jubjub/src/lib.rs

1325 lines
40 KiB
Rust

//! This crate provides an implementation of the **Jubjub** elliptic curve and its associated
//! field arithmetic. See [`README.md`](https://github.com/zkcrypto/jubjub/blob/master/README.md) for more details about Jubjub.
//!
//! # API
//!
//! * `AffinePoint` / `ExtendedPoint` which are implementations of Jubjub group arithmetic
//! * `AffineNielsPoint` / `ExtendedNielsPoint` which are pre-processed Jubjub points
//! * `Fq`, which is the base field of Jubjub
//! * `Fr`, which is the scalar field of Jubjub
//! * `batch_normalize` for converting many `ExtendedPoint`s into `AffinePoint`s efficiently.
//!
//! # Constant Time
//!
//! All operations are constant time unless explicitly noted; these functions will contain
//! "vartime" in their name and they will be documented as variable time.
//!
//! This crate relies on the `subtle` crate for achieving constant time arithmetic. It is
//! recommended to enable the `nightly` feature on this crate (which enables the `nightly`
//! feature in the `subtle` crate) to defend against compiler optimizations that may
//! compromise constant time arithmetic. However, this requires use of the nightly version
//! of the Rust compiler.
//!
//! # Features
//!
//! * `nightly`: This enables `subtle/nightly` which attempts to prevent the compiler from
//! performing optimizations that could compromise constant time arithmetic. It is
//! recommended to enable this if you are able to use a nightly version of the Rust compiler.
#![no_std]
#![deny(missing_debug_implementations)]
#![deny(missing_docs)]
#![deny(unsafe_code)]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
#[macro_use]
mod util;
mod fq;
mod fr;
pub use fq::Fq;
pub use fr::Fr;
const FR_MODULUS_BYTES: [u8; 32] = [
183, 44, 247, 214, 94, 14, 151, 208, 130, 16, 200, 204, 147, 32, 104, 166, 0, 59, 52, 1, 1, 59,
103, 6, 169, 175, 51, 101, 234, 180, 125, 14,
];
/// This represents a Jubjub point in the affine `(u, v)`
/// coordinates.
#[derive(Clone, Copy, Debug)]
pub struct AffinePoint {
u: Fq,
v: Fq,
}
impl Neg for AffinePoint {
type Output = AffinePoint;
/// This computes the negation of a point `P = (u, v)`
/// as `-P = (-u, v)`.
#[inline]
fn neg(self) -> AffinePoint {
AffinePoint {
u: -self.u,
v: self.v,
}
}
}
impl ConstantTimeEq for AffinePoint {
fn ct_eq(&self, other: &Self) -> Choice {
self.u.ct_eq(&other.u) & self.v.ct_eq(&other.v)
}
}
impl PartialEq for AffinePoint {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1
}
}
impl ConditionallySelectable for AffinePoint {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
AffinePoint {
u: Fq::conditional_select(&a.u, &b.u, choice),
v: Fq::conditional_select(&a.v, &b.v, choice),
}
}
}
/// This represents an extended point `(U, V, Z, T1, T2)`
/// with `Z` nonzero, corresponding to the affine point
/// `(U/Z, V/Z)`. We always have `T1 * T2 = UV/Z`.
///
/// You can do the following things with a point in this
/// form:
///
/// * Convert it into a point in the affine form.
/// * Add it to an `ExtendedPoint`, `AffineNielsPoint` or `ExtendedNielsPoint`.
/// * Double it using `double()`.
/// * Compare it with another extended point using `PartialEq` or `ct_eq()`.
#[derive(Clone, Copy, Debug)]
pub struct ExtendedPoint {
u: Fq,
v: Fq,
z: Fq,
t1: Fq,
t2: Fq,
}
impl ConstantTimeEq for ExtendedPoint {
fn ct_eq(&self, other: &Self) -> Choice {
// (u/z, v/z) = (u'/z', v'/z') is implied by
// (uz'z = u'z'z) and
// (vz'z = v'z'z)
// as z and z' are always nonzero.
(&self.u * &other.z).ct_eq(&(&other.u * &self.z))
& (&self.v * &other.z).ct_eq(&(&other.v * &self.z))
}
}
impl ConditionallySelectable for ExtendedPoint {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
ExtendedPoint {
u: Fq::conditional_select(&a.u, &b.u, choice),
v: Fq::conditional_select(&a.v, &b.v, choice),
z: Fq::conditional_select(&a.z, &b.z, choice),
t1: Fq::conditional_select(&a.t1, &b.t1, choice),
t2: Fq::conditional_select(&a.t2, &b.t2, choice),
}
}
}
impl PartialEq for ExtendedPoint {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1
}
}
impl Neg for ExtendedPoint {
type Output = ExtendedPoint;
/// Computes the negation of a point `P = (U, V, Z, T)`
/// as `-P = (-U, V, Z, -T1, T2)`. The choice of `T1`
/// is made without loss of generality.
