
Blind Off-Chain
Lightweight Transactions

(BOLT)

Version 1.0

Authors

Matthew D. Green (mgreen@cs.jhu.edu)

Ian Miers (imiers@cs.jhu.edu)

J. Ayo Akinyele (ayo@boltlabs.io)

MIT License

Copyright c© 2018

Contents

1 Introduction 3
1.1 BOLT Privacy Guarantees . 4

2 BOLT Library 6
2.1 Overview . 6
2.2 Core Cryptographic Building Blocks . 6

2.2.1 Commitment Scheme . 6
2.2.2 Symmetric-Key Encryption . 7
2.2.3 Digital Signatures with Efficient Protocols . 7
2.2.4 Pseudo-random Functions (PRF) . 9
2.2.5 One-Time Encryption . 9
2.2.6 Non-Interactive Zero Knowledge Proofs (NIZKP) 10

2.3 Constructions . 10
2.3.1 Unidirectional Scheme . 10
2.3.2 Bidirectional Scheme . 13

3 BOLT Usage 17
3.1 Overview . 17

1

Abstract

This document describes the design and implementation of the Blind Off-chain Lightweight Trans-
actions (BOLT) library. The BOLT protocol comprises a number of techniques for enabling privacy-
preserving unlinkable payment channels for decentralized crypto-currencies between pairs of indi-
vidual parties. BOLT is designed to provide a “Layer 2” payment protocol for privacy-preserving
crypto-currencies such as Zerocash (or Zcash) [5], by allowing individuals to establish and use pay-
ment channels for rapid or instantaneous payments that do not require an on-chain transaction.
This document describes the cryptographic instantiations of the BOLT protocol according to the
published paper by Matthew Green and Ian Miers [3].

The intended use of this document is for understanding BOLT and the associated software
implementation in the Rust programming language. This document is hereby released to the
public domain free of charge.

2

Chapter 1

Introduction

BOLT is a system for conducting privacy-preserving off chain payments between pairs of individ-
ual parties. We refer to these parties as “customers”, “merchants” and “hubs”, with definitions
provided below. BOLT is designed to provide a “Layer 2” payment protocol for privacy-preserving
cryptocurrencies such as Zcash, by allowing individuals to establish and use payment channels for
rapid/instantaneous payments that do not require an on-chain transaction.

Parties and Terminology. Financial transactions in the BOLT system are conducted between
two parties, possibly with the assistance of an intermediate third party. Each party runs the BOLT
software. These parties fall into three categories, which we describe below:

• Customers. Customers are users who establish payment channels and initiate payment
transactions to a merchant, possibly via an intermediate party known as a “hub”. These
payments may have positive or negative value, provided there are sufficient funds in the
payment channel to allow the transaction.

• Merchants. Merchants are users who cooperate in the establishment of payment channels
(with customers and hubs), and receive payments from customers or hubs.

• Hubs. In some settings, customers may pay merchants directly. In other settings, a customer
may pay a merchant via an intermediate party known as a “hub”. Hubs establish channels
with both customer and merchant, and relay transactions (of positive or negative value)
between two such parties.

BOLT can be deployed in one of two settings, called “Pairwise” and “Hub” mode, as illustrated
in Figure 1.1.

Note that these diagrams represent only one set of channel(s) between the parties. In practice,
every party may have many relationships with different customers, merchants, or hubs.
Software components. Each BOLT participant requires must run the BOLT software, which
consists of up to three pieces. These are:

• A full node for a BOLT-compatible cryptocurrency, e.g., zcashd. This node is connected to
the currency P2P network, and must support commands via an (e.g., RPC) interface.

3

Introduction

Figure 1.1: Pairwise and Hub modes for BOLT protocol

• A BOLT library (libbolt) that constructs and parses the messages required for interactive
off-chain transactions with (one or more) remote BOLT participant(s), and interfaces with
the cryptocurrency node via its interface.

The actual BOLT data transfer may be implemented by an application designer, via a channel
such as HTTP or some alternative data transfer mechanism. Alternatively, parties can receive
inbound connections using a dedicated daemon:

• A dedicated daemon (boltd) that implements BOLT communications with remote parties.
This daemon uses HTTPS/JSON communications, incorporates libbolt and interfaces directly
with the cryptocurrency node.

