
A security analysis of the Zcash Sapling Protocol

Ariel Gabizon Daira Hopwood

Zcash

1 Introduction

The purpose of this note is to show that the Sapling protocol, that will be used for Zcash shielded
(private) transactions as of the Sapling network upgrade, satisfies certain security properties. This
document is not completely self contained and while reading it we recommend referring often to
the Zcash protocol spec[3] for full details of the Sapling protocol.

A noteable property of the protocol is a separation of proving and signing authority. A “dele-
gated spender/prover” creates transactions with the help of a proof authorizing key (or just proving
key for short), but the transaction is not valid until it is signed by the signer with the spending
key, that roughly corresponds to the secret key when thinking of the proving key as a public key.

We informally describe the four properties we prove.

1. Non-malleability: The delegated spender, after receiving a set of signatures on transac-
tions of his choice, should not be able to create a new valid transaction, containing a nullifier
appearing in one of the old transactions (overlapping nullifiers intuitively correspond to trans-
actions from the same spending key). The way non-malleability is defined and proved here is
inspired from the Zerocash paper[1].

2. Indistinguishability: An adversary should not be able to find two tupples (input notes,
output notes) that are consistent in public data - meaning mainly that the amount going in
or out of the shielded pool is the same, such that it is possible to distinguish from seeing the
transaction which tupple it corresponds to.

3. Balance: An adversary should not be able to construct a valid ledger (even when having full
control of transactions inserted) such that the total amount coming out of the shielded pool
is larger than what came in.

4. Spendability: An adversary should not be able to send the honest party a note that was
successfully received, but cannot be later spent (such an attack on [1] was found by Zooko
Wilcox and coined “Faerie Gold” in [3]).

Before getting into the Sapling protocol and these properties, we begin with preliminary defi-
nitions and results regarding signature schemes.

1

2 Signature schemes

When we say an algorithm A is efficient, we mean it runs in time poly(λ) for the “security param-
eter” λ.

Definition 2.1. Let G be a group of prime order r. A signature scheme S over G in the random
oracle model consists of algorithms S = (sign, verifySig,S = (Ssign,SR)) where sign, verifySig are
oracle machines with access to an oracle R taking as input arbitrary strings and returning uniform
elements of Fr. Such that the following holds.

• The set of public/verification keys {pk} is G, and the set of private keys {sk} is Fr.

• For sk ∈ Fr, the verification key of sk is pk = sk · g for a fixed generator g ∈ G.

• We have the following “zero-knowledge” property: Fix any efficient A. Suppose that A inter-
acts with S with two types of queries

1. Queries x, for an arbitrary string x that are answered according to SR.

2. Queries (pk,m), answered according to Ssign.

Let π1 be the distribution of the sequence of queries and replies to A. Let π2 be the distribution
of the sequence of queries and replies to A when

1. R takes the place of S1
2. signR(sk,m) is returned instead of S2(pk,m) where sk is the secret key corresponding to

pk.

Then the distance between π1 and π2 is negl(λ).

We say S is unforgeable w.r.t key randomization if the following holds. Fix any efficient A.
A party O chooses uniform sk ∈ Fr and sends pk = sk · g to A. O also initializes an empty set T .
A adaptively makes poly(λ) queries of the form (α,m). O replies with σ := sign(pk+α · g,m) and
adds (α,m, σ) to T .

Finally A outputs (α∗,m∗, σ∗). Let pk∗ := pk + α∗ · g. Then the probability that

1. verifySig(pk∗,m∗, σ∗), and

2. (α∗,m∗, σ∗) /∈ T

is negl(λ).

We assume our group G has a hard DL problem; meaning that for any efficient A, given uniform
g, sk · g ∈ G the probability of outputting sk is negl(λ).

We define the non-malleable version of Schnorr’s signature scheme:

Schnorr:

Parameters: Group G of prime order r. Non-zero g ∈ G.

2

Signing: Given message m and sk,

• Choose random a ∈ Fr and let R := a · g

• Compute c := R(R, pk,m)

• Let u := a+ c · sk.

• Define signR(sk,m) := (R, u).

Verifying: Given pk,m, σ = (R, u), verifySigR(pk,m, σ) accepts iff:

• Computing c := R(R, pk,m); we have u · g = R+ c · pk.

Simulating:

• SR(x) checks if x has been queried before; if so answers consistently, otherwise answers
uniformly in Fr and records the answer.

• Ssign(pk,m): Choose uniform c, u ∈ Fr. Define R := u · g − c · pk and x := (R, pk,m). Check
if SR(x) has been defined. If so, abort. Otherwise define SR(x) = c and return (R, u).

Remark 2.2. At times when we wish to change the parameter g we work with from default to an
element h, we will use it in the subscript, e.g. signRh (sk,m).

We refer by Schnorr′ = (sign′, verifySig′) to the Schnorr scheme where pk is omitted from the
computation of c.

Theorem 2.3. Schnorr is non-forgeable w.r.t randomization.

Proof. Similarly to [2], we reduce to the non-forgeability of standard Schnorr (where the public key
is not part of the signature & without randomization) that was proven in [4].

Suppose we are givenA interacting with O as described above, and finally outputting (α∗,m∗, σ∗).
We construct A′ that interacts with O ′ which is a “standard” Schnorr oracle.

That is:

1. O ′ begins by choosing a uniform sk ∈ Fr

2. O ′ computes pk = sk · g and sends pk to A′. O ′ intializes an empty set T ′.

3. A′ sends queries m to O ′ and receives replies σ = sign′sk(m). O ′ adds (m, σ) to T ′.

4. After all queries A′ outputs (m∗, σ∗).

A′ wins if

• verifySig′(pk,m∗, σ∗), and

• (m∗, σ∗) /∈ T ′

3

A′ will simulate (A)’s interaction with O using O ′: Given a query (α,m) ofA, A′ queries O ′ with
m′ := (pk+α ·g,m), to receive reply σ′ = (R, u′) - this is a Schnorr′-signature of m′ with sk, and we
now convert this to a Schnorr-signature of m with sk+α. Let c := R(R,m′) = R(R, pk+α · g,m).
It sends σ := (R, u := u′ + cα) to A.

We have
u · g = u′ · g + cα · g = R+ c · pk + cα · g = R+ c · (pk + α · g).

