generation of zk-SNARK Parameters in
the Generic Group Model

Mary Maller

1 Overview

Recently Bowe, Gabizon and Miers designed a multiparty computation [BGM17] to output the public parameters for a recent
zk-SNARK by Groth [Gro16]. Their aim is that this computation will be used to generate the new parameters for Zcash. The
public parameters output by the multiparty computation differ from the public parameters of Groth’s original scheme. As a
consequence, Bowe, Gabizon and Miers provided a proof that the scheme is still secure in the generic group model under the new
parameters. The purpose of this document is to provide an alternative proof of security for knowledge soundness in the generic
group model. Additionally, we provide a proof of subversion zero-knowledge which is not dissimilar from the proof of subversion
zero-knowledge presented in [Fuc18].

2 Preliminaries

2.1 Notation

We use λ ∈ N to denote the security parameter and 1λ to denote its unary representation. Algorithms are randomised unless
explicitly noted otherwise. We use y ← A(x; r) to denote running algorithm A on inputs x and random coins r and assigning its
output to y. Typically we do not specify the randomness and write write y ← A(x).

2.2 Bilinear Groups

Definition 1. A bilinear group generator BilinearGen takes as input a security parameter in unary and returns a bilinear group
(p,G,H,GT , e,G,H) consisting of cyclic groups G, H, GT of prime order p and a bilinear map e : G×H→ GT and generators
G, H for G,H respectively such that

– there are efficient algorithms for computing group operations, evaluating the bilinear map, deciding membership of the groups,
and sampling generators of the groups;

– the map is bilinear, i.e., for all a, b ∈ Z we have e(Ga, Hb) = e(G,H)ab;
– and the map is non-degenerate, i.e., if e(G1, H1) = 1 then G1 = 1 or H1 = 1.

Bilinear groups can be set up as symmetric bilinear groups where G = H or as asymmetric bilinear groups where G 6= H.
For simplicity, our proof of knowledge soundness will be in the symmetric setting. For our generic adversary this is equivalent to
working in the asymmtric setting where it has access to all elements in both groups. Hence our adversary is given strictly greater
or equal information to the information it would have in practice.

We will be working with generic algorithms. The only meaningful operations that the algorithms can do are generic group
operations, namely: calculating exponentiations of known group elements by known field elements; multiplying group elements in
the same group; and using the bilinear pairing function on known group elements in G.

2.3 Quadratic Arithmetic Programs

Groth 2016 uses quadratic arithmetic circuits QAPs to describe the relation. A QAP is described by

{F, {ui(X), vi(X), wi(X)}mi=0, t(X)}

a field F, three sets of degree n − 1 polynomials with coefficients in F ui(X), vi(X), wi(X), and a degree n polynomial with
coefficients in F t(X). The relation is given by

R =

(φ,w)

0 φ = (a0 = 1, a1, . . . , a`) ∈ F1+`

w = (a`+1, . . . , am) ∈ Fm−`
∃h(X) ∈ F[X] of degree ≤ n− 2 such that
(
∑m
i=0 aiui(X)) (

∑m
i=0 aivi(X)) =

∑m
i=0 aiwi(X) + h(X)t(X)

 .

3 Proof of Knowledge

Let Hash be a collision resistant hash function Hash : {0, 1}k 7→ H. By Claim 3.5 in [BGM17] the following scheme is a proof of
knowledge in the random oracle model under the KEA assumption. That is, for any PPT algorithmA, there exists a PPT extractor
X such that if (A, string, P) ← A such that PoKVerify(bp,A, string, P) = 1, then α ← X such that A = Gα with overwhelming
probability. Here we provide an alternative proof of security in the random oracle model under the B-KEA assumption [ABLZ17],
which assumes that it is infeasible to compute C, Ĉ such that e(C,H) = e(G, Ĉ) without knowing s such that (C, Ĉ) = (Gs, Hs).
Since the Fiat-Shamir heuristic is non-malleable [FKMV12] we do not need to consider show that a strengthened adversary that
can see additional proofs can gain additional advantage. Groth et. al. [GKM+18] went for an alternative proof style where their
proof was malleable however the adversary could not compute the required updated string if they cheated in this manner. Their
technique is not applicable here because we need to argue that the proof of knowledge with respect to the hashed value still holds.

Assumption 1 (The B-KEA Assumption) Let A be a PPT adversary. Then there exists a PPT extractor X such that

Pr[bp← BilinearGen(1λ); (C, Ĉ)← A(bp); s← X (transA) : e(C,H) = e(G, Ĉ) ∧ (C, Ĉ) 6= (Gs, Hs)]

is negligible in λ.

PoKProve(bp, string, Gα, α)

R← Hash(Gα, string)
P ← Rα

return P

PoKVerify(bp,A, string, P)

check A ∈ G, P ∈ H
R← Hash(Gα, string)
check e(A,R) = e(G,P)
return 1 if both checks pass, else return 0

Lemma 1. The algorithms (PoKProve,PoKVerify) are a proof of knowledge under the B-KEA assumption.