1.1 BOLT Privacy Guarantees

BOLT provides a more limited set of privacy guarantees than a standard payment network. This is
inherent in the fact that BOLT uses payment channels, which are pairwise relationships that must
be established between a Customer and Merchant before payment can take place.

The BOLT privacy guarantees can be summarized as follows:

• The Merchant will be aware of the number of channels she has open at any given time, and
the total funding amount of each channel. We assuming an anonymous underlying currency
network, so the Merchant does not know the identity of the Customer that opens each channel
(this information should be protected by the underlying currency network).

• The Customer (who initiates transactions) always knows the identity of the Merchant she is
paying, and the instantaneous balance of each of her open channels.

• The Merchant (who responds to transactions) does not learn the identity of the Customer, or
which channel a payment is associated with. She knows only that the payment is associated
with one of her current active payment channels.

• The sole exception to rule (3) is when a payment interaction fails or is disputed. In this case,
the Merchant learns which channel is associated with the final (failed) payment, but cannot
link this channel to any previous payments.

4

Introduction

In practice this guarantee is sufficient to protect customer identities. Channels are not linked to
customer identities (due to the anonymous payment network), and the merchant cannot link any
previous payments to the failed payment or channel.

5

Chapter 2

BOLT Library

2.1 Overview

In this section, we describe the implementation of the BOLT library for an anonymous payment
channel (APC). An APC is a construct established between two parties that interact via a payment
network. An APC must be used in combination with a payment network capable of conditionally
escrowing funds and binding these escrow transactions funds to some data. We assume the existence
of such a payment network (e.g., Zcash) and leave the details of the payment network outside the
scope of this document.

2.2 Core Cryptographic Building Blocks

In this section, we describe the core cryptographic primitives required to implement the BOLT
protocol. They include the following:

• Commitment Scheme

• Digital Signatures with efficient protocols

• Symmetric Key Encryption

• Pseudo-random Functions

• One-time Encryption

• Non-Interactive Zero-Knowledge Proofs of Knowledge

2.2.1 Commitment Scheme

BOLT instantiates a commitment primitive using the Pedersen commitment scheme [4]. The scheme
has the following interface:

CSetup()→ PP : the algorithm generates public parameters and outputs the PP .

Commit(PP,M ; r)→ C: On input parameters PP , a message M ∈ G, and optional random coins
r, the algorithm outputs a commitment C.

6

libbolt

Decommit(PP,C,M) = {0, 1}: On input parameters PP , and a tuple (C,M, r) outputs 1 if C is a
valid commitment to the message or 0 otherwise.

Pedersen Commitments

We define Pedersen commitments over a vector of n messages as follows:

CSetup()→ PP : the algorithm generates public parameters and outputs the PP = (g1, g2, ..., gn, h).

Commit(PP,M ; r) → C: On input parameters PP , a message tuple M = (m1,m2, ...mn), and
optional random coins r, the algorithm outputs a commitment C = g1

m1 · g2m2 . . . gn
mn · hr and r.

Decommit(PP,C,M) = {0, 1}: On input parameters PP , and a tuple (C,M, r). Check if C
?
=

g1
m1 · g2m2 . . . gn

mn · hr. Outputs 1 if C is a valid commitment to the message or 0 otherwise.

2.2.2 Symmetric-Key Encryption

BOLT includes an symmetric-key encryption (SymEnc) primitive (via XSalsa20-Poly1305) for pro-
viding confidentiality and integrity.

Encrypt(K,M,N) → C. The encryption algorithm takes as input a symmetric-key, a message
M ∈ {0, 1}` and the associated nonce N ∈ {0, 1}k. The algorithm outputs the ciphertext C.

Decrypt(K,C,N) = M ∪⊥. The decryption algorithm takes as input a symmetric-key, the cipher-
text C and the associated nonce N . The algorithm outputs the message M or returns ⊥.

2.2.3 Digital Signatures with Efficient Protocols

BOLT includes signatures due to Camenisch and Lysyanskaya (CL) [1] which features: (1) a pro-
tocol for a user to obtain a signature on the value(s) in a commitment without the signer learning
anything about the message(s), and (2) a non-interactive protocol for proving knowledge of a sig-
nature. We will first provide the definition of a signature scheme then provide the details of the
signature and the associated protocols.