So we have verifySig(pk + α · g,m, σ). Also R is uniformly distributed, thus A′ is answering (A)’s
queries with the same distribution O would have.

Note that the mapping F (α,m, σ) := (m′, σ′) where m′ := (pk + α · g,m), σ′ := (R, u− cα) is
injective.

Let T be the set of tupples (α,m, σ) such that A queried (α,m) and A′ answered σ. We have
T ′ = {F (x)}x∈T .

When A finally outputs x∗ = (α∗,m∗, σ∗); A′ outputs F (x∗). As F is injective x∗ /∈ T implies
F (x∗) /∈ T ′.

Denote (m′, σ′) := F (x∗). From [4]’s results on unforgeability of Schnorr′, the probability that

• verifySig′(pk,m′, σ′), and

• (m′, σ′) /∈ T ′

is negl(λ). Noting that verifySig′(pk,m′, σ′) ≡ verifySig(pk + α · g,m∗, σ∗), this means that the
probability that

• verifySig(pk + α · g,m∗, σ∗), and

• x∗ /∈ T

is negl(λ). This is exactly what we had to prove.

Invertible group samplers We assume that for our group G we have an efficient randomized
procedure sample that produces a group element in G that is negl(λ)-close to uniform, such that
there is an efficient deterministic algorithm invert that given the output of sample, produces w.p
1/poly(λ) over the randomness of sample, the randomness r used in that execution.

Note that when G is an elliptic curve group over Fr such a pair (sample, invert) is having
sample try λ iterations of: Choose random x ∈ Fr, check if there exists some (x, y) ∈ G, if so
output one of the two such elements randomly; and otherwise try another random x ∈ Fr.

invert, given (x, y) ∈ G, will output (x, sign(y)), which will be correct in the case that the first
iteration of sample produced a good x, which happens w.p. approximately half.

We also need that Schnorr is a proof of knowledge of discrete log. For this, we state the following
theorem that is almost implicit in [4], but we provide a proof for completeness.

Theorem 2.4 (Extractability of Schnorr). Fix any integer function γ = γ(λ) with 0 ≤ γ(λ) ≤ 1 for
any λ. There is an algorithm ξ with the following property. Fix any efficient A and group element
g ∈ G. Suppose that A produces w.p. γ (pk,m, σ) such that verifySigRg (pk,m, σ). Then, given the
internal randomness used by A in the run and the vector r of replies of R, ξ produces w.p γ/2
over (A)’s randomness, the randomness of R in answering (A)’s queries and its own randomness
s ∈ Fr such that pk = s·g. Furthermore, ξ’s running time will be F (λ, 1/γ) where F is a polynomial
depending only on the running time of A.

4

Proof. Assume first that A is deterministic. Let Q = poly(λ) be a bound on the number of queries
to R made by A. When A is deterministic its execution is fully determined by the vector r ∈ Fq

r of
replies by R to its queries.

Recall that r ∈ FQ
r denotes the Q oracle replies to the queries of A to R. We call r good if A(r)

outputs a verifying (pk,m, σ). We assume for simplicity that whenever r is good A queries R at
(R, pk,m) where σ = (R, u). (Otherwise ξ can simulate an altered A that asks this query whenever
r is good and the query hasn’t been made yet.) For good r we define the index i(r) ∈ [Q] where
the query (R, pk,m) was made. For i ∈ [Q] and r ∈ FQ

r we define the subset W |r\i of FQ
r to be the

set of r′ ∈ FQ
r that are equal to r outside of index i. We denote by Wr,i the set of r′ ∈ FQ

r that are
contained in W |r\i, are good, and have i(r′) = i. Note that there are at most rQ−1 ·Q distinct sets
Wr,i.

Note also that given two distinct elements r 6= r′ ∈ Wr,i, the executions A(r),A(r′) give us two
valid signatures with the same public key pk message m and first part R; and such two signatures
enable computing sk.

Define the two functions
P = 4Q/γ, T = dln 3 · 2P e.

Given r and A, ξ does the following.

1. If r is not good, abort.

2. If λ is such that r(λ) < 2P (λ), conduct a brute for search for sk such that sk · g = pk.

3. Otherwise, set i = i(r). Sample T elements r ∈W |r\i.

4. Run A using each of the samples as R’s reply vector. If one of the sampled elements is good
and different from r, use it to compute and output sk.

We claim ξ retrieves sk with probability at least γ/2. This claim will follow from two subclaims
described below. Fix good r and let i = i(r). Call r dense if (it is good and)

|Wr,i| ≥ |W |r\i|/P.

We first show that given dense r, ξ succeeds w.p. at least 2/3 over its inner randomness: The event
that ξ fails implies that in T samples of W |r\i, it didn’t find a distinct r′ ∈ Wr,i. This probability
is bounded by

(1− (1/P − 1/r))T ≤ (1− 1/2P)T ≤ e−T/2P ≤ 1/3.

Next, we bound the probability of r ∈ FQ
r not being dense: The number of such r is at most

rQ−1Q · r
P
≤ rQ ·Q

P
.

Thus the density of such elements is at most

Q/P ≤ γ/4.

Now using these two subclaims, the probability of ξ succeeding to output sk is at least the
probability of r being dense, multiplied by the probability of ξ succeeding conditioned on r being
dense. This gives success probability at least

(3γ/4) · (2/3) = γ/2.

5

Finally, if A is randomized, running ξ as above when A is fixed to whatever inner randomness
it used and ξ received as input, gives the same success probability of ξ for randomized A.

3 Description of Sapling

3.1 Basic components

Functions, and their requirements:

We do not explicitly state function domains and ranges; see the spec for more details. Whenever
discussing a function in the properties below, we always think of an infinite sequence of functions
indexed by the security parameter λ.

1. For any fixed values g, pk, v, and for any ε ≥ 0, NC(g, pk, v, rcm) is ε-close to uniform when
rcm is ε-close to uniform.

2. NC is collision resistant - i.e. the probability of finding note, note′ such that NC(note) =
NC(note′) is negl(λ). 1

3. For any fixed v and any ε ≥ 0, VC(v, rcv) is ε-close to uniform whenever rcv is ε-close to
uniform.

4. VC is collision-resistant.

5. sighash is collision-resistant.