#[inline]
fn neg(self) -> ExtendedPoint {
ExtendedPoint {
u: -self.u,
v: self.v,
z: self.z,
t1: -self.t1,
t2: self.t2,
}
}
}
impl From<AffinePoint> for ExtendedPoint {
/// Constructs an extended point (with `Z = 1`) from
/// an affine point using the map `(u, v) => (u, v, 1, u, v)`.
fn from(affine: AffinePoint) -> ExtendedPoint {
ExtendedPoint {
u: affine.u,
v: affine.v,
z: Fq::one(),
t1: affine.u,
t2: affine.v,
}
}
}
impl<'a> From<&'a ExtendedPoint> for AffinePoint {
/// Constructs an affine point from an extended point
/// using the map `(U, V, Z, T1, T2) => (U/Z, V/Z)`
/// as Z is always nonzero. **This requires a field inversion
/// and so it is recommended to perform these in a batch
/// using [`batch_normalize`](crate::batch_normalize) instead.**
fn from(extended: &'a ExtendedPoint) -> AffinePoint {
// Z coordinate is always nonzero, so this is
// its inverse.
let zinv = extended.z.invert().unwrap();
AffinePoint {
u: extended.u * &zinv,
v: extended.v * &zinv,
}
}
}
impl From<ExtendedPoint> for AffinePoint {
fn from(extended: ExtendedPoint) -> AffinePoint {
AffinePoint::from(&extended)
}
}
/// This is a pre-processed version of an affine point `(u, v)`
/// in the form `(v + u, v - u, u * v * 2d)`. This can be added to an
/// [`ExtendedPoint`](crate::ExtendedPoint).
#[derive(Clone, Copy, Debug)]
pub struct AffineNielsPoint {
v_plus_u: Fq,
v_minus_u: Fq,
t2d: Fq,
}
impl AffineNielsPoint {
/// Constructs this point from the neutral element `(0, 1)`.
pub const fn identity() -> Self {
AffineNielsPoint {
v_plus_u: Fq::one(),
v_minus_u: Fq::one(),
t2d: Fq::zero(),
}
}
#[inline]
fn multiply(&self, by: &[u8; 32]) -> ExtendedPoint {
let zero = AffineNielsPoint::identity();
let mut acc = ExtendedPoint::identity();
// This is a simple double-and-add implementation of point
// multiplication, moving from most significant to least
// significant bit of the scalar.
//
// We skip the leading four bits because they're always
// unset for Fr.
for bit in by
.iter()
.rev()
.flat_map(|byte| (0..8).rev().map(move |i| Choice::from((byte >> i) & 1u8)))
.skip(4)
{
acc = acc.double();
acc += AffineNielsPoint::conditional_select(&zero, &self, bit);
}
acc
}
/// Multiplies this point by the specific little-endian bit pattern in the
/// given byte array, ignoring the highest four bits.
pub fn multiply_bits(&self, by: &[u8; 32]) -> ExtendedPoint {
self.multiply(by)
}
}
impl<'a, 'b> Mul<&'b Fr> for &'a AffineNielsPoint {
type Output = ExtendedPoint;
fn mul(self, other: &'b Fr) -> ExtendedPoint {
self.multiply(&other.to_bytes())
}
}
impl_binops_multiplicative_mixed!(AffineNielsPoint, Fr, ExtendedPoint);
impl ConditionallySelectable for AffineNielsPoint {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
AffineNielsPoint {
v_plus_u: Fq::conditional_select(&a.v_plus_u, &b.v_plus_u, choice),
v_minus_u: Fq::conditional_select(&a.v_minus_u, &b.v_minus_u, choice),
t2d: Fq::conditional_select(&a.t2d, &b.t2d, choice),
}
}
}
/// This is a pre-processed version of an extended point `(U, V, Z, T1, T2)`
/// in the form `(V + U, V - U, Z, T1 * T2 * 2d)`.
#[derive(Clone, Copy, Debug)]
pub struct ExtendedNielsPoint {
v_plus_u: Fq,
v_minus_u: Fq,
z: Fq,
t2d: Fq,
}
impl ConditionallySelectable for ExtendedNielsPoint {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
ExtendedNielsPoint {
v_plus_u: Fq::conditional_select(&a.v_plus_u, &b.v_plus_u, choice),
v_minus_u: Fq::conditional_select(&a.v_minus_u, &b.v_minus_u, choice),
z: Fq::conditional_select(&a.z, &b.z, choice),
t2d: Fq::conditional_select(&a.t2d, &b.t2d, choice),
}
}
}
impl ExtendedNielsPoint {
/// Constructs this point from the neutral element `(0, 1)`.
pub const fn identity() -> Self {
ExtendedNielsPoint {
v_plus_u: Fq::one(),
v_minus_u: Fq::one(),
z: Fq::one(),
t2d: Fq::zero(),
}
}
#[inline]
fn multiply(&self, by: &[u8; 32]) -> ExtendedPoint {
let zero = ExtendedNielsPoint::identity();
let mut acc = ExtendedPoint::identity();
// This is a simple double-and-add implementation of point
// multiplication, moving from most significant to least
// significant bit of the scalar.
//
// We skip the leading four bits because they're always
// unset for Fr.
for bit in by
.iter()
.rev()
.flat_map(|byte| (0..8).rev().map(move |i| Choice::from((byte >> i) & 1u8)))
.skip(4)
{
acc = acc.double();
acc += ExtendedNielsPoint::conditional_select(&zero, &self, bit);
}
acc
}
/// Multiplies this point by the specific little-endian bit pattern in the
/// given byte array, ignoring the highest four bits.
