Optimized batch verification (#36)
* Pulls in some traits and methods from curve25519-dalek around the vartime multiscalar multiplication. * Move scalar mul things we want to upstream to jubjub to their own crate * Make Verify agnostic to the SigType Co-authored-by: Henry de Valence <hdevalence@hdevalence.ca> Co-authored-by: Jane Lusby <jlusby42@gmail.com>
This commit is contained in:
parent
f27b9c3c77
commit
ba256655dd
|
@ -1,3 +1,4 @@
|
|||
/target
|
||||
**/*.rs.bk
|
||||
Cargo.lock
|
||||
*~
|
||||
|
|
17
Cargo.toml
17
Cargo.toml
|
@ -18,19 +18,26 @@ description = "A mostly-standalone implementation of the RedJubjub signature sch
|
|||
features = ["nightly"]
|
||||
|
||||
[dependencies]
|
||||
rand_core = "0.5"
|
||||
thiserror = "1.0"
|
||||
blake2b_simd = "0.5"
|
||||
byteorder = "1.3"
|
||||
digest = "0.9"
|
||||
jubjub = "0.3"
|
||||
rand_core = "0.5"
|
||||
serde = { version = "1", optional = true, features = ["derive"] }
|
||||
thiserror = "1.0"
|
||||
|
||||
[dev-dependencies]
|
||||
bincode = "1"
|
||||
criterion = "0.3"
|
||||
lazy_static = "1.4"
|
||||
proptest = "0.10"
|
||||
rand = "0.7"
|
||||
rand_chacha = "0.2"
|
||||
proptest = "0.10"
|
||||
lazy_static = "1.4"
|
||||
bincode = "1"
|
||||
|
||||
[features]
|
||||
nightly = []
|
||||
default = ["serde"]
|
||||
|
||||
[[bench]]
|
||||
name = "bench"
|
||||
harness = false
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
|
||||
|
||||
use rand::thread_rng;
|
||||
use redjubjub::*;
|
||||
use std::convert::TryFrom;
|
||||
|
||||
fn sigs_with_distinct_keys<T: SigType>(
|
||||
) -> impl Iterator<Item = (VerificationKeyBytes<T>, Signature<T>)> {
|
||||
std::iter::repeat_with(|| {
|
||||
let sk = SigningKey::<T>::new(thread_rng());
|
||||
let vk_bytes = VerificationKey::from(&sk).into();
|
||||
let sig = sk.sign(thread_rng(), b"");
|
||||
(vk_bytes, sig)
|
||||
})
|
||||
}
|
||||
|
||||
fn bench_batch_verify(c: &mut Criterion) {
|
||||
let mut group = c.benchmark_group("Batch Verification");
|
||||
for &n in [8usize, 16, 24, 32, 40, 48, 56, 64].iter() {
|
||||
group.throughput(Throughput::Elements(*n as u64));
|
||||
|
||||
let sigs = sigs_with_distinct_keys().take(*n).collect::<Vec<_>>();
|
||||
|
||||
group.bench_with_input(
|
||||
BenchmarkId::new("Unbatched verification", n),
|
||||
&sigs,
|
||||
|b, sigs| {
|
||||
b.iter(|| {
|
||||
for (vk_bytes, sig) in sigs.iter() {
|
||||
let _ =
|
||||
VerificationKey::try_from(*vk_bytes).and_then(|vk| vk.verify(b"", sig));
|
||||
}
|
||||
})
|
||||
},
|
||||
);
|
||||
|
||||
group.bench_with_input(
|
||||
BenchmarkId::new("Batched verification", n),
|
||||
&sigs,
|
||||
|b, sigs| {
|
||||
b.iter(|| {
|
||||
let mut batch = batch::Verifier::<SpendAuth>::new();
|
||||
for (vk_bytes, sig) in sigs.iter().cloned() {
|
||||
batch.queue((vk_bytes, sig, b""));
|
||||
}
|
||||
batch.verify(thread_rng())
|
||||
})
|
||||
},
|
||||
);
|
||||
}
|
||||
group.finish();
|
||||
}
|
||||
|
||||
criterion_group!(benches, bench_batch_verify);
|
||||
criterion_main!(benches);
|
|
@ -0,0 +1,231 @@
|
|||
//! Performs batch RedJubjub signature verification.