6. IVK is collision-resistant.

7. NF is collision resistant (see another requirement for the indistinguishability property in
Section 5).

Generators of G We assume we are given generators gsig, gn, gr, gv that were sampled in a way
that except w.p negl(λ) an efficient A cannot discover the discrete log relation between any two of
them.

Statements:

OUT(cv, cm, epk): I know note = (g, pk, v, rcm), rcv, esk such that

1. cm = NC(note).

2. cv = VC(v, rcv).

3. epk = esk · g.

4. g has order greater than eight.

1A caveat here is that this is true when the rcm parameter is thought of as a field element; in the actual circuit it
is received as a string of bits where some elements of Fr have multiple representations; inspection of the proof shows
that it suffices that CR w.r.t rcm as a field element; same story with rcv in VC.

6

SPEND(rt, cv, nf, rk): I know path, pos, note = (g, pk, v, rcm), cm, rcv, α, ak, nsk such that

1. cm = NC(note).

2. Either v = 0 (“dummy note”); or path is a merkle path from cm at position pos to rt.

3. rk = ak + α · gsig.

4. Setting nk := nsk · gn, ivk := IVK(ak, nk); we have pk = ivk · g.

5. nf = NF(nk, cm, pos)

Components

A note is a tupple note = (g, pk, v, rcm) where

1. g, pk ∈ G.

2. v, rcm ∈ Fr

3. v ≤ MAX.

An output base output = (g, pk, v) is the same as a note excluding the rcm component.

Remark 3.1. It is convenient for us to define a note with g rather than its GH-preimage d as in
the spec, as this is what’s given as input to the circuits; there are minor non-exploitable issues with
this, see e.g. https://github.com/zcash/zcash/issues/3490.

For ivk ∈ Fr we say note belongs to ivk if pk = ivk · g.

An input base, usually denoted input, will consist of the values required to make an input in a
Sapling transaction, except the spending key; namely input = (note, path, pos, pak) where

• note is a note

• path is a path in a merkle tree beginning from a leaf of value cm = NC(note).

• pos is the position of cm amongst the leaves of the Merkle tree (pos is redundant here as it
can be derived from path, but convenient).

• pak is a proving key to make SNARK spend proofs about the note.

We say input is consistent with rt if path ends at rt.
A transaction input, usually denoted inp, is the final form in which an input appears in a

transaction; inp consists of

1. A value commitment cv.

2. A nullifier nf.

3. A Merkle root rt of the tree containing the used note.

4. A public key rk that is (allegedly) a randomized version of the spent note’s proving key ak.

5. A SNARK proof π for the statement SPEND(rt, cv, nf, rk).

7

3.2 Methods

We use the convention that ` denotes the number of inputs in a transaction, and s the number of
outputs.
makeinp(rt, input = (note, path, pos, pak), rcv, α)

where input is an input base consistent with rt.

1. cm = NC (note)

2. nf = NF (nk,note,pos)

3. Define rk := ak + α · gsig, cv := v · gv + rcv · gr.

4. Let π = πspend(cv, rt, nf, rk; note, pak, α, path, pos).

5. Output inp = (cv, rt, nf, rk, π).

makeout (note =(g,pk,v,rcm),rcv),

1. Choose random esk ∈ Fr.

2. Let cv := VC(v, rcv) = v · gv + rcv · gr.

3. Let note = (g, pk, v, rcm) and cm := NC(note).

4. Let epk = esk · g.

5. Let enc = ENCKDF(esk·pk,epk)(note)

6. Let π = πoutput(epk, cm, cv; note, rcv, esk).

7. Output (cv, cm, epk, π, enc)

makerandomizedout (note =(g,pk,v),rcv),

1. Choose random esk, rcm ∈ Fr.

2. Let cv := VC(v, rcv) = v · gv + rcv · gr.

3. Let note = (g, pk, v, rcm) and cm := NC(note).

4. Let epk = esk · g.

5. Let enc = ENCKDF(esk·pk,epk)(note)

6. Let π = πoutput(epk, cm, cv; note, rcv, esk).

7. Output (cv, cm, epk, π, enc)

bindval (rawtx =(
−→
inp,
−→
out,vbal),−→rcv)

1. Let r :=
∑`

i=1 rcvi −
∑`+s

i=`+1 rcvi

2. Let S :=
∑`

i=1 cvi −
∑`+s

i=`+1 cvi − vbal · gv

8

3. Let σbind := signgr(r, sighash(rawtx)).

4. Output pre-tx := (rawtx, σbind).

signtx(pre-tx = (rawtx, σbind),
−→
ask,−→α)

1. For each i ∈ [`], let σi := signgsig(aski + αi, sighash(rawtx))

2. Let −→σ := (σ1, . . . , σ`).

3. Output (rawtx,
−→σ).

Given (rt, vbal) we say (
−−−→
input,

−−−−→
output) is consistent with rt, vbal,

if

• for each j ∈ [`] inputj is consistient with rt, i.e. pakj is from NC(notej) to rt,

•
∑`

j=1 vj −
∑`+s

j=`+1 vj = vbal.

• the positions
{
posj

}
j∈[`] are all distinct.

and
makerandomizedtx (rt,vbal,

−−−→
input,

−−−−→
output)

where inputj = (notej , pakj , pathj , posj), outputj = (gj , pkj , vj)

1. Choose random −→rcv ∈ Fs
r.

2. For j ∈ [`], inpj = makeinp(rt, inputj , rcvj)

3. For j ∈ [s], outj = makeout(outputj , rcvj)

4. pre-tx = bindval(
−→
inp,
−→
out, vbal).

5. Choose random −→α ∈ F`
r.

6. Output tx = signtx(pre-tx, ask,−→α)

maketx (
−−−→
input,

−−−−→
output,−→rcv,ask,pak) where inputj = (vj , notej , pakj , pathj , posj), outputj = (gj , pkj , vj , rcmj)

1. Choose random −→α ∈ F`
r.

2. For j ∈ [`], inpj = makeinp(inputj , rcvj , αj , pak)

3. For j ∈ [s], outj = makeout(outputj , rcvj)

4. Let vbal :=
∑`

i=1 vi −
∑`+s

j=`+1 vj .

5. pre-tx = bindval(
−→
inp,
−→
out, vbal,−→rcv).