SigKeygen(PP)→ (PK, SK). The key generation algorithm takes as input a security parameter τ ,
runs the ECSetup(1τ) to select the elliptic curve parameters and outputs the public and secret key.

Sign(PP,SK,M) → σ. The signing algorithm takes as input public parameters, a secret key SK
and message m ∈ {0, 1}∗ and outputs a signature σ.

Verify(PK,M, σ) = {true, false}. The verification algorithm takes as input a public key PK, the
message m and the signature σ. The algorithm outputs true if the signatures is valid with respect
to M and PK. Otherwise, it outputs false.

CL Signature [1]

Run the Setup algorithm to generate public parameters PP = (q,G1,G2, g1, g2, e).

SigKeygen(PP) → (PK, SK). The key generation algorithm chooses x ← Zq, y ← Zq and for
1 ≤ i ≤ `, choose zi ← Zq. Let X = gx1 , Y = gy1 , for 1 ≤ i ≤ `, set Zi = gzi1 and Wi = Y zi . Set
SK = (x, y, z1, . . . , z`) and PK = (X,Y, {Zi}, {Wi}).

7

libbolt

Sign(PP,SK,M) → σ. On input message M = (m(0),m(1), . . . ,m(`)), and secret key SK =
(x, y, z1, . . . , z`) and public parameters PP = (q,G1,G2, g1, g2, e), and computes the following:

1. choose a random a ∈ G2

2. Let Ai = azi for 1 ≤ i ≤ `

3. Let b = ay, Bi = (Ai)
y

4. Let c = ax+xym
(0) ·

∏`
i=1A

xym(i)

i

5. Output signature σ = (a, {Ai}, b, {Bi}, c)

Verify(PK,M, σ) = {true, false}. On input PK = (X,Y, {Zi}, {Wi}), messageM = (m(0),m(1), . . . ,m(`))
and signature σ = (a, {Ai}, b, {Bi}, c), check the following:

1. {Ai} were formed correctly: e(Zi, a) = e(g1, Ai)

2. b and {Bi} were formed correctly: e(Y, a) = e(g1, b) and e(Y,Ai) = e(g1, Bi)

3. c was formed correctly: e(X, a) · e(X, b)m(0) ·
∏`
i=1 e(X,Bi)

m(i)
= e(g1, c)

(1) Protocol for obtaining a signature on a committed value

Suppose M = gm
(0)

1

∏`
i=1 Zi

m(i)
is a commitment to a vector of messages (m(0),m(1), . . . ,m(`))

whose signature the user wishes to obtain. Then, the user and the signer execute the following
protocol:

• The common input is the PP = (q,G1,G2, g1, g2, e), PK = (X,Y, {Zi}, {Wi}) and a commit-
ment M .

• The user’s input is the messages m(0),m(1), . . . ,m(`) that open to the commitment such that

M = gm
(0)

1

∏`
i=1 Zi

m(i)
.

• The signer’s input is the secret key SK = (x, y, z1, . . . , z`).

• The user and signer engage in a zero-knowledge proof of knowledge of the opening to the
commitment as follows:

1. PK{(u(0), · · · , u(`)) : M = gm
(0)

1

∏`
i=1 Zi

m(i)

• The signer computes σ = (a, {Ai}, b, {Bi}, c) as follows (using SK):

1. Choose α← Zq,
2. Set a = gα

3. For 1 ≤ i ≤ `, let Ai = azi

4. Set b = ay

5. For 1 ≤ i ≤ `, let Bi = Ai
y

6. Set c = axMαxy

8

libbolt

(2) Protocol for proving knowledge of a signature

• The common input is the public parameters PP = (q,G1,G2, g1, g2, e) and public key PK =
(X,Y, {Zi}, {Wi})

• The prover’s input is the vector of messagesm(0),m(1), . . . ,m(`) and signature σ = (a, {Ai}, b, {Bi}, c)

• The protocol is in three parts:

1. The prover computes a blinded version of the signature σ as follows:

– Chose random r, r′ ∈ Zq
– Compute σ̂ = (ã, {Ãi}, b̃, {B̃i}, ĉ) as follows: ã = ar, b̃ = br, ĉ = (cr)r

′
, Ã = Ai

r and
B̃i = Bi

r for 1 ≤ i ≤ `
– Send σ̂ to verifier

2. Both the prover and verifier compute vx, vxy, v{xy,i} where i = 1, . . . , ` and vs as follows:

(a) Compute vx = e(X, ã)

(b) Compute vxy = e(X, b̃)

(c) Compute v{xy,i} = e(X, B̃i)

(d) Compute vs = e(g1, ĉ)

3. The prover and verifier execute the following protocol:

(a) Verify proof π = PK{(µ0, . . . , µ`, ρ) : (vs)
ρ = vxvxy

µ0
∏`
i=1(v(xy,i))

µi}.