|
||||
//!
|
||||
//! Batch verification asks whether *all* signatures in some set are valid,
|
||||
//! rather than asking whether *each* of them is valid. This allows sharing
|
||||
//! computations among all signature verifications, performing less work overall
|
||||
//! at the cost of higher latency (the entire batch must complete), complexity of
|
||||
//! caller code (which must assemble a batch of signatures across work-items),
|
||||
//! and loss of the ability to easily pinpoint failing signatures.
|
||||
//!
|
||||
|
||||
use std::convert::TryFrom;
|
||||
|
||||
use jubjub::*;
|
||||
use rand_core::{CryptoRng, RngCore};
|
||||
|
||||
use crate::{private::Sealed, scalar_mul::VartimeMultiscalarMul, *};
|
||||
|
||||
// Shim to generate a random 128bit value in a [u64; 4], without
|
||||
// importing `rand`.
|
||||
fn gen_128_bits<R: RngCore + CryptoRng>(mut rng: R) -> [u64; 4] {
|
||||
let mut bytes = [0u64; 4];
|
||||
bytes[0] = rng.next_u64();
|
||||
bytes[1] = rng.next_u64();
|
||||
bytes
|
||||
}
|
||||
|
||||
enum Inner {
|
||||
SpendAuth {
|
||||
vk_bytes: VerificationKeyBytes<SpendAuth>,
|
||||
sig: Signature<SpendAuth>,
|
||||
c: Scalar,
|
||||
},
|
||||
Binding {
|
||||
vk_bytes: VerificationKeyBytes<Binding>,
|
||||
sig: Signature<Binding>,
|
||||
c: Scalar,
|
||||
},
|
||||
}
|
||||
|
||||
/// A batch verification item.
|
||||
///
|
||||
/// This struct exists to allow batch processing to be decoupled from the
|
||||
/// lifetime of the message. This is useful when using the batch verification API
|
||||
/// in an async context.
|
||||
pub struct Item {
|
||||
inner: Inner,
|
||||
}
|
||||
|
||||
impl<'msg, M: AsRef<[u8]>>
|
||||
From<(
|
||||
VerificationKeyBytes<SpendAuth>,
|
||||
Signature<SpendAuth>,
|
||||
&'msg M,
|
||||
)> for Item
|
||||
{
|
||||
fn from(
|
||||
(vk_bytes, sig, msg): (
|
||||
VerificationKeyBytes<SpendAuth>,
|
||||
Signature<SpendAuth>,
|
||||
&'msg M,
|
||||
),
|
||||
) -> Self {
|
||||
// Compute c now to avoid dependency on the msg lifetime.
|
||||
let c = HStar::default()
|
||||
.update(&sig.r_bytes[..])
|
||||
.update(&vk_bytes.bytes[..])
|
||||
.update(msg)
|
||||
.finalize();
|
||||
Self {
|
||||
inner: Inner::SpendAuth { vk_bytes, sig, c },
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'msg, M: AsRef<[u8]>> From<(VerificationKeyBytes<Binding>, Signature<Binding>, &'msg M)>
|
||||
for Item
|
||||
{
|
||||
fn from(
|
||||
(vk_bytes, sig, msg): (VerificationKeyBytes<Binding>, Signature<Binding>, &'msg M),
|
||||
) -> Self {
|
||||
// Compute c now to avoid dependency on the msg lifetime.
|
||||
let c = HStar::default()
|
||||
.update(&sig.r_bytes[..])
|
||||
.update(&vk_bytes.bytes[..])
|
||||
.update(msg)
|
||||
.finalize();
|
||||
Self {
|
||||
inner: Inner::Binding { vk_bytes, sig, c },
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
/// A batch verification context.
|
||||
pub struct Verifier {
|
||||
/// Signature data queued for verification.
|
||||
signatures: Vec<Item>,
|
||||
}
|
||||
|
||||
impl Verifier {
|
||||
/// Construct a new batch verifier.
|
||||
pub fn new() -> Verifier {
|
||||
Verifier::default()
|
||||
}
|
||||
|
||||
/// Queue an Item for verification.