6. Let tx = signtx(pre-tx,−→α , ask)

verify-tx(L, tx)

9

1. Suppose that tx = (rawtx,
−→σ).

2. For each inpi = (rt, cv, nf, rk, π) ∈ −→inp(tx),

• Check that nf /∈ nf(L) ∪
{
nf(inp1), . . . , nf(inpi−1)

}
.

• Check that spendverify(rt, cv, nf, rk;π).

• Check that verifySigRgsig(rk, sighash(rawtx), σi)

3. For each out = (cv, cm, epk, π, enc) ∈ −→out(tx), check that outverify(cv, cm, epk;π)

4. Let S :=
∑`

i=1 cvi −
∑`+s

i=`+1 cvi − vbal · gv.

5. Check that verifySigRgr(S, sighash(rawtx), σbind).

4 Non-Malleability of Sapling w.r.t. delegated spenders

We make the simplifying assumption when modelling non-malleability in this writeup; that there
is only one spending key (ask, nsk) of the honest signer involved, and all addresses are diversifed
addresses derived from this spending key.

Modelling the adversary:

We wish to show that the delegated spender cannot create any new transactions of her own. We
model this claim with the following non-malleability game: We model the honest signer as an oracle
O that A interacts with as follows.

O begins by choosing a new spending key (ask, nsk)← K and sending the corresponding proof
authorizing key pak = (ak, nsk) to A. Where ak = ask · gsig.

Afterwords, A can make sign-all-inputs queries to O, which intuitively correspond to asking for
signatures on transactions whose inputs have spending key (ask, nsk) (though see remark).

Sign-all-inputs queries

1. A sends (pre-tx = (rawtx, σbind),−→α) to O. Where rawtx = (
−→
inp,
−→
out, vbal)

2. O checks if spendverify(pubi, πi) holds for each i ∈ [`] and otherwise aborts.

3. O computes for i ∈ [`], σi = signgsig(ask + αi, sighash(rawtx)).

4. Let −→σ := (σ1, . . . , σ`). O return tx := (rawtx, σbind,
−→σ).

Remark 4.1. The second item is another way of saying we assume A can only ask O for signatures
of transactions with legitimate spend proofs. Otherwise the proof currently fails as we need to be
able to extract the witness from each input.

10

Terminology: We refer below to a transaction tx as tx = (rawtx, σbind,
−→σ), where −→σ contains the

` input signatures and σbind is as described above in maketx that are added during sign-all-inputs
and the signature σbind added in the last step of maketx.

Non-malleability says, A should not be able to create a new valid transaction with inputs
belonging to O, even after seeing transactions of its choice with inputs of O. New will mean that
the rawtx part will be new. (If we had changed the signature scheme to sign in order and have each
signature sign the previous ones we could have required that tx including the signature part must
be different from all previous transactions).

The way we formalize “transaction with inputs of O” is that the transaction created by A
contains overlapping nullifiers with the transactions signed previously by O; precisely transactions
that are outputs of sign-all-inputs queries.

Remark 4.2. A somewhat odd thing about the construction with the delegated spender, is that
valid transactions signed by O, do not exactly correspond to transactions whose inputs O knows the
spending key of. We can only say O and A together know the spending key. For example, given
(ak, nsk), A can choose random s ∈ Fr, set ak′ := ak+ s · gsig. Now when A wants to sign an input
in address ak′, i.e. with some randomized key rk = ak′ + αgsig = ak + (s + α) · gsig, it can give O
the randomization α′ = s+ α.

A way to avoid these oddities is to have O only sign transactions where he recognizes the nullifiers
as belonging to a note of his. For our purposes here, we get a stronger result without this restriction
by showing non-malleability holds when O signs any transaction.

Some more terminology Given a validly formatted transaction tx = ((
−→
inp,
−→
out, vbal), σbind,

−→σ),
we define

• nf(tx) to be the set of nullifiers appearing in one of its inputs; so nf(tx) := {nf(inp)}
inp∈
−→
inp

.

• rk(tx) the set of randomized public keys appearing in inputs of tx, so rk(tx) := {rk(inp)}
inp∈
−→
inp

.

• raw(tx) := (
−→
inp,
−→
out, vbal). For a set T of validly formed transactions we define raw(T) :=

{raw(tx)}tx∈T

Claim 4.3 (Non-malleability w.r.t delegated spenders). Fix any efficient A interacting with O as
described above. Let T = {tx′} be the set of transactions that are replies of O to A’s sign-all-inputs
queries. The probability that A manages to output a ledger L and transaction tx such that

1. verify-tx(L, tx) = acc,

2. raw(tx) is not a prefix of an element of T .

3. nf(tx) ∩ nf(tx′) 6= ∅ for some tx′ ∈ T .

is negl(λ).

Proof. Let A be an algorithm that after interacting with O as described above outputs L,tx. Let ε
be the probability that L, tx satisfy the above, and assume for contradiction ε = 1/poly(λ).

We construct A′ that receives a randomized forgery challenge for Schnorr as described in Defi-
nition 2.1, and with probability ε− negl(λ) either

11

• outputs a collision of sighash

• outputs a collision of NF,

• outputs a collision of IVK,

• Constructs a signature forgery for Schnorr w.r.t randomization.

Then, from CR of sighash, NF,NC,IVK and Theorem 2.3 the claim follows. A′ works as
follows:

1. A′ will receive a challenge ak∗ for the signature scheme Schnorr sampled by the procedure
sample described in Section 2.

2. A′ chooses random nsk ∈ G and sends to A the proof authorizing key pak = (nsk, ak)

3. When A makes a sign-all-inputs query (rawtx,
−→α) A′ first checks that the proofs in rawtx are

valid (as O does in the description of sign-all-inputs queries) and then answers with −→σ where
σi := Ssign(ak+αi · gsig,m). If during invocations to Ssign, SR is queried on a point on which
A queried R, A′ aborts. (Note that the point queried by SR is (R, rk,m) for a uniform R
chosen only during the execution of Ssign, so the probability such a point was already queried
is negl(λ).)

4. When A′ makes a query to R, A answers according to R unless the query has already been
answered according to SR during invocations of Ssign in sign-all-inputs queries; in which case
A′ answers according to SR. (This doesn’t change the distribution of R from the perspective
of A.)