Proof. We prove soundness in the interactive setting, i.e. when the random element R is provided by an honest verifier. Soundness
in the non-interactive setting then follows from the Fiat-Shamir paradigm. Let A be a PPT adversary. Suppose that bp ←
BilinearGen(1λ) and that (A, string) ← A(bp) is sent to the verifier. The verifier responds with R

$←− H. The adversary A then
returns P such that e(A,R) = e(G,P). Since R is a random generator of H, by the B-KEA assumption, there exists an extractor
X that outputs a such that (A,P) = (Ga, Ra).

An additional algorithm to check the ratio of 4 elements was given in [BGM17]. It works as follows.

CheckRatio(bp, (A1, B1), (A2, B2))

check A1, A2 ∈ G, B1, B2 ∈ H
check e(A1, B1) = e(A2, B2)
return 1 if both checks pass, else return 0

4 Security properties

We take our definitions from Groth et al [GKM+18]. Their definitions are simpler because they only have one round in the setup.
Instead of update security, we define 2-round security 2RS to capture the notion of a scheme that is secure under a 2 round setup.
In terms of zero-knowledge, we aim to prove simulation zero-knowledge which is strictly stronger than 2RS zero-knowledge. For
simplicity, we shall avoid discussing 2RS zero-knowledge.

For each security property, the game in the left column of Figure 1 resembles the usual security game for zero-knowledge,
soundness, and knowledge soundness. The difference is in the creation of the CRS crs, which is initially set to ⊥. We then model
the process of generating the CRS as an interaction between the adversary and a setup oracle Os, at the end of which the oracle
sets this value crs and returns it to the adversary.

In the definition of zero-knowledge, we require the existence of a PPT simulator consisting of algorithms (SimSetup,Simulate)
that share state with each other. The idea is that it can be used to simulate the generation of common reference strings and
simulate proofs without knowing the corresponding witnesses.

Definition 2. Let P = (Setup, 2RSSetup, 2RSUpdate,SetupVerify,Prove,Verify) be a non-interactive argument for the relation R.
Then the argument is

– complete if for all PPT algorithms A the advantage |1− Pr[COMPA(λ)]| is negligible in λ.
– subversion zero-knowledge if for all PPT algorithms A there exists a simulator SimA = (SimSetup,SimulateA) where the

advantage |2 Pr[S-ZKA,SimA(1λ) = 1]− 1| is negligible in λ.
– 2RS-sound if for all PPT algorithms A the probability Pr[X-SNDA(1λ) = 1] is negligible in λ.
– 2RS-knowledge-sound if for all PPT algorithms A there exists a PPT extractor XA such that |Pr[X-KSNDA,XA(1λ)]| is

negligible in λ.

Moreover, if a definition holds with respect to an adversary with unbounded computation, we say it holds statistically, and if the
advantage is exactly 0, we say it holds perfectly.

2

main COMPA(λ)

(crs, (ρi)
N
i=1, (ψi)

M
i=1, φ, w)← A(1λ)

b← SetupVerify(1λ, crs, (ρi)
N
i=1, (ψi)

M
i=1)

if b = 0 or (crs, φ, w) /∈ R return 1

π
$←− Prove(crs, φ, w)

return Verify(crs, φ, π)

main X-ZKA,SimA(λ)

b
$←− {0, 1}

if b = 0
Setup← SimSetup

crs← ⊥; Q← ∅
state

r←− AX-Os(1λ)

b′
$←− AOpf (state)

return 1 if b′ = b else return 0

Opf(φ,w)

if (crs, φ, w) 6∈ R return ⊥
if b = 0 return SimulateA(crs, r, φ)
else return Prove(crs, φ, w)

main X-SNDA(λ)

crs← ⊥; Q← ∅
(φ, π)

$←− AX-Os(1λ)
return Verify(crs, φ, π) ∧ φ 6∈ LR

main X-KSNDA,XA(λ)

crs← ⊥, Q← ∅
(φ, π)

r←− AX-Os(1λ)

w
$←− XA(crs, r)

return Verify(crs, φ, π) ∧ (φ,w) 6∈ R

T-Os(x)

if crs 6= ⊥ return ⊥
(crs, ρ)

$←− Setup(1λ)
return (crs, ρ)

2RS-Os(intent, crsN , (ρi)
N
i=1, (ψi)

M
i=1)

if crs 6= ⊥ return ⊥
if intent = setup

if N = 0:

(crs1, ρ1)
$←− 2RSSetup(1λ)

Q1← {ρ1}
return (crs1, ρ1)

else:

(crsN+1, ψ1)
$←− 2RSSetup(crsN , (ρi)

N
i=1)

Q2← {ψ1}
return (crsN+1, ψ1)

if intent = 1round
b ← SetupVerify(1λ, crsN , (ρi)

N
i=1)

if b = 0 return ⊥
(crs′, ρ′)

$←− 2RSUpdate(1λ, crsN , 1, (ρi)
N
i=1)

Q1← Q1 ∪ { ρ′}
return (crs′, ρ′)

if intent = 2round
b ← SetupVerify(1λ, crsN+M , (ρi)

N
i=1, (ψi)

M
i=1)

if b = 0 return ⊥
(crs′, ψ′)