pub fn multiply_bits(&self, by: &[u8; 32]) -> ExtendedPoint {
self.multiply(by)
}
}
impl<'a, 'b> Mul<&'b Fr> for &'a ExtendedNielsPoint {
type Output = ExtendedPoint;
fn mul(self, other: &'b Fr) -> ExtendedPoint {
self.multiply(&other.to_bytes())
}
}
impl_binops_multiplicative_mixed!(ExtendedNielsPoint, Fr, ExtendedPoint);
// `d = -(10240/10241)`
const EDWARDS_D: Fq = Fq::from_raw([
0x01065fd6d6343eb1,
0x292d7f6d37579d26,
0xf5fd9207e6bd7fd4,
0x2a9318e74bfa2b48,
]);
// `2*d`
const EDWARDS_D2: Fq = Fq::from_raw([
0x020cbfadac687d62,
0x525afeda6eaf3a4c,
0xebfb240fcd7affa8,
0x552631ce97f45691,
]);
impl AffinePoint {
/// Constructs the neutral element `(0, 1)`.
pub const fn identity() -> Self {
AffinePoint {
u: Fq::zero(),
v: Fq::one(),
}
}
/// Multiplies this point by the cofactor, producing an
/// `ExtendedPoint`
pub fn mul_by_cofactor(&self) -> ExtendedPoint {
ExtendedPoint::from(*self).mul_by_cofactor()
}
/// Determines if this point is of small order.
pub fn is_small_order(&self) -> Choice {
ExtendedPoint::from(*self).is_small_order()
}
/// Determines if this point is torsion free and so is
/// in the prime order subgroup.
pub fn is_torsion_free(&self) -> Choice {
ExtendedPoint::from(*self).is_torsion_free()
}
/// Determines if this point is prime order, or in other words that
/// the smallest scalar multiplied by this point that produces the
/// identity is `r`. This is equivalent to checking that the point
/// is both torsion free and not the identity.
pub fn is_prime_order(&self) -> Choice {
let extended = ExtendedPoint::from(*self);
extended.is_torsion_free() & (!extended.is_identity())
}
/// Converts this element into its byte representation.
pub fn to_bytes(&self) -> [u8; 32] {
let mut tmp = self.v.to_bytes();
let u = self.u.to_bytes();
// Encode the sign of the u-coordinate in the most
// significant bit.
tmp[31] |= u[0] << 7;
tmp
}
/// Attempts to interpret a byte representation of an
/// affine point, failing if the element is not on
/// the curve or non-canonical.
pub fn from_bytes(mut b: [u8; 32]) -> CtOption<Self> {
// Grab the sign bit from the representation
let sign = b[31] >> 7;
// Mask away the sign bit
b[31] &= 0b0111_1111;
// Interpret what remains as the v-coordinate
Fq::from_bytes(&b).and_then(|v| {
// -u^2 + v^2 = 1 + d.u^2.v^2
// -u^2 = 1 + d.u^2.v^2 - v^2 (rearrange)
// -u^2 - d.u^2.v^2 = 1 - v^2 (rearrange)
// u^2 + d.u^2.v^2 = v^2 - 1 (flip signs)
// u^2 (1 + d.v^2) = v^2 - 1 (factor)
// u^2 = (v^2 - 1) / (1 + d.v^2) (isolate u^2)
// We know that (1 + d.v^2) is nonzero for all v:
// (1 + d.v^2) = 0
// d.v^2 = -1
// v^2 = -(1 / d) No solutions, as -(1 / d) is not a square
let v2 = v.square();
((v2 - Fq::one()) * ((Fq::one() + EDWARDS_D * &v2).invert().unwrap_or(Fq::zero())))
.sqrt()
.and_then(|u| {
// Fix the sign of `u` if necessary
let flip_sign = Choice::from((u.to_bytes()[0] ^ sign) & 1);
let u_negated = -u;
let final_u = Fq::conditional_select(&u, &u_negated, flip_sign);
CtOption::new(AffinePoint { u: final_u, v }, Choice::from(1u8))
})
})
}
/// Returns the `u`-coordinate of this point.
pub fn get_u(&self) -> Fq {
self.u
}
/// Returns the `v`-coordinate of this point.
pub fn get_v(&self) -> Fq {
self.v
}
/// Performs a pre-processing step that produces an `AffineNielsPoint`
/// for use in multiple additions.
pub const fn to_niels(&self) -> AffineNielsPoint {
AffineNielsPoint {
v_plus_u: self.v.field_add(&self.u),
v_minus_u: self.v.subtract(&self.u),
t2d: self.u.multiply(&self.v).multiply(&EDWARDS_D2),
}
}
/// Constructs an AffinePoint given `u` and `v` without checking
/// that the point is on the curve.
pub const fn from_raw_unchecked(u: Fq, v: Fq) -> AffinePoint {
AffinePoint { u, v }
}
/// This is only for debugging purposes and not
/// exposed in the public API. Checks that this
/// point is on the curve.
#[cfg(test)]
fn is_on_curve_vartime(&self) -> bool {
let u2 = self.u.square();
let v2 = self.v.square();
&v2 - &u2 == Fq::one() + &EDWARDS_D * &u2 * &v2
}
}
impl ExtendedPoint {
/// Constructs an extended point from the neutral element `(0, 1)`.
pub const fn identity() -> Self {
ExtendedPoint {
u: Fq::zero(),
v: Fq::one(),
z: Fq::one(),
t1: Fq::zero(),
t2: Fq::zero(),
}
}
/// Determines if this point is the identity.
pub fn is_identity(&self) -> Choice {
// If this point is the identity, then
// u = 0 * z = 0
// and v = 1 * z = z
self.u.ct_eq(&Fq::zero()) & self.v.ct_eq(&self.z)
}
/// Determines if this point is of small order.
pub fn is_small_order(&self) -> Choice {
// We only need to perform two doublings, since the 2-torsion
// points are (0, 1) and (0, -1), and so we only need to check
// that the u-coordinate of the result is zero to see if the
// point is small order.