(b) Check if e(Zi, ã)
?
= e(g1, Ãi) and e(Y, ã)

?
= e(g1, b̃) and e(Y, Ãi)

?
= e(g1, B̃i).

2.2.4 Pseudo-random Functions (PRF)

For the unidirectional construction, BOLT includes a pseudo-random function F that supports
efficient proofs of knowledge. F is instantiated using the Dodis-Yampolskiy PRF [2], the public
parameters are a group G1 of prime order q with generator g. The seed is a random value s ∈ Zq
and the function is computed as Fs(x) = g1/(s+x).

2.2.5 One-Time Encryption

For the bidirectional construction, BOLT includes a IND-CPA secure one-time encryption scheme
with a keyspace that is also the range of the pseudo-random function (PRF) described in Sec-
tion 2.2.4. In addition, the message space is the domain of the public key for the CL signature
scheme instantiated in Section 2.2.3.

OTKeyGen(τ)→ K. On input parameters, the algorithm outputs a random key, K ∈ G1.

OTEnc(K,M) → C. The algorithm takes as input a one-time key K and a message tuple
(M1,M2) ∈ G1 and outputs a ciphertext C.

OTDec(K,C) = M or ⊥. The algorithm takes as input a key K and the ciphertext C and outputs
the message tuple as M or ⊥.

9

libbolt

2.2.6 Non-Interactive Zero Knowledge Proofs (NIZKP)

BOLT features non-interactive zero-knowledge proofs of knowledge for the purposes of proving
statements about committed values:

1. a proof of knowledge of a committed value

2. a proof that a committed value is in a range

2.3 Constructions

2.3.1 Unidirectional Scheme

The unidirectional payment construction only supports payments from a customer to a merchant
and only supports transfer of fixed-value coins. It consists of a tuple of possibly probabilistic algo-
rithms (Setup, KeyGen, InitC, InitM, Refund, Refute, Resolve) and two interactive protocols (Establish,
Pay).

1. Setup(1λ) → PP. On input λ, optionally generate CRS parameters for (1) a secure com-
mitment scheme (see Section 2.2.1), (2) a non-interactive zero knowledge proof system (see
Section 2.2.6). Output all of these as PP.

2. KeyGen(PP)→ (pk, sk).

• Compute (pk, sk)←
∏

sig .SigKeygen(1λ).

3. InitC(PP, Bcust
0 , Bmerch

0 , pkc, skc) → (Tc, cskc). On input a keypair (pkc, skc), perform the
following:

• Uniformly sample two distinct PRF seeds k1, k2 and random coins r for the commitment
scheme.

• Compute wCom = Commit(skc, k1, k2, B
cust
0 ; r)

• For i = 1 to Bcust
0 , sample cki → SymKeyGen(1λ) to form the vector ~ck.

• Output Tc = (wCom, pkc) and cskc = (skc, k1, k2, r, B
cust
0 , ~ck).

4. InitM(PP, Bcust
0 , Bmerch

0 , pkm, skm) → Tm, cskm. On input a keypair (pkm, skm), perform the
following:

• Output Tm = pkm and cskm = (skm, B
merch
0).

5. Establish(C{PP,Tm, cskc)}, {M(PP,Tc, cskm)}). On input public parameters and each of
the initial channel tokens, the Establish protocol activates a channel between customer and
merchant who have previously escrowed funds. If the interaction succeeds, the merchant
receives established message and the customer receives a wallet w. Either party may receive
an error denoted by ⊥.

The customer executes the following algorithm:

10

libbolt

• Parse cskc as (pkc, skc, k1, k2, r, B
cust
0).