$←−
2RSUpdate(1λ, crsN+M , 2, (ρi)

N
i=1, (ψi)

M
i=1)

Q2← Q2 ∪ { ρ′}
return (crs′, ρ′)

if intent = final
b← SetupVerify(1λ, crsN+M , (ρi)

N
i=1, (ψi)

M
i=1)

if b = 0 or Q1 ∩ { ρi}i = ∅ or Q2 ∩ { ψi}i = ∅ return ⊥
set crs← crsN+M and return crs

else return ⊥

S-Os(crsN+M , (ρi)
N
i=1, (ψi)

M
i=1)

if crs 6= ⊥ return ⊥
b← SetupVerify(1λ, crsN+M , (ρi)

N
i=1, (ψi)

M
i=1) = 0

if b = 0 return ⊥
set crs← crsN+M and return crs

Fig. 1: The left games define completeness, zero-knowledge (X-ZK), soundness (X-SND), and knowledge soundness (X-KSND). The right
oracles define the notions of trusted, 2 round setup, and subvertible CRS setups. A complete game is constructed by using an oracle from
the right side in the game on the left side.

3

5 The Setup Algorithms and some Helpful Lemmas

In this section we describe the setup algorithms used in Sapling. We also provide four simple Lemmas regarding the format of
setup transcripts that verify. These will be helpful later on in our security proofs. The setup algorithms are given in Figures 2&3.

2RSSetup(bp, crs1, (ρi)
N
i=1)

if N = 0:
string = bp

x, α, β
$←− Zp

crs←
(
bp, {Gx

i

, Hxi}2n−2
i=0 , {Gαx

i

, Hαxi , Gβx
i

, Hβxi}n−1
i=0

)
ρ← PoKProve(bp,Gα, string),PoKProve(bp,Gβ , string),PoKProve(bp,Gx, string))
return (crs, ρ)

else:

string = bp+
∑N
i=1 ρi

δ
$←− Zp

crs←

(
crs1, G

δ, Hδ,

{
G
xit(x)
δ

}n−2

i=0

,
{
G
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

)
ψ ← PoKProve(bp,Gδ, string)
return (crs, ψ)

2RSUpdate(1λ, crs, (ρi)
N
i=1, (ψi)

M
i=1)

string = bp+
∑N
i=1 ρi +

∑M
i=1 ψi

if M = 0:(
bp, {Gx

i

, Hxi}2n−2
i=0 , {Gαx

i

, Hαxi , Gβx
i

, Hβxi}n−1
i=0

)
← parse crs

x′, α′, β′
$←− Zp

crs′ ←
(
bp, {G(xx′)i , H(xx′)i}2n−2

i=0 , {Gαα
′(xx′)i , Hαα′(xx′)i , Gββ

′(xx′)i , Hββ′(xx′)i}n−1
i=0

)
(PA, PB , PX)← PoKProve(bp,Gα

′
, string, α′),PoKProve(bp,Gβ

′
, string, β′),PoKProve(bp,Gx

′
, string, x′))

ρ′ ← (Gα
′
, Gβ

′
, Gx

′
, A,B,X,Gαα

′
, Gββ

′
, Gxx

′
)

return crs′, ρ′

else M > 0(
crs1, G

δ, Hδ,

{
G
xit(x)
δ

}n−2

i=0

,
{
G
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

)
← parse crs

δ′
$←− Zp

crs′ ←

(
crs1, G

δδ′ , Hδδ′ ,

{
G
xit(x)

δδ′

}n−2

i=0

,

{
G
βui(x)+αvi(x)+wi(x)

δδ′

}m
i=`+1

)
PD ← PoKProve(bp,Gδ

′
, string, δ′)

ψ′ ← (Gδ
′
, PD, G

δδ′)
return crs′, ψ′

Fig. 2: Two round setup process.

Lemma 2. Suppose that for crs there exists {ρi}Ni=1, {ψi}Mi=1 such that Verify(1λ, crs, {ρi}Ni=1, {ψi}Mi=1) = 1 with non-negligible
probability. Then there exists (α, β, δ, x) such that

crs =

(
bp,
{
Gx

i

, Hxi
}2n−2

i=0
, Gδ, Hδ,

{
Gαx

i

, Gβx
i

, Hαxi , Hβxi
}n−1
i=0

,

{
G
xit(x)
δ

}n−2
i=0

,
{
G
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

)
.

.