self.double().double().u.ct_eq(&Fq::zero())
}
/// Determines if this point is torsion free and so is contained
/// in the prime order subgroup.
pub fn is_torsion_free(&self) -> Choice {
self.multiply(&FR_MODULUS_BYTES).is_identity()
}
/// Determines if this point is prime order, or in other words that
/// the smallest scalar multiplied by this point that produces the
/// identity is `r`. This is equivalent to checking that the point
/// is both torsion free and not the identity.
pub fn is_prime_order(&self) -> Choice {
self.is_torsion_free() & (!self.is_identity())
}
/// Multiplies this element by the cofactor `8`.
pub fn mul_by_cofactor(&self) -> ExtendedPoint {
self.double().double().double()
}
/// Performs a pre-processing step that produces an `ExtendedNielsPoint`
/// for use in multiple additions.
pub fn to_niels(&self) -> ExtendedNielsPoint {
ExtendedNielsPoint {
v_plus_u: &self.v + &self.u,
v_minus_u: &self.v - &self.u,
z: self.z,
t2d: &self.t1 * &self.t2 * EDWARDS_D2,
}
}
/// Computes the doubling of a point more efficiently than a point can
/// be added to itself.
pub fn double(&self) -> ExtendedPoint {
// Doubling is more efficient (three multiplications, four squarings)
// when we work within the projective coordinate space (U:Z, V:Z). We
// rely on the most efficient formula, "dbl-2008-bbjlp", as described
// in Section 6 of "Twisted Edwards Curves" by Bernstein et al.
//
// See <https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html#doubling-dbl-2008-bbjlp>
// for more information.
//
// We differ from the literature in that we use (u, v) rather than
// (x, y) coordinates. We also have the constant `a = -1` implied. Let
// us rewrite the procedure of doubling (u, v, z) to produce (U, V, Z)
// as follows:
//
// B = (u + v)^2
// C = u^2
// D = v^2
// F = D - C
// H = 2 * z^2
// J = F - H
// U = (B - C - D) * J
// V = F * (- C - D)
// Z = F * J
//
// If we compute K = D + C, we can rewrite this:
//
// B = (u + v)^2
// C = u^2
// D = v^2
// F = D - C
// K = D + C
// H = 2 * z^2
// J = F - H
// U = (B - K) * J
// V = F * (-K)
// Z = F * J
//
// In order to avoid the unnecessary negation of K,
// we will negate J, transforming the result into
// an equivalent point with a negated z-coordinate.
//
// B = (u + v)^2
// C = u^2
// D = v^2
// F = D - C
// K = D + C
// H = 2 * z^2
// J = H - F
// U = (B - K) * J
// V = F * K
// Z = F * J
//
// Let us rename some variables to simplify:
//
// UV2 = (u + v)^2
// UU = u^2
// VV = v^2
// VVmUU = VV - UU
// VVpUU = VV + UU
// ZZ2 = 2 * z^2
// J = ZZ2 - VVmUU
// U = (UV2 - VVpUU) * J
// V = VVmUU * VVpUU
// Z = VVmUU * J
//
// We wish to obtain two factors of T = UV/Z.
//
// UV/Z = (UV2 - VVpUU) * (ZZ2 - VVmUU) * VVmUU * VVpUU / VVmUU / (ZZ2 - VVmUU)
// = (UV2 - VVpUU) * VVmUU * VVpUU / VVmUU
// = (UV2 - VVpUU) * VVpUU
//
// and so we have that T1 = (UV2 - VVpUU) and T2 = VVpUU.
let uu = self.u.square();
let vv = self.v.square();
let zz2 = self.z.square().double();
let uv2 = (&self.u + &self.v).square();
let vv_plus_uu = &vv + &uu;
let vv_minus_uu = &vv - &uu;
// The remaining arithmetic is exactly the process of converting
// from a completed point to an extended point.
CompletedPoint {
u: &uv2 - &vv_plus_uu,
v: vv_plus_uu,
z: vv_minus_uu,
t: &zz2 - &vv_minus_uu,
}
.into_extended()
}
#[inline]
fn multiply(self, by: &[u8; 32]) -> Self {
self.to_niels().multiply(by)
}
/// This is only for debugging purposes and not
/// exposed in the public API. Checks that this
/// point is on the curve.
#[cfg(test)]
fn is_on_curve_vartime(&self) -> bool {
let affine = AffinePoint::from(*self);
self.z != Fq::zero()
&& affine.is_on_curve_vartime()
&& (affine.u * affine.v * self.z == self.t1 * self.t2)
}
}
impl<'a, 'b> Mul<&'b Fr> for &'a ExtendedPoint {
type Output = ExtendedPoint;
fn mul(self, other: &'b Fr) -> ExtendedPoint {
self.multiply(&other.to_bytes())
}
}
impl_binops_multiplicative!(ExtendedPoint, Fr);
impl<'a, 'b> Add<&'b ExtendedNielsPoint> for &'a ExtendedPoint {
type Output = ExtendedPoint;
fn add(self, other: &'b ExtendedNielsPoint) -> ExtendedPoint {
// We perform addition in the extended coordinates. Here we use
// a formula presented by Hisil, Wong, Carter and Dawson in
// "Twisted Edward Curves Revisited" which only requires 8M.