• Sample sk0 ∈ {0, 1}`.
• Generate π1 = PK{(skc, k1, k2, r) : wCom = Commit(skc, k1, k2; r)∧(pkc, skc) ∈ KeyGen(1λ)}

– NIZK statement: wCom = g1
xc · g2yc · g3k1 · g4k2 · hr ∧Xc = g1

xc ∧ Yc = g2
yc where

skc = (xc, yc).

• For j = 1 to B:

(a) Compute sj ← Fk1(j), uj ← Fk2(j).

(b) πrj = PK{(skc, k1, k2, r) : sj ← Fk1(j) ∧ uj ← Fk2(j)
∧ wCom = Commit(skc, k1, k2; r)
∧ (pkc, skc) ∈ KeyGen(1λ)}

(c) Compute internal signature σ̂j = Sign(skc, spend||j||sj ||uj ||πrj ||ckj+1).

(d) Compute Cj = SymEnc(ckj , j||sj ||uj ||πrj ||σ̂j ||ckj+1)

(e) Compute external signature σj = Sign(skc, coin||j||Cj).
• Customer sends wCom, π, (C1, σ1, . . . , CB, σB) to the merchant.

The merchant executes the following algorithm in response:

(a) Verify the signature on Tc

(b) Check that Bcust
0 = B

(c) Verify π1

(d) For j = 1 to B, verify the signature σj on Cj

(e) If any of the above conditions (1-4) do not hold, abort and output ⊥
(f) Return a blind signature σw on the contents of wCom

The merchant sets state to established and the customer obtains w = (sk0, skc, k1, k2, r, B, σw, 1).

6. Pay(C{PP, ε, wold)}, {M(PP, ε,Sold)}). On input parameters, a payment amount ε, and a
wallet wold from a customer, and the merchant’s current state Sold (initially set to 0) from
the merchant: the customer receives a payment success bit RC and the new wallet wnew on
success. The merchant receives a payment success bit RM and an updated Snew on success.

The customer executes the following algorithm:

• Parse wold as (sk0, skc, k1, k2, r, B, σw, i). Return ⊥ if i ≥ B.

• Compute s← Fk1(i)

• Compute t→ OTEnc(Fk2(i), pkc)

• Compute π = PK{(pkc, skc, k1, k2, r, i, σw) : s = Fk1(i) ∧ 0 < i ≤ B
∧ t = OTEnc(Fk2(i), pkc)
∧ Verify(pkm, (k1, k2, skc), σw)
∧ (pkc, skc) ∈ KeyGen(1λ)}
• Return (s, t, π)

The merchant executes the following:

11

libbolt

• Verify π and (s, ·, ·) /∈ S.

• If this holds, then set S← S ∪ (s, t, π) and RM ← 1.

• Otherwise, set RM ← ⊥.

The customer obtains a new wallet wnew := (sk0, skc, k1, k2, r, B, σw, i+ 1).

7. Refund(PP,TMcskc, σ). On input wallet w, output a customer channel closure message rcc.
This algorithm is executed by the customer.

• Parse w to obtain ~ck and the current coin index i.

• Compute σ ← Sign(skc, refund||cID||i||cki).
NOTE: cID uniquely identifies the channel being closed

• Output rcC := (cID, i, cki, σ).

8. Refute(PP,TC ,S, rcC). On input the merchant’s current state Sold and a customer channel
closure message, output a merchant channel closure message rcM and an updated merchant
state Snew. This algorithm is executed by the merchant.

(a) Parse the customer’s channel closure message rcC as (cID, i, cki, σ).

(b) Verify cID and the signature σ.

(c) If signature is valid, obtain the ciphertexts Ci, . . . , CB (from the Establish protocol)

(d) For j = i to B, compute (j||sj ||uj ||πrj ||ckj ||σ̂j)← SymDec(ckj , Cj) and verify the signa-
ture σ̂j and proof πrj .

(e) Failure conditions: (1) fail to verify σ̂j and proof πrj , or (2) decryption of any ciphertext
Cj results in ⊥, or (3) decrypted values (sj , uj) ∈ S where OTDec(uj , tj) = pkc.