Proof. This follows because the verifier checks that 1 ≤ i ≤ 2n− 3, 1 ≤ j ≤ n− 2, `+ 1 ≤ k ≤ m and v = α, β, 1 that

4

SetupVerify(1λ, crs, (ρi)
N
i=1, (ψi)

M
i=1)(

bp,
{
Gx

i

, Hxi
}2n−2

i=0
, Gδ, Hδ,

{
Gαx

i

, Gβx
i

, Hαxi , Hβxi
}n−1

i=0
,

{
G
xit(x)
δ

}n−2

i=0

,
{
G
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

)
← parse crs

for 1 ≤ i ≤ N
string = bp+

∑N−1
i=1 ρi

(Ai, Bi, Xi, PAi , PBi , PXi , LAi , LBi , LXi)← parse ρi
for V = A,B,X

check PoKVerify(bp, string, Vi, PVi)
RVi ← Hash(Ai, string)

if i 6= 1
check CheckRatio(bp, (LVi−1 , PVi), (LVi , RVi)) = 1

for 1 ≤ i ≤M − 1

string = bp+
∑N
i=1 ρi +

∑M−1
i=1 ψi

(Di, PDi , LDi)← parse ψi
check PoKVerify(bp, string, Di, PDi)
RDi ← Hash(Di, string)
if i 6= 1

check CheckRatio(bp, (LDi−1 , PDi), (LDi , RDi)) = 1

check Gα = AN ∧Gβ = BN ∧ Gx = XN ∧ Gδ = DM
for v = α, β, x, δ, check e(Gv, H) = e(G,Hv)

for 1 ≤ i ≤ 2n− 3 and v = α, β, 1

check e(Gvx
i+1

, H) = e(Gvx
i

, Hx)

check e(G,Hvxi+1

) = e(Gx, Gvx
i

)
for 1 ≤ i ≤ n− 2

check e(G
xit(x)
δ , Hδ) = e(Gx

it(x), H)
for `+ 1 ≤ i ≤ m

check e(G
βui(x)+αvi(x)+wi(x)

δ , Hδ) = e(G(βui(x)+αvi(x)+wi(x)), H)
return 1 if all checks pass, else return 0

Fig. 3: Verification of the setup transcript.

5

e(Gvx
i+1

, H) = e(Gvx
i

, Hx)

e(G,Hvxi+1

) = e(Gx, Gvx
i

)

e(G
xjt(x)
δ , Hδ) = e(Gx

jt(x), H)

e(G
βuk(x)+αvk(x)+wk(x)

δ , Hδ) = e(G(βuk(x)+αvk(x)+wk(x)), H)

Lemma 3. Suppose that for {ρi}Ni=1, {ψi}Mi=1 there exists crs such that Verify(1λ, crs, {ρi}Ni=1, {ψi}Mi=1) = 1 with non-negligible
probability. Write crs as

crs =

(
bp,
{
Gx

i

, Hxi
}2n−2

i=0
, Gδ, Hδ,

{
Gαx

i

, Gβx
i

, Hαxi , Hβxi
}n−1
i=0

,

{
G
xit(x)
δ

}n−2
i=0

,
{
G
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

)
.

Then

α =

N∏
i=1

logH Âi, β =

N∏
i=1

logH B̂i, x =

N∏
i=1

logH X̂i, δ =

M∏
i=1

logH D̂i.

Proof. This holds due to the checks that for V = A,B,X, 2 ≤ i ≤ N

CheckRatio(bp, (LVi−1
, PVi), (LVi , RVi)) = 1

and for 2 ≤ i ≤M
CheckRatio(bp, (LDi−1

, PDi), (LDi , RDi)) = 1.

Lemma 4. Suppose that there exists a generic adversary A that outputs ρr, ψs for some 1 ≤ r ≤ N and 1 ≤ s ≤ M such that
there exists crs, ρi, ψi such that SetupVerify(crs, {ρ}Ni=1, ψ

M
i=1) = 1. Then, by the B-KEA assumption, there exists a PPT extractor

X that, given the random tape of A as input, outputs (α, β, δ, x) such that logH Âr, logH B̂r, logH X̂r, logG D̂s = α, β, x, δ.

Proof. This holds directly from the security of the proof of knowledge for Ai, Bi, Xi and Di.

Lemma 5. Suppose there exists a generic adversary A that outputs crs, ρ, ψ such that Verify(1λ, crs, ρ, ψ) = 1 with non-negligible
probability. Then, by the B-KEA assumption, there exists a PPT extractor X that, given the random tape of A as input, outputs
(α, β, δ, x) such that (crs, ρ) = Setup(1λ; (α, β, δ, x)).

Proof. By Lemma 2, for any reference string that passes verification there exist values (α, β, δ, x) ∈ Z4
p such that crs contains(

bp,
{
Gx

i

, Hxi
}2n−2

i=0
, Gδ, Hδ,

{
Gαx

i

, Gβx
i

, Hαxi , Hβxi
}n−1
i=0

,

{
G
xit(x)
δ

}n−2
i=0

,
{
G
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

)
.

If ρ, ψ pass verification then by equality checks we additionally have that

ρ = (Gα, Hα, Gβ , Hβ , Gx, Hx), ψ = (Gδ, Hδ).

Thus crs, ρ, ψ are structured exactly as if it were computed by Setup(1λ). Moreover, by Lemma 4, there exists a PPT extractor
that outputs α, β, δ, x.

6 Subversion Zero-Knowledge

Subversion zero-knowledge implies that even if the entire setup process was subverted, the subverter still should not be able to
deduce any information about the witness from the proof that it could not calculate anyway. The proof is simple and reflects
techniques used in [Fuc18].

Theorem 2. The system has subversion knowledge soundness by Lemma 5.