//
// A = (V1 - U1) * (V2 - U2)
// B = (V1 + U1) * (V2 + U2)
// C = 2d * T1 * T2
// D = 2 * Z1 * Z2
// E = B - A
// F = D - C
// G = D + C
// H = B + A
// U3 = E * F
// Y3 = G * H
// Z3 = F * G
// T3 = E * H
let a = (&self.v - &self.u) * &other.v_minus_u;
let b = (&self.v + &self.u) * &other.v_plus_u;
let c = &self.t1 * &self.t2 * &other.t2d;
let d = (&self.z * &other.z).double();
// The remaining arithmetic is exactly the process of converting
// from a completed point to an extended point.
CompletedPoint {
u: &b - &a,
v: &b + &a,
z: &d + &c,
t: &d - &c,
}
.into_extended()
}
}
impl<'a, 'b> Sub<&'b ExtendedNielsPoint> for &'a ExtendedPoint {
type Output = ExtendedPoint;
fn sub(self, other: &'b ExtendedNielsPoint) -> ExtendedPoint {
let a = (&self.v - &self.u) * &other.v_plus_u;
let b = (&self.v + &self.u) * &other.v_minus_u;
let c = &self.t1 * &self.t2 * &other.t2d;
let d = (&self.z * &other.z).double();
CompletedPoint {
u: &b - &a,
v: &b + &a,
z: &d - &c,
t: &d + &c,
}
.into_extended()
}
}
impl_binops_additive!(ExtendedPoint, ExtendedNielsPoint);
impl<'a, 'b> Add<&'b AffineNielsPoint> for &'a ExtendedPoint {
type Output = ExtendedPoint;
fn add(self, other: &'b AffineNielsPoint) -> ExtendedPoint {
// This is identical to the addition formula for `ExtendedNielsPoint`,
// except we can assume that `other.z` is one, so that we perform
// 7 multiplications.
let a = (&self.v - &self.u) * &other.v_minus_u;
let b = (&self.v + &self.u) * &other.v_plus_u;
let c = &self.t1 * &self.t2 * &other.t2d;
let d = self.z.double();
// The remaining arithmetic is exactly the process of converting
// from a completed point to an extended point.
CompletedPoint {
u: &b - &a,
v: &b + &a,
z: &d + &c,
t: &d - &c,
}
.into_extended()
}
}
impl<'a, 'b> Sub<&'b AffineNielsPoint> for &'a ExtendedPoint {
type Output = ExtendedPoint;
fn sub(self, other: &'b AffineNielsPoint) -> ExtendedPoint {
let a = (&self.v - &self.u) * &other.v_plus_u;
let b = (&self.v + &self.u) * &other.v_minus_u;
let c = &self.t1 * &self.t2 * &other.t2d;
let d = self.z.double();
CompletedPoint {
u: &b - &a,
v: &b + &a,
z: &d - &c,
t: &d + &c,
}
.into_extended()
}
}
impl_binops_additive!(ExtendedPoint, AffineNielsPoint);
impl<'a, 'b> Add<&'b ExtendedPoint> for &'a ExtendedPoint {
type Output = ExtendedPoint;
#[inline]
fn add(self, other: &'b ExtendedPoint) -> ExtendedPoint {
self + other.to_niels()
}
}
impl<'a, 'b> Sub<&'b ExtendedPoint> for &'a ExtendedPoint {
type Output = ExtendedPoint;
#[inline]
fn sub(self, other: &'b ExtendedPoint) -> ExtendedPoint {
self - other.to_niels()
}
}
impl_binops_additive!(ExtendedPoint, ExtendedPoint);
impl<'a, 'b> Add<&'b AffinePoint> for &'a ExtendedPoint {
type Output = ExtendedPoint;
#[inline]
fn add(self, other: &'b AffinePoint) -> ExtendedPoint {
self + other.to_niels()
}
}
impl<'a, 'b> Sub<&'b AffinePoint> for &'a ExtendedPoint {
type Output = ExtendedPoint;
#[inline]
fn sub(self, other: &'b AffinePoint) -> ExtendedPoint {
self - other.to_niels()
}
}
impl_binops_additive!(ExtendedPoint, AffinePoint);
/// This is a "completed" point produced during a point doubling or
/// addition routine. These points exist in the `(U:Z, V:T)` model
/// of the curve. This is not exposed in the API because it is
/// an implementation detail.
struct CompletedPoint {
u: Fq,
v: Fq,
z: Fq,
t: Fq,
}
impl CompletedPoint {
/// This converts a completed point into an extended point by
/// homogenizing:
///
/// (u/z, v/t) = (u/z * t/t, v/t * z/z) = (ut/zt, vz/zt)
///
/// The resulting T coordinate is utvz/zt = uv, and so
/// T1 = u, T2 = v, without loss of generality.
#[inline]
fn into_extended(self) -> ExtendedPoint {
ExtendedPoint {
u: &self.u * &self.t,
v: &self.v * &self.z,
z: &self.z * &self.t,
t1: self.u,
t2: self.v,
}
}
}
impl Default for AffinePoint {
/// Returns the identity.
fn default() -> AffinePoint {
AffinePoint::identity()
}
}
impl Default for ExtendedPoint {
/// Returns the identity.
fn default() -> ExtendedPoint {
ExtendedPoint::identity()
}
}
/// This takes a mutable slice of `ExtendedPoint`s and "normalizes" them using
/// only a single inversion for the entire batch. This normalization results in
/// all of the points having a Z-coordinate of one. Further, an iterator is
/// returned which can be used to obtain `AffinePoint`s for each element in the
/// slice.