(f) If failure, then record invalid result rcM = (fail, cID)

(g) If success, then record valid result rcM = (accept)

(h) Sign result using skm (verified by payment network)

(i) For each valid Cj , set S← S ∪ (sj , tb, π)

(j) Output S as new merchant state

9. Resolve(PP,TC ,TM , rcC , rcM). On input the customer and merchant channel tokens TC and
TM , along with closure messages rcC , rcM (where either message may be null), this algorithm
outputs the final channel balance Bmerch

final , Bcust
final.

(a) Parse the customer and merchant closure messages and verify all signatures

(b) If there are any invalid signatures, grant the balance of the channel to the opposing
party.

(c) If rcC = (N, skN , σ) and rcM = accept, then set Bcust
final = (Bcust

0 −N) + 1.

(d) Evaluate the merchant closure message to determine whether the customer misbehaved.

(e) If so, assign the merchant the full balance of the channel.

12

libbolt

2.3.2 Bidirectional Scheme

The bidirectional payment construction enables compact closure and compact wallets in addition to
a single run of the Pay protocol to transfer arbitrary values (constrained by a maximum payment
amount). It consists of a tuple of possibly probabilistic algorithms (Setup, KeyGen, InitC, InitM,
Refund, Refute, Resolve) and two interactive protocols (Establish, Pay).

1. Setup(1λ) → PP. On input λ, optionally generate CRS parameters for (1) a secure com-
mitment scheme (see Section 2.2.1), (2) a non-interactive zero knowledge proof system (see
Section 2.2.6). Output all of these as PP.

2. KeyGen(PP)→ (pk, sk). Compute (pk, sk)←
∏

sig .SigKeygen(1λ).

3. InitC(PP, cID, Bcust
0 , Bmerch

0 , pkc, skc)→ (Tc, cskc). On input a keypair (pkc, skc), perform the
following:

(a) Customer generates wallet commitment by sampling random coins r.

(b) Compute ephemeral keypair (wpk,wsk)← KeyGen(PP).

(c) Compute wCom = Commit(cID, wpk,Bcust
0 ; r).

(d) Output Tc = (pkc,wCom) and retains secret cskc = (skc, cID, wpk, wsk, r, B
cust
0).

4. InitM(PP, Bcust
0 , Bmerch

0 , pkm, skm) → Tm, cskm. On input a keypair (pkm, skm), perform the
following:

• Output Tm = pkm and cskm = (skm, B
merch
0).

5. Establish(C{PP,Tm, cskc)}, {M(PP,Tc, cskm)}). On input public parameters and each of the
initial channel tokens, the Establish protocol activates a channel between the two parties who
have previously escrowed funds. If the interaction succeeds, the merchant receives established
message and the customer receives a wallet w. Either party may receive an error denoted by
⊥.

The customer does the following:

(a) Parse cskc to obtain (cID,wCom, wpk, wsk, r, Bcust
0)

(b) Generate a proof π1 of the following statement:
π1 = PK{(wpk,wsk, r) : wCom = Commit(cID, wpk,Bcust

0 ; r)∧(wpk,wsk) ∈ KeyGen(1λ)}
(c) Send proof π1 to the merchant.

The merchant does the following:

(a) Parse TC to obtain Bcust
0 ,wCom.

(b) Verify proof π1 is valid. If not, output ⊥
(c) Execute interactive protocol to compute a blind signature σw under skm on contents

of wCom.

(d) Customer obtains σw.

13

libbolt

The customer obtains a wallet w := (Bcust
0 , wpk, wsk, r, σw) and the merchant sets its state

to established for the channel.

6. Pay(C{PP, ε, wold)}, {M(PP, ε,Sold)}). On input parameters, a payment amount ε, and a
wallet wold from a customer, and the merchant’s current state Sold (initially set to 0) from
the merchant: the customer receives a payment success bit RC and the new wallet wnew on
success. The merchant receives a payment success bit RM and an updated Snew on success.

In the first phase, the customer does the following:

(a) Parse wold as (cID, B,wpk,wsk, r, σw).

(b) Sample (wpk′, wsk′)← KeyGen(PP).

(c) Sample random coins r′.