Proof. To prove subversion zero-knowledge, we need to both show the existence of an extractor X , and describe a Simulate
algorithm that produces indistinguishable proofs when provided the extracted trapdoor (which it can compute given the ran-
domness of both A and the honest algorithms). The simulator knows α, β, δ, x and picks r ← Zp and sets A = Gr, B = Hr

and C = Gr
2−αβ−

∑`
i=1 ai(βui(x)+αvi(x)+wi(x)). The simulated proof has the same distribution as a real proof, since A,B are both

distributed uniformly at random and C is determined uniquely by A and B. Consequently, subversion zero-knowledge follows
from the extraction of the trapdoor, which can be extracted by Lemma 5.

6

main Game2A,XA(λ)

crs← ⊥, Q← ∅
(φ, π)

r←− AO2(1λ)

w
$←− XA(crs, r)

return Verify(crs, φ, π) ∧ (φ,w) 6∈ R

O2(intent, crsN+M , (ρi)
N
i=1, (ψi)

M
i=1)

if crs 6= ⊥ return ⊥
if intent = setup

if M = 0:

(crs1, ρ1)
(α1,β1,x1)←−−−−−−− 2RSSetup(1λ)

crsf ← crs1, I ← 1
Q1← {ρ1}
return (crs1, ρ1)

else:

(crsN+1, ψ1)
δ1←− 2RSSetup(1λ, crsN , (ρi)

N
i=1)

crsg ← crsN+1, J ← 1
Q2← {ψ1}
return (crsN+1, ψ1)

if intent = 1round
b ← SetupVerify(1λ, crsN , (ρi)

N
i=1)

if b = 0 return ⊥
if Q1 = ∅

(crs′, ρ′)
(αN ,βN ,x1)←−−−−−−−−

2RSUpdate(1λ, crsN , 1, (ρi)
N
i=1)

crsf ← crs′, I ← N
else

(crs′, ρ′)
αN ,βN ,xN←−−−−−−− 2RSUpdate(1λ, crsf , 1, (ρi)

I
i=1)

(α, β, x)←
⊗N+1

i=I+1(αi, βi, xi)

PA, PB , PX ← PoKProve(bp,Gα, string, α), . . .
ρ′ ← (Gα, . . . , PA, . . . , G

α1...αIα, . . .)
Q1← Q1 ∪ { ρ′}
return (crs′, ρ′)

if intent = 2round
b ← SetupVerify(1λ, crsN+M , (ρi)

N
i=1, (ψi)

M
i=1)

if b = 0 return ⊥
if Q2 = ∅

(crs′, ψ′)
$←−

2RSUpdate(1λ, crsN+M , 2, (ρi)
N
i=1, (ψi)

M
i=1)

crsg ← crs′, J ←M
else

(crs′, ψ′)
δM←−− 2RSUpdate(1λ, crsg, 2, (ρi)

N
i=1, (ψi)

J
i=1)

δ ←
∏M+1
i=J+1 δi

PD ← PoKProve(bp,Gδ, string, δ)
ψ′ ← (Gψ, PD, G

δ1...δIδ)
Q2← Q2 ∪ { ρ′}
return (crs′, ρ′)

if intent = final
b← SetupVerify(1λ, crsN+M , (ρi)

N
i=1, (ψi)

M
i=1)

if b = 0 or Q1 ∩ { ρi}i = ∅ or Q2 ∩ { ψi}i = ∅ return ⊥
set crs← crsN+M and return crs

else return ⊥

Fig. 4: Game where all oracle updates are performed on the same query.

7 Knowledge Soundness

Here we show that an adversary cannot produce a valid proof unless it knows a valid witness. For our proof of knowledge
soundness, we go beyond the knowledge soundness definition provided in [BGM17]. We begin with a Lemma that shows that an
adversary participating in all but one of the updates has a strictly higher advantage in the knowledge soundness game then one
that participates less. We then show that even this strengthened adversary cannot break knowledge soundness.

7.1 Single Update per Round Suffices to Show Knowledge Soundness

Lemma 6. If there is no restricted adversary that breaks 2RSUpdate knowledge-soundness which can only query 2RS-Os on 1round
at most once and on 2round at most once, then there is no adversary that breaks 2RSUpdate knowledge soundness.

Proof. This is not immediately obvious because knowledge extractors are counter intuitive. Although it is possible to build an
adversary that succeeds with less queries to the oracle from one that succeeds with more queries, it does not follow that an
extractor can be built for the adverary with more queries. Instead we borrow from Lemma 6 of [GKM+18] which uses that the
trapdoor components commute (which ours also do).

There are three games: the first is the standard 2RS-knowledge soundness game. The third game is the 2RS-knowledge
soundness game where the adversary can only query 1round and 2round once. The second game is given in Figure 4. The adversary
can make multiple queries, but every time they make an extra query in each round, the oracle instead just reupdates their first

7

query and simulates a 2RS proof. Provided the oracle has access to the adversaries state, the oracle can use the commutability of
trapdoor components to simulate a proof.