5. When A outputs L, tx: A′ checks that it indeed satisfies the challenge - that is verify-tx(L, tx);
tx contains an input inp with nf = nf(inp) being equal to nf(inp′) for some inp′ ∈ tx′ for some
tx′ ∈ T ; appearing in one of the sign-all-inputs queries of A; and rawtx /∈ raw(T). If not, A′
aborts.

6. A′ checks if sighash(rawtx) = sighash(rawtx
′′) for some tx′′ ∈ T with rawtx 6= rawtx

′′. If so it
outputs (rawtx, rawtx

′′) as a collision of sighash.

Explanation of where we are so far: Denote by rk and σ the public key and signature in inp.
Let m := sighash(rawtx). σ is a valid signature for message m and public key rk, and m was never
signed in reply to the sign-all-inputs queries by O. To obtain a forgery w.r.t randomizatoin for the
challenge ak∗, what is left is to find the α∗ such that rk = ak∗ + α∗ · gsig. The purpose of the next
steps is to obtain such α∗ or a collision of one of our CRH functions.

7. Otherwise, denote by B the algorithm consisting of execution of all parties up to this point
outputting tx and tx′. Note that B’s randomness consists2 of that of A,A′,R used up to
this point and the randomness of sample. Let ξ be the extractor guaranteed to exist for
B for the input inp in tx. Recall that ξ requires B’s internal randomness to produce a
SNARK witness. A′ can give ξ the randomness of A′,A,R used up to this point, but instead

2We have not defined collision-resistant functions too formally. To be more accurate we assume all CRH functions
are “public” in the sense that their seed is just a random string, and this randomness is also one of the inputs to B.

12

of using the actual randomness of sample as input to ξ, A′ uses the invert method to
obtain this randomness correctly from ak with 1/poly(λ) probability. Given this input, with
probability 1/poly(λ) − negl(λ) = 1/poly(λ), ξ outputs for the input inp in tx a witness
w = (note, pak = (ak, nsk), α, path, pos). Similarly there is an extractor ξ′ for the input inp′ in
tx′ giving us a witness w′ = (note′, pak′ = (ak′, nsk′), α′, path′, pos′). If ξ or ξ′ fails A′ aborts
(note that the probability of both succeeding is 1/poly(λ)).

8. Let nk := nsk · gn, nk′ := nsk′ · gn. We have

NF(nk, note, pos) = NF(nk′, note′, pos′) = nf.

If nk 6= nk′, note 6= note′ or pos 6= pos′, A′ outputs (nk, note, pos), (nk′, note′, pos′) as a collision
of NF.

9. Otherwise we have note = note′ = (g, pk, v, rcm). Defining ivk := IVK(ak, nk), ivk′ :=
IVK(ak′, nk), we have pk = ivk · g = ivk′ · g. Thus, ivk = ivk′. (Important here that ivk
representation is unique and it is cause dfn of IVK has mod 2`ivk=251.) If ak 6= ak′, A′
outputs (ak, nk), (ak, nk′) as a collision of IVK.

10. Otherwise, we have ak = ak′. Now, A′ knows α∗ such that rk′ = ak∗+α∗ · gsig, where ak∗ was
the forgery challenge from O (as A used (α∗, sighash(rawtx

′)) in the sign-all-inputs query for
tx′ for input inp′). And also rk′ = ak′ + α′ · gsig. So ak = ak′ = ak∗ + (α∗ − α′) · gsig. And
rk = ak∗ + (α∗ − α′ + α) · gsig. Thus, in this case A′ outputs (α∗ − α′ + α, sighash(rawtx), σ)
as a signature forgery w.r.t randomization of ak∗.

5 Indistinguishability w.r.t outside adversaries

For a sequence of random variables X1, . . . , Xn it will be convenient in this section to denote
X<i := (X1, . . . , Xi−1). Let us say that random variables X,Y are γ-independent if for any events
A,B

|Pr(X ∈ A ∧ Y ∈ B)− Pr(X ∈ A) · Pr(Y ∈ B)| ≤ γ.

We recall that the statistical distance between X and Y is the maximum over all events T of

|Pr(X ∈ T)− Pr(Y ∈ T)|.

We say X,Y are γ-close if they have statistical distance at most γ.
A calculation proves

Claim 5.1. Suppose X = (X1, X2), Y = (Y1, Y2) are such that

• X1 and Y1 are on the same range, are γ1-independent and γ1-close.

• e.w.p γ2 over the value (x1, y1) of (X1, Y1), (X|X1 = x1), (Y |Y1 = y1) are γ3-independent.

• e.w.p γ2 over the value x1 of X1, we have that (X|X1 = x1), (Y |Y1 = x1) are γ3-close.

Then X,Y are γ1 + γ2 + γ3-independent and γ1 + γ2 + γ3-close.

13

Induction then shows that

Claim 5.2. Suppose t = poly(λ). Suppose random variables X = (X1, . . . , Xt), Y = (Y1, . . . , Yt)
are such that for any i ∈ [n],

• e.w.p negl(λ) over the value (x, y) of (X<i, Y<i),

(Xi|X<i = x) and (Yi|Y<i = y) are negl(λ)-independent; and

• e.w.p negl(λ) over the value x of X<i, (Xi|X<i = x) and (Yi|Y<i = x) are negl(λ)-close.

Then X,Y are negl(λ)-independent and negl(λ)-close.

Below we use Rsig to denote the random oracle used by the signature algorithm.

Theorem 5.3. Assume that

1. NF(nk,NC(note), pos) = R(nk,MPH(note, pos)) where R is a random oracle and MPH is
a collision-resistant function3

2. KDF and Rsig are also random oracles.

3. ENCK(m) produces a uniform output when K is uniform and m is fixed.

4. The SNARK we are using is witness indistinguishable - i.e. the proof distribution depends
only on the public input and not on the witness.

Then, the probability of an efficient A finding rt, vbal,
−−−→
input,

−−−−→
output,

−−−→
input′,

−−−−→
output′ such that

• |−−−→input| = |−−−→input′| = `, |−−−−→output| = |−−−−→output′| = s.

• The positioned notes in
−−−→
input and

−−−→
input′ are all distinct.

• (
−−−→
input,

−−−−→
output) and (

−−−→
input′,

−−−−→
output′) are both consistent with rt, vbal.