(d) Generate wCom′ ← Commit(cID, wpk′, B − ε; r′)
(e) Generate proof π2 as follows:

π2 = PK{(wpk′, B, r′, σw) : wCom′ = Commit(cID, wpk′, B − ε; r′)
∧ Verify(pkm, (wpk,B), σw) = 1
∧ 0 ≤ (B − ε) ≤ valmax}
• Compute C1 = gB · hr1
• Compute C2 = C1/g

ε

• Compute C3 = gx11 · g
x2
2 · hr3

• Compute wCom′′ = C2 · C3. Keep wCom′ private.

(f) Send (ε,wCom′, wpk, π2) to the merchant.

In response, the merchant does the following for the first phase:

(a) Verify π2, ensure that (wpk, ·) /∈ S and εmin ≤ ε ≤ εmax

(b) If these conditions do not hold, abort and output ⊥
(c) Set Snew := Sold ∪ {(wpk,⊥)}.
(d) If ε < 0, then RM ← 1 otherwise RM ← ⊥.

(e) Execute interactive protocol to generate a partially blind signature rtw′ under skm
on the message (refund||wpk′||B − ε).
NOTE: wpk′ and B − ε are the contents of wCom′.

(f) The customer obtains rtw′ at the end of this phase.

In the second phase, the customer does the following:

(a) Check that Verify(pkm, (refund||wpk′||B − ε), rtw′) = 1

(b) If verification failure or message does not arrive, abort and output rtw′ .

(c) Otherwise, compute σrev = Sign(wsk, revoke||wpk).

(d) Send σrev to the merchant.

In the second phase, the merchant does the following:

14

libbolt

(a) Ensure Verify(wpk, (revoke||wpk), σrev) = 1.

(b) If so, set Snew := Sold ∪ {(wpk, σrev} and RM ← 1.

(c) Execute interactive protocol to generate a blind signature σw′ on the contents of wCom′

using skm.

(d) If this completes, set RM ← 2.

(e) Send σw′ back to the customer.

The customer obtains a new wallet wnew := (B−ε, wpk′, wsk′, r′, σw′) and the merchant keeps
Snew, RM .

7. Refund(PP,TM , cskC , w)→ (m,σ).

(a) If the customer has not invoked the Pay protocol, thenm := (refundUnsigned, (wpk,B), r).

(b) Otherwise, set m := (refundToken, (wpk,B), rtw).

(c) Compute σ = Sign(skc,m).

(d) Output rcC = (m,σ).

8. Refute(PP,TC ,S, rcC).

(a) If a merchant sees a channel closure message, it first parses TC to obtain pkc.

(b) Parse tuple (m,σ)← rcC

(c) Verify(pkc,m, σ) = 1 or ⊥
(d) If signature σ verifies, then parse tuple (cID, wpk,B)← m.

(e) Verify that cID matches the channel.

(f) If previous record of (wpk, σrev) ∈ S, then output rcM = ((revoked, σrev), σ).
NOTE: σ is a valid signature over (revoked, σrev)

(g) Otherwise, add new key S = S ∪ wpk.

9. Resolve(PP,TC ,TM , rcC , rcM).

(a) Verify that both tokens rcC , rcM are signed by the customer and merchant keys pkc and
pkm respectively.

(b) Verify that both tokens contain the same channel identifier cID and matches the one
from TC and TM .

(c) If either of the tokens fail this test, then replace with ⊥. Let Btotal = Bcust
0 +Bmerch

0 .

(d) If rcC is ⊥, output all the funds to the merchant.

(e) Parse (pkc,wCom) = TC .

(f) m should have the following structure (type, (cID, wpk,B),Token)

(g) Parse (revoked, wpk, σrev) = m

(h) Ensure that Verify(wpk, (revoked||cID||wpk), σ) = 1.

(i) If verification check fails, then output Bcust
final = Btotal and Bmerch

final = 0.

(j) Check the refund validity:

15

libbolt

a. If type = refundUnsigned, check wCom = Commit(wpk,B;Token) and that mer-
chant’s token contains σrev.

b. If type = refundToken, check Token is a valid refund token on (wpk,B).

c. If either (a) or (b) fails, abort and output Bcust
final = 0 and Bmerch

final = Btotal.

(k) Check the refutation’s validity by checking that Verify(wpk, revoke||wpk, σrev) = 1.

a. If valid, abort and output Bcust
final = 0 and Bmerch

final = Btotal.

b. If invalid, pay the claimed balance to the customer (Bcust
final = B) and the remainder

to Merchant (Bmerch
final = Btotal −B).