We show if there does not exist an adversary that can win the third game then there does not exist an adversary that can win
the second game. Suppose that for any adversary in the third game, there exists an extractor XA such that A looses. Let B be an
adversary playing the second game that outputs a valid instance and proof with respect to the final crs. We build an extractor
for B as follows. First we construct A against the third game. The algorithm A runs B. When B requests an update, A simulates
the process - unless it is for the final query in the round, in which case A queries its own oracle and returns the output. Then A
returns B’s output. If B’s output verifies, then A’s output verifies, so there exists an extractor XA that outputs a valid witness.
The extractor XB for B runs A and XA, and returns the output of XA. As XA’s witness is valid, so is XB ’s, so B looses.

Let A and X be a PPT algorithm and extractor such that A wins the second game. We show that A wins the first game with
respect to X . To see this consider an alternative game where B is trying to guess whether it is interacting with the oracle in the
first game or the second game. The responses of the two oracles are distributed identically, so this is a statistically impossible
game. The adversary B simulates A and X and return 1 if and only if A succeeds. When A queries its oracle, B queries its oracle
on the same input and returns the response. If A and X have different probabilities between the two games, then B’s advantage
will not equal 1

2 , contradicting the impossibility of the game.

We now show that a generic adversary in Game 3 from Lemma 6 cannot break knowledge soundness. This suffices to show
that a generic adversary cannot break 2RS knowledge soundness.

Theorem 3. The system has 2RS knowledge soundness in the generic group model.

Proof. Imagine we have a generic adversary that queries 2RS-Os on either (setup) or (1round, crsr−1, {ρ}r−1i=1), and then on
(2round, crsN+s−1, {ρ}Ni=1, {ψ}

s−1
i=1), and then on (final, crsN+M , {ρ}Ni=1, {ψ}Mi=1) and outputs an instance and proof (φ, π) that gets

accepted; i.e. such that SetupVerify(R, crsN+M , {ρ}Ni=1, {ψ}Mi=1) = 1 and Q1 and Q2 are non-empty and Verify(crsN+M , φ, π) = 1.
By Lemma 6, if we can build an extractor for any such adversary then 2RS knowledge soundness is implied.

Since the final crs verifies, by Lemmas 2&3 it is of the form

bp,
{
Gx

i
}2n−2

i=0
, Gδ,

{
Gαx

i

, Gβx
i
}n−1
i=0

,
{
G
xit(x)
δ

}n−2
i=0

,
{
G
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

{
Hxi

}2n−2

i=0
,

Hδ,
{
Hαxi , Hβxi

}n−1
i=0

,
{
H

xit(x)
δ

}n−2
i=0

,
{
H

βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

for some x1, α1, β1, . . . , xN , αN , βN such that

x =

N∏
j=1

xj , α =

N∏
j=1

αj , β =

N∏
j=1

βj , δ =

M∏
j=1

δj .

Since the adversary outputs verifying proofs, by Lemma 4 there exist extractors Xi for 1 ≤ i ≤ N , i 6= r, that output τ1,i =
(αi, βi, xi). Similarly, there exist extractors Xj for 1 ≤ j ≤M , i 6= s, that output τ2,i = (δi).

Values Queried by the Adversary

The adversary is limited solely in the responses from its oracle, since it gets to choose the final crs. If the adversary queries 2RS-Os

on (1round, crsr−1, {ρ}r−1i=1) with r > 2 it obtains the values{∏r
j=1 xj)

i
}2n−2

i=0
,
{∏r

j=1 αj)x
i
j ,
∏r
j=1 βjx

i
j

}n−1
i=0

.

in both groups and
χαr , χαrαr, χβr , χβrβr, χxr , χxrxr

for random χαr , χβr , χxr in H. Since A can divide through by
∏r−1
j=1 x

i
j ,
∏r−1
j=1 αjx

i
j , (
∏r−1
j=1 βj)

∏r−1
j=1 xj , this is akin to being given

the values {
xir
}2n−2
i=0

,
{
αrx

i
r, βrx

i
r

}n−1
i=0

in both groups. If the adversary queries 2RS-Os on (setup) it obtains the same values with r = 1 directly.
When the adversary queries 2round on crsN+s−1, {ρ}Ni=1, {ψ}

s−1
i=1) it obtains the values∏s

j=1 δj ,
{

xit(x)∏s
j=1 δj

}n−2
i=0

,
{
βui(x)+αvi(x)+wi(x)∏s

j=1 δj

}m
i=`+1

.

in both groups and
χδs , χδsδs

for random χδs in H. Since A can divide through by
∏s−1
j=1 δj , this is akin to being given the values

δs,
{
xit(x)
δs

}n−2
i=0

,
{
βui(x)+αvi(x)+wi(x)

δs

}m
i=`+1

in both groups. If the adversary queries 2RS-Os on (setup) it obtains the same values with s = 1 directly.

8

Format of a Generic Advesary’s Verifying Proof

Where A outputs a verifying proof π = A,B,C ∈ G3, A,B,C are a linear combination of elements in the obtained from the
oracles. This means that A knows polynomials A′(Xr), A

′
α(Xr), A

′
β(Xr), A

′
t(X) and of degree 2n−2, n−1, n−1, n−2 respectively

and values A′δ, A
′
`+1, . . . , A

′
m such that

logG(A) = A′(xr) + δsA
′
δ + αrA

′
α(xr) + βrA

′
β(xr) + t(x)

δs
A′t(x) + 1

δs

∑m
i=`+1A

′
i(βui(x) + αvi(x) + wi(x)).