• The distributions of the random variables D := makerandomizedtx(rt, vbal,
−−−→
input,

−−−−→
output)

and

D′ := makerandomizedtx(rt, vbal,
−−−→
input′,

−−−−→
output′), over the randomness of the oracles R,KDF

and Rsig, and the inner randomness of the signer, SNARK prover and the makerandomizedtx
method, are not negl(λ)-close and negl(λ)-independent

is negl(λ).

Proof. Let us denote by (
−→
inp,
−→
out, σbind,

−→σ) the output of makerandomizedtx(rt, vbal,
−−−→
input,

−−−−→
output)

and by (
−→
inp′,
−→
out′, σ′bind,

−→σ ′) the output of makerandomizedtx(rt, vbal,
−−−→
input′,

−−−−→
output′) when using

independent inner randomness, but joint randomness for the oracles R,Rsig,KDF.
We will considerD andD′ as sequences of random variablesD = (X1, . . . , Xm), D′ = (Y1, . . . , Ym),

and show that for every i ∈ [m] they satisfy the conditions of Claim 5.2.
We begin with the inputs. Letting, for i ∈ [`], Xi = inpi, Yi = inp′i, the following claim shows

those conditions hold for the first i ∈ [`].

3The requirement here may seem a bit odd; it models the fact that NC(note) is a pedersen hash which is combined
in NF with a pos-multiple of an independent group generator, followed by an application of BLAKE-2 on the result
prefixed with nk. In particular, BLAKE-2 takes the place of R in the implementation.

14

Claim 5.4. E.w.p negl(λ) over the randomness of A, for each i ∈ [`] inpi, inp
′
i are identically

distributed and independent given any fixing of inp<i, inp
′
<i.

Proof. We show first that e.w.p. negl(λ) over the randomness of A, inpi, inp
′
i are independent

conditioned on any fixing of inp<i, inp
′
<i. inp1, . . . , inp`, inp

′
1, . . . , inp

′
` are results of invocations of

makeinp with independent randomness rcv, α and independent randomness of the SNARK prover.
Inspection shows the only opportunity for dependence amongst any two of them, even after condi-
tioning on the value of the others, is having the random oracle R queried at the same point during
the invocations. R is queried for the computation of NF; so this only happens if

(nki,MPH(notei, posi)) = (nk′i,MPH(note′i, pos
′
i)).

This implies MPH(notei, posi) = MPH(note′i, pos
′
i), but A will only find such a collision w.p

negl(λ). When this doesn’t happen inpi and inp′i are independent also given any fixing of the
previous inputs.

Now to show they are identically distributed given a fixing of inp<i, inp
′
<i.

Suppose inpi = (nf, rt, rk, cv, π), and inp′i = (nf ′, rt′, rk′, cv′, π′). We show each element is identi-
cally distributed conditioned on any fixing of the previous ones.

• nf = R(q) and nf ′ = R(q′) where q = (nk,MPH(note, pos)), q′ = (nk′,MPH(note′, pos′)).
These are both uniform unless one of the queries q, q′ was already made to R in a previous
invocation; which would mean {(note∗, pos∗)}(note∗,pos∗)∈inp<i+1∪inp<i+1

contains a collision of

MPH which A can find only w.p negl(λ).

• rt = rt′.

• rk = ak+α · g, rk′ = ak′+α′ · g. Are both uniform in G because of the uniform choice of α, α′

in makerandomizedtx.

• cv = v · gv + rcv · gr,cv′ = v′ · g′v + rcv′ · g′r. Are both uniform in G because of the uniform
choices of rcv, rcv′ ∈ Fr in the executions of makerandomizedtx.

• π, π′ - When (nf, rt, rk, cv) = (nf ′, rt′, rk′, cv′), it follows from the witness indistinguishability
of the SNARK that π and π′ are identically distributed. They are independent for any
fixing of the previous values, as given this fixing the value of π, π′ depends only on the inner
randomness of the SNARK prover.

We proceed with the elements of the the ouputs. It will be convenient now to view each element
in outj , out

′
j as separate random variables Xi, Yi, and show that

1. E.w.p negl(λ) over the fixing of X<i, they are identically distributed given this fixing of both
X<i and Y<i.

2. E.w.p negl(λ) over the fixing of X<i, Y<i they are independent given the fixing.

We show this for the different types of elements in outj , out
′
j :

15

• cv = v · gv + rcv · gr, cv′ = v′ · gv + rcv′ · gr: are independent and uniform in G because of the
independent uniform choices of rcv, rcv′ ∈ Fr in makerandomizedtx.

• cm = NC(g, pk, v, rcm),cm′ = NC(g′, pk′, v′, rcm′): are uniform and independent in G because
of the independent uniform choices of rcm, rcm′ ∈ Fr in makerandomizedout.

• epk = esk ·g, epk′ = esk′ ·g are uniform and independent in G because of the independent and
uniform choices of esk, esk′ ∈ Fr in makerandomizedout.

• π, π′ - Assuming the pubic inputs (epk, cm, cv) = (epk′, cm′, cv′), it follows from the witness
indistinguishability of the SNARK that π and π′ are identically distributed. They are inde-
pendent for any fixing of the previous values, as given this fixing the value of π, π′ depends
only on the inner randomness of the SNARK prover.

• enc = ENCKDF(k)((g, pk, v)),enc′ = ENCKDF(k′)((g
′, pk′, v′)) where k := (esk · pk, epk) and

k′ := (esk′ · pk′, epk′): Assuming k 6= k′, and moreover {k, k′} are different from all the “key

seeds”
{
kj , k

′
j

}
used in previous outputs; we have that the encryption keys KDF(k),KDF(k′)

are uniform and independent of all previous variables. And thus by the theorem’s assumption
that KDF is a random oracle enc, enc′ are uniform and independent in this case. Thus there
are at most ` values of the preceding esk and at most ` values of the preceding esk′ that can
prevent enc and enc’ from being uniform and independent; which is a negl(λ)-fraction of the
possible values of the preceding values.

It is now left to deal with the signature elements. σbind, σ
′
bind, {σi, σ′i}.

The distribution of these elements is determined by the public key pk = rki (or pk = S the
sum of value commitments in the case of σbind), the message m = sighash(rawtx) they are signing,
the internal randomness of the signing algorithm and the reply of the random oracle Rsig on the
query point (R, pk,m). Thus, given a fixing of previous variables, the only case where a dependence
between σi or σ′i could be created is if there as a collision between the signatures in the choice of
R which happens w.p. negl(λ).