///
/// This costs 5 multiplications per element, and a field inversion.
pub fn batch_normalize<'a>(v: &'a mut [ExtendedPoint]) -> impl Iterator<Item = AffinePoint> + 'a {
let mut acc = Fq::one();
for p in v.iter_mut() {
// We use the `t1` field of `ExtendedPoint` to store the product
// of previous z-coordinates seen.
p.t1 = acc;
acc *= &p.z;
}
// This is the inverse, as all z-coordinates are nonzero.
acc = acc.invert().unwrap();
for p in v.iter_mut().rev() {
let mut q = *p;
// Compute tmp = 1/z
let tmp = q.t1 * acc;
// Cancel out z-coordinate in denominator of `acc`
acc *= &q.z;
// Set the coordinates to the correct value
q.u *= &tmp; // Multiply by 1/z
q.v *= &tmp; // Multiply by 1/z
q.z = Fq::one(); // z-coordinate is now one
q.t1 = q.u;
q.t2 = q.v;
*p = q;
}
// All extended points are now normalized, but the type
// doesn't encode this fact. Let us offer affine points
// to the caller.
v.iter().map(|p| AffinePoint { u: p.u, v: p.v })
}
#[test]
fn test_is_on_curve_var() {
assert!(AffinePoint::identity().is_on_curve_vartime());
}
#[test]
fn test_d_is_non_quadratic_residue() {
assert!(EDWARDS_D.sqrt().is_none().unwrap_u8() == 1);
assert!((-EDWARDS_D).sqrt().is_none().unwrap_u8() == 1);
assert!((-EDWARDS_D).invert().unwrap().sqrt().is_none().unwrap_u8() == 1);
}
#[test]
fn test_affine_niels_point_identity() {
assert_eq!(
AffineNielsPoint::identity().v_plus_u,
AffinePoint::identity().to_niels().v_plus_u
);
assert_eq!(
AffineNielsPoint::identity().v_minus_u,
AffinePoint::identity().to_niels().v_minus_u
);
assert_eq!(
AffineNielsPoint::identity().t2d,
AffinePoint::identity().to_niels().t2d
);
}
#[test]
fn test_extended_niels_point_identity() {
assert_eq!(
ExtendedNielsPoint::identity().v_plus_u,
ExtendedPoint::identity().to_niels().v_plus_u
);
assert_eq!(
ExtendedNielsPoint::identity().v_minus_u,
ExtendedPoint::identity().to_niels().v_minus_u
);
assert_eq!(
ExtendedNielsPoint::identity().z,
ExtendedPoint::identity().to_niels().z
);
assert_eq!(
ExtendedNielsPoint::identity().t2d,
ExtendedPoint::identity().to_niels().t2d
);
}
#[test]
fn test_assoc() {
let p = ExtendedPoint::from(AffinePoint {
u: Fq([
0xc0115cb656ae4839,
0x623dc3ff81d64c26,
0x5868e739b5794f2c,
0x23bd4fbb18d39c9c,
]),
v: Fq([
0x7588ee6d6dd40deb,
0x9d6d7a23ebdb7c4c,
0x46462e26d4edb8c7,
0x10b4c1517ca82e9b,
]),
})
.mul_by_cofactor();
assert!(p.is_on_curve_vartime());
assert_eq!(
(p * Fr::from(1000u64)) * Fr::from(3938u64),
p * (Fr::from(1000u64) * Fr::from(3938u64)),
);
}
#[cfg(feature = "std")]
#[test]
fn test_batch_normalize() {
let mut p = ExtendedPoint::from(AffinePoint {
u: Fq([
0xc0115cb656ae4839,
0x623dc3ff81d64c26,
0x5868e739b5794f2c,
0x23bd4fbb18d39c9c,
]),
v: Fq([
0x7588ee6d6dd40deb,
0x9d6d7a23ebdb7c4c,
0x46462e26d4edb8c7,
0x10b4c1517ca82e9b,
]),
})
.mul_by_cofactor();
let mut v = vec![];
for _ in 0..10 {
v.push(p);
p = p.double();
}
for p in &v {
assert!(p.is_on_curve_vartime());
}
let expected: std::vec::Vec<_> = v.iter().map(|p| AffinePoint::from(*p)).collect();
let result1: std::vec::Vec<_> = batch_normalize(&mut v).collect();
for i in 0..10 {
assert!(expected[i] == result1[i]);
assert!(v[i].is_on_curve_vartime());
assert!(AffinePoint::from(v[i]) == expected[i]);
}
let result2: std::vec::Vec<_> = batch_normalize(&mut v).collect();
for i in 0..10 {
assert!(expected[i] == result2[i]);
assert!(v[i].is_on_curve_vartime());
assert!(AffinePoint::from(v[i]) == expected[i]);
}
}
#[cfg(test)]
const FULL_GENERATOR: AffinePoint = AffinePoint::from_raw_unchecked(
Fq::from_raw([
0xe4b3d35df1a7adfe,
0xcaf55d1b29bf81af,
0x8b0f03ddd60a8187,
0x62edcbb8bf3787c8,
]),
Fq::from_raw([0xb, 0x0, 0x0, 0x0]),
);