16

Chapter 3

BOLT Usage

3.1 Overview

BOLT is a payment channel protocol. In order to use BOLT, a Customer and Merchant must
establish and fund a payment channel on the network of a compatible cryptocurrency. Customer
and Merchant represent defined roles in the BOLT system.

Pairwise channels. A standard pairwise BOLT interaction consists of five phases. At a high
level they are as follows:

1. Channel negotiation. To initiate an interaction, Customer and Merchant agree on the
initial balances of the channel, which we denote by A (customer initial balance) and B (mer-
chant initial balance) respectively. The Merchant provides a public key and signed channel
opening transaction to the Customer.

2. Channel funding. Customer transmits the channel opening transaction to the currency
network, which causes the Customer and Merchant to fund the channel with (A, B) units of
currency respectively. This funding is conducted on-chain, and should be conducted using a
privacy-preserving currency like Zcash so as to protect the customer’s identity.

3. Channel activation. Once the channel has been funded and the transaction confirmed on
the network, the parties now interact directly to activate the channel and prepare it for online
payments.

4. Payment. This step may occur many times. To initiate a payment, the customer initiates
an off-chain payment of D units of currency (of positive or negative value) to the merchant.
This payment maintains the total channel balance, but updates the Customer and Merchant’s
ownership of the balances. The merchant does not learn which Customer or Channel was
involved in the payment. This produces updated state at each party.

5. Channel closure. At the conclusion of a channel interaction, the customer or merchant
may initiate the closure of the channel. If the parties dispute the balance of the channel,
each party transmits a “closure token” to the currency network. The payment network must
include logic to evaluate the tokens to determine the correct balances (A, B) to pay out to

17

libbolt

the Customer and Merchant respectively. The parties may now withdraw their shares of the
resulting channel.

A key design consideration of BOLT is that no party should ever be at risk of losing their funds
because the other party has become unresponsive or has submitted invalid information. At each
of the above steps, either party may abort and close the channel using the most recent balance
information. The cryptocurrency network must enforce a time-delay before releasing funds, in order
to ensure that both parties have the opportunity to dispute closure.

We include a discussion of the precise requirements for the cryptocurrency network further
below.

Hub channels. BOLT also supports a “Hub” mode in which a Customer and Merchant interact
via a payment hub. The use of a payment hub significantly increases the flexibility of BOLT, by
enabling a hub and spoke model without the need for direct payment channel relationships between
each individual Customer and Merchant. More significantly, the Hub does not learn the identity
of the Customer or Merchant, nor does it see the payment amount.

The use of a Hub between a given Customer and Merchant requires the creation of two separate
channels, one Customer ←→ Hub (“CH”) channel, and one Hub ←→ Merchant (“HM”) channel.
The steps in opening and closing each channel are similar to steps (1), (2), (3) and (5) in the
description above. However, the payment step (4) differs as follows:

• (Hub-based) Payment. The Customer initiates an off-chain payment of D units of currency
(of positive or negative value) to the Merchant, via the Hub. This payment atomically updates
the CH and HM channels such that the Hub’s balance on the CH channel is increased by
D units, and the Merchant’s balance on the HM channel is increased by D units. If either
channel update fails, the entire transaction fails and both channels fall back to the previous
channel balances.

The Hub learns only that a transaction took place, but not the amount or the identities of the
Customer or Merchant.

18

Bibliography

[1] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matt Franklin, editor, Advances in Cryptology – CRYPTO 2004, pages 56–
72, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[2] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and
keys. In Serge Vaudenay, editor, Public Key Cryptography - PKC 2005, pages 416–431, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[3] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized curren-
cies. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 473–489, New York, NY, USA, 2017. ACM.

[4] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 129–140,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[5] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474, May 2014.

19

	Introduction
	BOLT Privacy Guarantees

	BOLT Library
	Overview
	Core Cryptographic Building Blocks
	Commitment Scheme
	Symmetric-Key Encryption
	Digital Signatures with Efficient Protocols
	Pseudo-random Functions (PRF)
	One-Time Encryption
	Non-Interactive Zero Knowledge Proofs (NIZKP)

	Constructions
	Unidirectional Scheme
	Bidirectional Scheme

	BOLT Usage
	Overview