5.1 Balance

The following claim states an adversary should not be able to create “money out of thin air”; or
more specifically, extract more money from the shielded pool than was put in it. In Sapling, the
value vbal = vbal(tx) in a transaction tx corresponds to the alleged difference of spend and output
values (see Section 4.12 in the spec) and tx is thought of as having ; thus over-extracting from the
pool corresponds to a constructing a ledger where the sum of all vbal values is strictly positive.

Claim 5.5. The probability that an efficient A generates ledger L = (tx1, . . . , txn) such that∑
tx∈L

vbal(tx) > 0

is negl(λ).

Proof. Given A that produces a ledger as in the claim statement w.p. γ, we construct an efficient A’
that w.p γ/2−negl(λ) produces a collision of IVK,NC,treehash or VC. It follows that γ = negl(λ).

16

1. A’ begins by running A and aborting if A hasn’t output a ledger as in the claim.

2. Otherwise, given such a ledger L, A’ can apply an extractor for each SNARK proof in all
inputs and ouputs in all transactions. For each transaction input inp ∈ tx ∈ L, inp =
(cv, nf, rt, rk, π), the extractor except w.p. negl(λ) outputs an input witness inpwit = (input =
(note, path, pos), pak, rcv, α)). We denote by posnote the positioned note corresponding to
inp, posnote := (note, pos). Similarly for every transaction output in some tx in L, out =
(cv, cm, epk, π, enc), the extractor outputs outwit = (note, esk, rcv). The value pos for the
output note can be deduced from when it was added to L, i.e., the location of cm in the
commitment tree. So again we can define for each out, the corresponding positioned note
posnote = (note, pos). For i ∈ [n] let us denote respectively by Ii,Oi the positioned input
and output notes in txi with non-zero value4.

We also use the extractor from Theorem 2.4 to find s such that S = s · gr where

S :=
∑̀
i=1

cvi −
`+s∑

i=`+1

cvi − vbal · gv

is the public key in the value binding signature σbind.

If one of the extractor runs fails A’ aborts. Note that w.p. at least γ/2− negl(λ) A’ doesn’t
abort.

3. A’ checks if for some i ∈ [n] and inp ∈ txi, posnote(inp) /∈ O<i.

If so, let tx = txi. Let rt be the root of the tree used in the public input of inp; this is
the tree Tj formed from {tx1, . . . , txj} for some j < i. Let posnote = (g, pk, v, rcm, pos) and
cm = NC(g, pk, v, rcm). inpwit contains a path path from cm to rt. If pos is an index of a leaf in
Tj , there exists an extended note posnote′ that was inserted to this position when constructing
the ledger and from posnote’ we can derive a path path’ from cm′ = NC(g′, pk′, v′, rcm′) in
position pos to rt. If path 6= path′, then going down from rt to the first difference between
path and path’ (ask Sean/Daira : is T always a full tree with zeroes on other leaves? No you
have filler values for the empty subtrees, need to check this are values that are hard to find
route to - their impossible to find rout to - have no preimage) this difference gives a collision
of treehash that A’ can output.

Otherwise, we have cm = cm′. note must be different from note’ because posnote′ =
(note′, pos) ∈ O<i but (note, pos) /∈ O<i.

Thus note, note′ is a collision of NC. In this case, A’ outputs this collision and terminates.

Now suppose pos is not a position of a leaf in Tj . This means there is only a partial path
path’ in Tj from rt to a filler value with no preimage (see spec for details). So, similarly we
follow path and path’ to their first difference - a difference that must exist becaues of the filler
value; and this gives us a collision of treehash that A’ outputs.

4. Now A’ checks if as a multiset I := I1 ∪ . . . ∪ In contains a repetition. That is, there exists
posnote = (g, pk, v, rcm, pos) such that for two distinct transaction inputs inp = (cv, nf, rt, rk, π), inp′ =

4Sapling enables the creation of dummy notes with zero value, for which the spend statement doesn’t check Merkle
path validity, cf. Section 4.7.2 in the spec).

17

(cv′, nf ′, rt′, rk′, π′) in L; if the corresponding extracted witnesses are inpwit = (input =
(note, path, pos), pak, rcv, α), inpwit′ = (input′ = (note′, path′, pos′), pak′, rcv′, α′); then (note, pos) =
(note′, pos′) = posnote.

We show in this case that A’ can output a collision of IVK:

Let cm = NC(g, pk, v, rcm). Since nf 6= nf ′, and nf = NF(nk, note, pos), nf ′ = NF(nk′, note, pos);

we have nk 6= nk′.

Also ivk = IVK(ak, nk), ivk′ = IVK(ak′, nk′), and pk = ivk · g = ivk′ · g. So ivk = ivk′ And
thus, A’ can output (ak, nk), (ak′, nk′) as a collision of IVK.

5. Let us denote by bal(tx) the (integer) sum of values in inputs of tx minus the sum of values in
output of tx (notes meaning those output by the extractors); and by rcv(tx) the sum of values
rcv in input witnesses of tx minus the sum of values rcv in output witnesses of tx. When
reaching this point with no output we know that:

For each i ∈ [n], Ii ⊂ O1 ∪ . . . ∪ Oi−1 \ (I1 ∪ . . . ∪ Ii−1).
This implies ∑

tx∈L
bal(tx) ≤ 0.

We claim that we must have for some tx ∈ L, bal(tx) 6= vbal(tx): Otherwise, we would have∑
tx∈L

vbal(tx) =
∑
tx∈L

bal(tx) ≤ 0,

contradicting the fact that A has managed to output L with a positive sum of vbal values.

Thus, let tx = txi be such that bal(tx) 6= vbal(tx). We show in the next step how A′ uses this
to output a collision of VC.

6. At this point, we know that bal(tx) 6= vbal(tx). As both these values are in the open interval 5

(−r/2, r/2), we have also bal(tx) 6= vbal(tx) (mod r). We show how to find a collision of VC
with probability γ/poly(λ). Since tx verifies, we know that verifySigRgr(S, sighash(rawtx), σbind)
for

S =
∑̀
i=1

cvi−
`+s∑

i=`+1

cvi−vbal ·gv =

(∑̀
i=1

vi −
s∑

i=`+1

vi

)
·gv+

(∑̀
i=1

rcvi −
s∑

i=`+1

rcvi

)
·gr−vbal ·gv.