#[cfg(test)]
const EIGHT_TORSION: [AffinePoint; 8] = [
AffinePoint::from_raw_unchecked(
Fq::from_raw([
0xd92e6a7927200d43,
0x7aa41ac43dae8582,
0xeaaae086a16618d1,
0x71d4df38ba9e7973,
]),
Fq::from_raw([
0xff0d2068eff496dd,
0x9106ee90f384a4a1,
0x16a13035ad4d7266,
0x4958bdb21966982e,
]),
),
AffinePoint::from_raw_unchecked(
Fq::from_raw([
0xfffeffff00000001,
0x67baa40089fb5bfe,
0xa5e80b39939ed334,
0x73eda753299d7d47,
]),
Fq::from_raw([0x0, 0x0, 0x0, 0x0]),
),
AffinePoint::from_raw_unchecked(
Fq::from_raw([
0xd92e6a7927200d43,
0x7aa41ac43dae8582,
0xeaaae086a16618d1,
0x71d4df38ba9e7973,
]),
Fq::from_raw([
0xf2df96100b6924,
0xc2b6b5720c79b75d,
0x1c98a7d25c54659e,
0x2a94e9a11036e51a,
]),
),
AffinePoint::from_raw_unchecked(
Fq::from_raw([0x0, 0x0, 0x0, 0x0]),
Fq::from_raw([
0xffffffff00000000,
0x53bda402fffe5bfe,
0x3339d80809a1d805,
0x73eda753299d7d48,
]),
),
AffinePoint::from_raw_unchecked(
Fq::from_raw([
0x26d19585d8dff2be,
0xd919893ec24fd67c,
0x488ef781683bbf33,
0x218c81a6eff03d4,
]),
Fq::from_raw([
0xf2df96100b6924,
0xc2b6b5720c79b75d,
0x1c98a7d25c54659e,
0x2a94e9a11036e51a,
]),
),
AffinePoint::from_raw_unchecked(
Fq::from_raw([0x1000000000000, 0xec03000276030000, 0x8d51ccce760304d0, 0x0]),
Fq::from_raw([0x0, 0x0, 0x0, 0x0]),
),
AffinePoint::from_raw_unchecked(
Fq::from_raw([
0x26d19585d8dff2be,
0xd919893ec24fd67c,
0x488ef781683bbf33,
0x218c81a6eff03d4,
]),
Fq::from_raw([
0xff0d2068eff496dd,
0x9106ee90f384a4a1,
0x16a13035ad4d7266,
0x4958bdb21966982e,
]),
),
AffinePoint::from_raw_unchecked(
Fq::from_raw([0x0, 0x0, 0x0, 0x0]),
Fq::from_raw([0x1, 0x0, 0x0, 0x0]),
),
];
#[test]
fn find_eight_torsion() {
let g = ExtendedPoint::from(FULL_GENERATOR);
assert!(g.is_small_order().unwrap_u8() == 0);
let g = g.multiply(&FR_MODULUS_BYTES);
assert!(g.is_small_order().unwrap_u8() == 1);
let mut cur = g;
for (i, point) in EIGHT_TORSION.iter().enumerate() {
let tmp = AffinePoint::from(cur);
if &tmp != point {
panic!("{}th torsion point should be {:?}", i, tmp);
}
cur += &g;
}
}
#[test]
fn find_curve_generator() {
let mut trial_bytes = [0; 32];
for _ in 0..255 {
let a = AffinePoint::from_bytes(trial_bytes);
if a.is_some().unwrap_u8() == 1 {
let a = a.unwrap();
assert!(a.is_on_curve_vartime());
let b = ExtendedPoint::from(a);
let b = b.multiply(&FR_MODULUS_BYTES);
assert!(b.is_small_order().unwrap_u8() == 1);
let b = b.double();
assert!(b.is_small_order().unwrap_u8() == 1);
let b = b.double();
assert!(b.is_small_order().unwrap_u8() == 1);
if b.is_identity().unwrap_u8() == 0 {
let b = b.double();
assert!(b.is_small_order().unwrap_u8() == 1);
assert!(b.is_identity().unwrap_u8() == 1);
assert_eq!(FULL_GENERATOR, a);
assert!(a.mul_by_cofactor().is_torsion_free().unwrap_u8() == 1);
return;
}
}
trial_bytes[0] += 1;
}
panic!("should have found a generator of the curve");
}
#[test]
fn test_small_order() {
for point in EIGHT_TORSION.iter() {
assert!(point.is_small_order().unwrap_u8() == 1);
}
}
#[test]
fn test_is_identity() {
let a = EIGHT_TORSION[0].mul_by_cofactor();
let b = EIGHT_TORSION[1].mul_by_cofactor();
assert_eq!(a.u, b.u);
assert_eq!(a.v, a.z);
assert_eq!(b.v, b.z);
assert!(a.v != b.v);
assert!(a.z != b.z);
assert!(a.is_identity().unwrap_u8() == 1);
assert!(b.is_identity().unwrap_u8() == 1);
for point in EIGHT_TORSION.iter() {
assert!(point.mul_by_cofactor().is_identity().unwrap_u8() == 1);
}
}
#[test]
fn test_mul_consistency() {
let a = Fr([
0x21e61211d9934f2e,
0xa52c058a693c3e07,
0x9ccb77bfb12d6360,
0x07df2470ec94398e,
]);
let b = Fr([
0x03336d1cbe19dbe0,
0x0153618f6156a536,
0x2604c9e1fc3c6b15,
0x04ae581ceb028720,
]);
let c = Fr([
0xd7abf5bb24683f4c,
0x9d7712cc274b7c03,
0x973293db9683789f,