Similarly

logH(B) = B′(xr) + δsB
′
δ + αrB

′
α(xr) + βrB

′
β(xr) + t(x)

δs
B′t(x) + 1

δs

∑m
i=`+1B

′
i(βui(x) + αvi(x) + wi(x))

+χαrBχα + χβrBχβ + χxrBχx + χδsBχδ .

and
logG(C) = C(xr)

′ + δsC
′
δ + αrC

′
α(xr) + βrC

′
β(xr) + t(x)

δs
C ′t(x) + 1

δs

∑m
i=`+1 C

′
i(βui(x) + αvi(x) + wi(x)).

First observe that by dividing each of the coefficients of A′(Xr) by powers of
∏
j 6=r xj , A can express A′(Xr) as a polynomial

A(X) in X = X1 . . . Xn.

A′(xr) =

2n−2∑
i=0

fix
i
r =

2n−1∑
i=0

fi
(
∏
j 6=r xj)

i
xi = A(x).

The adversary finds the polynomial Aα(X) such that αAα(x) = αrA
′
α(xr) as follows

αrA
′
α(xr) = αr

2n−2∑
i=0

fix
i
r = α

2n−2∑
i=0

fi
(
∏
j 6=r αj)(

∏
j 6=r xj)

i
x = αAα(X).

Likewise we can find Aβ(X) such that βAβ(x) = βrA
′
β(xr). The adversary additionally sets

At(X) =
1∏
j 6=s δj

A′t(X), Aδ =
1∏
j 6=s δj

A′δ, Ai =
1∏
j 6=s δj

A′i for `+ 1 ≤ i ≤ m.

This means that by using the same manipulations for logGB and logG C, the adversary knows coefficients such that

logG(A) = A(x) + δAδ + αAα(x) + βAβ(x) + t(x)
δ At(x) + 1

δ

∑m
i=`+1Ai(βui(x) + αvi(x) + wi(x)).

Similarly

logH(B) = B(x) + δBδ + αBα(x) + βBβ(x) + t(x)
δ Bt(x) + 1

δ

∑m
i=`+1Bi(βui(x) + αvi(x) + wi(x))

+χαBχα + χβBχβ + χxBχx + χδBχδ .

and

logG(C) = C(x) + δCδ + αCα(x) + βCβ(x) + t(x)
δ Ct(x) + 1

δ

∑m
i=`+1 ai(βui(x) + αvi(x) + wi(x)).

We shall show that the values a`+1, . . . , am used to calculate C are a witness for φ.

Verification Equation Constraints

Since A’s instance verifies in can be parsed as φ = (a0 = 1, a1, . . . , a`) ∈ F`+1. For the verifiers equation to be satisfied we must
have that

e(A,B) = e(Gα, Gβ)e(G
∑`
i=0 ai(βui(x)+αvi(x)+wi(x)), G)e(C,Gδ).

Taking logarithms, this implies

log(A) log(B) = αβ +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x)) + δ logC.

If we insert our equations for log(A), log(B), and log(C) we have(
A(x) + δAδ + αAα(x) + βAβ(x) + t(x)

δ At(x) + 1
δ

∑m
i=`+1Ai(βui(x) + αvi(x) + wi(x))

)
×
(
B(x) + δBδ + αBα(x) + βBβ(x) + t(x)

δ Bt(x) + 1
δ

∑m
i=`+1Bi(βui(x) + αvi(x) + wi(x)) + χαBχα + χβBχβ + χxBχx + χδBχδ

)
= αβ +

∑`
i=0 ai(βui(x) + αvi(x) + wi(x))+

δC(x) + δ2Cδ + αδCα(x) + βδCβ(x) + t(x)Ct(x) +
∑m
i=`+1 ai(βui(x) + αvi(x) + wi(x)).

We instantly observe that χα, χβ , χx and χδ must be 0.

9

7.2 Terms including δ0

First we look at the constraints introduced by terms not including 1
δ or 1

δ2 , i.e. terms with factors of α2, αβ, and β2. Matching
terms with α2 gives the constraint

Aα(x)Bα(x) = 0

meaning that either Aα(x) = 0 or Bα(x) = 0. Wlog set Bα(x) = 0. Matching terms with αβ gives the constraint

Aα(x)Bβ(x) +���
��AβBα(x) = 1

meaning that Bβ(x) = 1
Aα(x)

. Wlog set Aα(x) = 1 (so Bβ(x) = 1 as well) by cancelling through if necessary.1 Matching terms

with β2 gives the constraint

Aβ(x)Bβ(x) = 0 =⇒ Aβ(x) = 0.

Terms including δ−2

Second we look at the constraints introduced by terms including 1
δ2 , i.e. terms with factors of αβ

δ2 . Matching terms with αβ gives
the constraint (

m∑
i=`+1

Aiui(x)

)(
m∑

i=`+1

Bivi(x)

)
+

(
m∑

i=`+1

Aivi(x)

)(
m∑

i=`+1

Biui(x)

)
= 0. (1)

7.3 Terms including δ−1

Third we look at the constraints introduced by terms including 1
δ i.e. α2

δ , β2

δ , αβ
δ , α

δ , and β
δ .