Let R :=
∑`

i=1 rcvi−
∑s

i=`+1 rcvi and v := bal(tx)−vbal(tx)(mod r). We have VC(v,R) = S.

Recall that if A’ has reached this stage without aborting, it has obtained s such that s·gr = S.
Thus, we also have VC(0, s) = S. Hence, noticing that v 6= 0, A′ can output (0, s), (v,R) as
a collision of VC.

5See the spec for details: vbal and v in each transaction input/output are at most 264 in absolute value, so assuming
less than, e.g., 2r−66 transaction inputs and outputs in any transaction, this is true.

18

5.2 Spendability

Valid transaction bases: A sequence x = (
−−−→
input,

−−−−→
output, vbal) is a valid transaction base if

vbal =
∑

v(inputi)−
∑

v(outputj).
We review note encryption and decryption from the spec in our notation.

Decrypting notes:
dec(ivk, out = (cv, cm, epk, π, enc))

1. Let K := KDF(epk · ivk)

2. Let np = DECK(enc). If DEC() fails output rej.

3. Suppose np = (d, v, rcm,memo). If rcm ≥ r output rej.

4. Let g := GH(d).

5. Let pk := g · ivk. Let note := (g, pk, v, rcm).

6. Check that cm = NC(note). Output rej if not.

7. Output note.

We define
dec(ivk, tx) := ∪out∈txdec(ivk, out),

dec(ivk,L) := ∪tx∈Ldec(ivk, tx)

And also
nf(tx) := ∪

inp∈
−→
inp(tx)

nf(inp), nf(L) := ∪tx∈Lnf(tx)

In the spendability game A tries to create a ledger where a note successfully decrypted with ivk
cannot be spent. Formally, the game proceeds as follows.

1. We choose uniform sk = (ask, nsk); and give pak = (ask · gsig, nsk) to A.

2. A outputs a ledger L, a positioned note (note, pos), a set of output notes
−−−−→
output, and a set of

incoming viewing keys
−→
ivk.

3. We choose random −→rcv ∈ F`+s
r and compute tx = maketx(

−−−→
input,

−−−−→
output, vbal, ask).

4. Let ivk := IVK(ak, nk). A wins iff

(a) note ∈ dec(ivk,L).

(b) ((note),
−−−−→
output, vbal) is a valid transaction base.

(c) For each i ∈ [s], outputi belongs to ivki.

(d) verify-tx(L, tx).

(e) For some i ∈ [s], dec(ivki, outi) does not return outputi.

We wish to show that the success of any efficient A in this game is negl(λ).
Let nk = nsk · gn. Inspection of the protocol shows this exactly corresponds to the nullifier of

note with nullifier key nk already appearing in the ledger. Thus, it suffices to prove the following.

19

Claim 5.6. Fix any efficient A. Suppose that A is given uniformly chosen pak, and let ivk :=
IVK(pak). The probability that A generates a ledger L and positioned note (note,pos) such that

1. (note, pos) ∈ dec(ivk,L)

2. NF(nk,NC(note), pos) ∈ nf(L)

is negl(λ).

Proof. Let γ be the probability that A outputs L, note satisfying the two properties in the claim.
We construct an efficient A′ that receives a forgery challenge ak of Schnorr and w.p. γ − negl(λ)
does one of the following.

• Output a collision of either NF, NC or IVK.

• Output a forgery w.r.t to randomization of Schnorr for the challenge ak.

A′ works as follows.

1. A′ receives a challenge ak; chooses random nsk ∈ Fr and sends pak = (ak, nsk) to A.

2. A′ receives the output (L, note, pos) of A.

3. A′ checks that L, (note, pos) satisfy the two properties in the claim; if not it aborts.

4. Let nf := NF(nk,NC(note), pos). Fix the out, tx with out ∈ tx ∈ L such that dec(ivk, out) =
(note, pos). out contains a valid SNARK proof for SPEND(rt, cv, nf, rk) for some cv, rt. Ap-
ply the relevant extractor ξ relating to the snark proof to obtain e.w.p negl(λ) a witness
path, pos′, g′, pk′, v′, rcm′, cm′, rcv′, α, ak′, nsk′ for the statement.

5. Let nk′ := nsk′ · gn. If (nk, cm, pos) 6= (nk′, cm′, pos′), A′ outputs (nk, cm, pos), (nk′, cm′, pos′)
as a collision of NF.

6. Otherwise, let note′ = (g′, pk′, v′, rcm′). We have cm = NC(note) = NC(note′). If (g′, pk′, v′) 6=
(g, pk, v), A′ outputs (note, note′) as a collision of NC.

7. Otherwise, we must have ivk′ = ivk (cause g · ivk = g · ivk′ = pk). Then ivk = IVK(ak′, nk) (by
this stage we know nk = nk′). If ak 6= ak′, A′ outputs (ak, nk), (ak′, nk) as a collision of IVK.

8. Otherwise ak = ak′, and rk = ak + α · g. Let σ be the signature of rawtx with public key rk in
inp. and A′ outputs (α, rawtx, σ) as a forgery of Schnorr with challenge ak.

Remark 5.7. Note that in the spendability and non-malleability property A can choose what value
nf to work with. It seems likely that in a weaker model where the values nf are generated randomly
via honest users’ notes, a second preimage resistance property of NF would suffice (Thanks to Sean
Bowe and Zooko Wilcox for mentioning this).

Acknowledgements

We thank Matthew D. Green for conversations on simulation extractability that in particular
inspired the definition and use of invertible group samplers.

20

References

[1] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Ze-
rocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Se-
curity and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459–474, 2014.
DBLP:conf/sp/2014.

[2] N. Fleischhacker, J. Krupp, G. Malavolta, J. Schneider, D. Schröder, and M. Simkin. Efficient
unlinkable sanitizable signatures from signatures with re-randomizable keys. IET Information
Security, 12(3):166–183, 2018.

[3] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol spec -
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf.

[4] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J.
Cryptology, 13(3):361–396, 2000.

21

	Introduction
	Signature schemes
	Description of Sapling
	Basic components
	Methods

	Non-Malleability of Sapling w.r.t. delegated spenders
	Indistinguishability w.r.t outside adversaries
	Balance
	Spendability