0x0b677e29380a97a7,
]);
assert_eq!(a * b, c);
let p = ExtendedPoint::from(AffinePoint {
u: Fq([
0xc0115cb656ae4839,
0x623dc3ff81d64c26,
0x5868e739b5794f2c,
0x23bd4fbb18d39c9c,
]),
v: Fq([
0x7588ee6d6dd40deb,
0x9d6d7a23ebdb7c4c,
0x46462e26d4edb8c7,
0x10b4c1517ca82e9b,
]),
})
.mul_by_cofactor();
assert_eq!(p * c, (p * a) * b);
// Test Mul implemented on ExtendedNielsPoint
assert_eq!(p * c, (p.to_niels() * a) * b);
assert_eq!(p.to_niels() * c, (p * a) * b);
assert_eq!(p.to_niels() * c, (p.to_niels() * a) * b);
// Test Mul implemented on AffineNielsPoint
let p_affine_niels = AffinePoint::from(p).to_niels();
assert_eq!(p * c, (p_affine_niels * a) * b);
assert_eq!(p_affine_niels * c, (p * a) * b);
assert_eq!(p_affine_niels * c, (p_affine_niels * a) * b);
}
#[test]
fn test_serialization_consistency() {
let gen = FULL_GENERATOR.mul_by_cofactor();
let mut p = gen;
let v = vec![
[
203, 85, 12, 213, 56, 234, 12, 193, 19, 132, 128, 64, 142, 110, 170, 185, 179, 108, 97,
63, 13, 211, 247, 120, 79, 219, 110, 234, 131, 123, 19, 215,
],
[
113, 154, 240, 230, 224, 198, 208, 170, 104, 15, 59, 126, 151, 222, 233, 195, 203, 195,
167, 129, 89, 121, 240, 142, 51, 166, 64, 250, 184, 202, 154, 177,
],
[
197, 41, 93, 209, 203, 55, 164, 174, 88, 0, 90, 199, 1, 156, 149, 141, 240, 29, 14, 82,
86, 225, 126, 129, 186, 157, 148, 162, 219, 51, 156, 199,
],
[
182, 117, 250, 241, 81, 196, 199, 227, 151, 74, 243, 17, 221, 97, 200, 139, 192, 83,
231, 35, 214, 14, 95, 69, 130, 201, 4, 116, 177, 19, 179, 0,
],
[
118, 41, 29, 200, 60, 189, 119, 252, 78, 40, 230, 18, 208, 221, 38, 214, 176, 250, 4,
10, 77, 101, 26, 216, 193, 198, 226, 84, 25, 177, 230, 185,
],
[
226, 189, 227, 208, 112, 117, 136, 98, 72, 38, 211, 167, 254, 82, 174, 113, 112, 166,
138, 171, 166, 113, 52, 251, 129, 197, 138, 45, 195, 7, 61, 140,
],
[
38, 198, 156, 196, 146, 225, 55, 163, 138, 178, 157, 128, 115, 135, 204, 215, 0, 33,
171, 20, 60, 32, 142, 209, 33, 233, 125, 146, 207, 12, 16, 24,
],
[
17, 187, 231, 83, 165, 36, 232, 184, 140, 205, 195, 252, 166, 85, 59, 86, 3, 226, 211,
67, 179, 29, 238, 181, 102, 142, 58, 63, 57, 89, 174, 138,
],
[
210, 159, 80, 16, 181, 39, 221, 204, 224, 144, 145, 79, 54, 231, 8, 140, 142, 216, 93,
190, 183, 116, 174, 63, 33, 242, 177, 118, 148, 40, 241, 203,
],
[
0, 143, 107, 102, 149, 187, 27, 124, 18, 10, 98, 28, 113, 123, 121, 185, 29, 152, 14,
130, 149, 28, 87, 35, 135, 135, 153, 54, 112, 53, 54, 68,
],
[
178, 131, 85, 160, 214, 51, 208, 157, 196, 152, 247, 93, 202, 56, 81, 239, 155, 122,
59, 188, 237, 253, 11, 169, 208, 236, 12, 4, 163, 211, 88, 97,
],
[
246, 194, 231, 195, 159, 101, 180, 133, 80, 21, 185, 220, 195, 115, 144, 12, 90, 150,
44, 117, 8, 156, 168, 248, 206, 41, 60, 82, 67, 75, 57, 67,
],
[
212, 205, 171, 153, 113, 16, 194, 241, 224, 43, 177, 110, 190, 248, 22, 201, 208, 166,
2, 83, 134, 130, 85, 129, 166, 136, 185, 191, 163, 38, 54, 10,
],
[
8, 60, 190, 39, 153, 222, 119, 23, 142, 237, 12, 110, 146, 9, 19, 219, 143, 64, 161,
99, 199, 77, 39, 148, 70, 213, 246, 227, 150, 178, 237, 178,
],
[
11, 114, 217, 160, 101, 37, 100, 220, 56, 114, 42, 31, 138, 33, 84, 157, 214, 167, 73,
233, 115, 81, 124, 134, 15, 31, 181, 60, 184, 130, 175, 159,
],
[
141, 238, 235, 202, 241, 32, 210, 10, 127, 230, 54, 31, 146, 80, 247, 9, 107, 124, 0,
26, 203, 16, 237, 34, 214, 147, 133, 15, 29, 236, 37, 88,
],
];
for expected_serialized in v {
assert!(p.is_on_curve_vartime());
let affine = AffinePoint::from(p);
let serialized = affine.to_bytes();
let deserialized = AffinePoint::from_bytes(serialized).unwrap();
assert_eq!(affine, deserialized);
assert_eq!(expected_serialized, serialized);
p = p + &gen;
}
}