(A(x) + α)
(
t(x)Bt(x) +

∑m
i=`+1Bi(βui(x) + αvi(x) + wi(x))

)
+ (B(x) + β)

(
t(x)At(x) +

∑m
i=`+1Ai(βui(x) + αvi(x) + wi(x))

)
= 0.

Matching terms with α2 gives the constraint
m∑

i=`+1

Bivi(x) = 0.

Matching terms with β2 gives the constraint
m∑

i=`+1

Aiui(x) = 0.

Constraint 1 now simplifies to

((((
((((

(((
((((

((∑m
i=`+1Aiui(x)

) (∑m
i=`+1Bivi(x)

)
+
(∑m

i=`+1Aivi(x)
) (∑m

i=`+1Biui(x)
)

= 0

=⇒
(∑m

i=`+1Aivi(x)
) (∑m

i=`+1Biui(x)
)

= 0

meaning that either (
m∑

i=`+1

Aivi(x)

)
= 0 or

m∑
i=`+1

Biui(x) = 0. (2)

Matching terms with αβ gives the constraint

m∑
i=`+1

Aivi(x) +

m∑
i=`+1

Biui(x) = 0.

This combined with constraint 2 implies that both the sums equal zero.

m∑
i=`+1

Aivi(x) = 0 and

m∑
i=`+1

Biui(x) = 0.

1 If logA× logB = f(α, β, δ, x) then logA
Aα
× Aα logB = f(α, β, δ, x). Thus the extractor can divide all the coefficients in logA by Aα and

multiply all the coefficients in logB by Aα.

10

Matching terms with α gives the constraint(
t(x)Bt(x) +

∑m
i=`+1Biwi(x)

)
+
((((

(((
(((

A(x)
∑m
i=`+1Bivi(x) +

(((
((((

(((
B(x)

∑m
i=`+1Aivi(x) = 0

=⇒
t(x)Bt(x) +

∑m
i=`+1Biwi(x) = 0.

The polynomials {wi(X)}mi=`+1 have maximum degree n− 1. The polynomial t(X)Bt(X) is either equal to 0 or it has minimum
degree n. Thus

t(x)Bt(x) = 0

which in turn means that
m∑

i=`+1

Biwi(x) = 0

.
Matching terms with β gives the constraint(

t(x)At(x) +
∑m
i=`+1Aiwi(x)

)
+
((((

((((
((

B(x)
∑m
i=`+1Aiui(x) +

(((
((((

(((
A(x)

∑m
i=`+1Biui(x) = 0

=⇒
t(x)At(x) +

∑m
i=`+1Aiwi(x) = 0.

Thus
t(x)At(x) = 0

which in turn means that
m∑

i=`+1

Aiwi(x) = 0.

Reduced Verification Constraints

The equation for log(A), log(B), and log(C) is now reduced to

(α+A(x) + δAδ)(β +B(x) + δBδ)−
∑`
i=0 ai(βui(x) + αvi(x) + wi(x))

=
δC(x) + δ2Cδ + αδCα(x) + βδCβ(x) + t(x)Ct(x) +

∑m
i=`+1 ai(βui(x) + αvi(x) + wi(x))

Return to Terms Including δ0

Fourth, we look at the constraints introduced by terms not including δ or δ2, i.e. α, β, 1. Matching terms with α gives the
constraint

B(x) =

m∑
i=0

aivi(x).

Matching terms with β gives the constraint

A(x) =

m∑
i=0

aiui(x).

Matching remaining terms with no positive powers of α or β or δ gives the constraint

A(x)B(x) = t(x)Ct(x) +
∑m
i=0 aiwi(x)

=⇒
(
∑m
i=0 aiui(x)) (

∑m
i=0 aivi(x)) = t(x)Ct(x) +

∑m
i=0 aiwi(x).

If X is the extractor that returns w = a`+1, . . . , am then the QAP with h(X) = Ct(X) is satisfied. Hence w is a witness to
the truth of the statement φ ∈ LR. This completes the proof. ut

Acknowledgements

The research leading to these results has received funding from the Zcash Company. We would like to thank Ariel Gabizon for
helpful discussions.

11

References

[ABLZ17] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A subversion-resistant SNARK. In Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, pages 3–33, 2017.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-snark parameters in the random beacon
model. IACR Cryptology ePrint Archive, 2017:1050, 2017.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-malleability of the fiat-shamir
transform. In Progress in Cryptology - INDOCRYPT 2012, 13th International Conference on Cryptology in India, Kolkata,
India, December 9-12, 2012. Proceedings, pages 60–79, 2012.

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge snarks. In Public-Key Cryptography - PKC 2018 - 21st IACR International
Conference on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part
I, pages 315–347, 2018.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and universal common reference
strings with applications to zk-snarks. IACR Cryptology ePrint Archive, 2018:280, 2018.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, pages 305–326, 2016.

12