|
||||
pub fn queue<I: Into<Item>>(&mut self, item: I) {
|
||||
self.signatures.push(item.into());
|
||||
}
|
||||
|
||||
/// Perform batch verification, returning `Ok(())` if all signatures were
|
||||
/// valid and `Err` otherwise.
|
||||
///
|
||||
/// The batch verification equation is:
|
||||
///
|
||||
/// h_G * -[sum(z_i * s_i)]P_G + sum([z_i]R_i + [z_i * c_i]VK_i) = 0_G
|
||||
///
|
||||
/// which we split out into:
|
||||
///
|
||||
/// h_G * -[sum(z_i * s_i)]P_G + sum([z_i]R_i) + sum([z_i * c_i]VK_i) = 0_G
|
||||
///
|
||||
/// so that we can use multiscalar multiplication speedups.
|
||||
///
|
||||
/// where for each signature i,
|
||||
/// - VK_i is the verification key;
|
||||
/// - R_i is the signature's R value;
|
||||
/// - s_i is the signature's s value;
|
||||
/// - c_i is the hash of the message and other data;
|
||||
/// - z_i is a random 128-bit Scalar;
|
||||
/// - h_G is the cofactor of the group;
|
||||
/// - P_G is the generator of the subgroup;
|
||||
///
|
||||
/// Since RedJubjub uses different subgroups for different types
|
||||
/// of signatures, SpendAuth's and Binding's, we need to have yet
|
||||
/// another point and associated scalar accumulator for all the
|
||||
/// signatures of each type in our batch, but we can still
|
||||
/// amortize computation nicely in one multiscalar multiplication:
|
||||
///
|
||||
/// h_G * ( [-sum(z_i * s_i): i_type == SpendAuth]P_SpendAuth + [-sum(z_i * s_i): i_type == Binding]P_Binding + sum([z_i]R_i) + sum([z_i * c_i]VK_i) ) = 0_G
|
||||
///
|
||||
/// As follows elliptic curve scalar multiplication convention,
|
||||
/// scalar variables are lowercase and group point variables
|
||||
/// are uppercase. This does not exactly match the RedDSA
|
||||
/// notation in the [protocol specification §B.1][ps].
|
||||
///
|
||||
/// [ps]: https://zips.z.cash/protocol/protocol.pdf#reddsabatchverify
|
||||
#[allow(non_snake_case)]
|
||||
pub fn verify<R: RngCore + CryptoRng>(self, mut rng: R) -> Result<(), Error> {
|
||||
let n = self.signatures.len();
|
||||
|
||||
let mut VK_coeffs = Vec::with_capacity(n);
|
||||
let mut VKs = Vec::with_capacity(n);
|
||||
let mut R_coeffs = Vec::with_capacity(self.signatures.len());
|
||||
let mut Rs = Vec::with_capacity(self.signatures.len());
|
||||
let mut P_spendauth_coeff = Scalar::zero();
|
||||
let mut P_binding_coeff = Scalar::zero();
|
||||
|
||||
for item in self.signatures.iter() {
|
||||
let (s_bytes, r_bytes, c) = match item.inner {
|
||||
Inner::SpendAuth { sig, c, .. } => (sig.s_bytes, sig.r_bytes, c),
|
||||
Inner::Binding { sig, c, .. } => (sig.s_bytes, sig.r_bytes, c),
|
||||
};
|
||||
|
||||
let s = {
|
||||
// XXX-jubjub: should not use CtOption here
|
||||
let maybe_scalar = Scalar::from_bytes(&s_bytes);
|
||||
if maybe_scalar.is_some().into() {
|
||||
maybe_scalar.unwrap()
|
||||
} else {
|
||||
return Err(Error::InvalidSignature);
|
||||
}
|
||||
};
|
||||
|
||||
let R = {
|
||||
// XXX-jubjub: should not use CtOption here
|
||||
// XXX-jubjub: inconsistent ownership in from_bytes
|
||||
let maybe_point = AffinePoint::from_bytes(r_bytes);
|
||||
if maybe_point.is_some().into() {
|
||||
jubjub::ExtendedPoint::from(maybe_point.unwrap())
|
||||
} else {
|
||||
return Err(Error::InvalidSignature);
|
||||
}
|
||||
};
|
||||
|
||||
let VK = match item.inner {
|
||||
Inner::SpendAuth { vk_bytes, .. } => {
|
||||
VerificationKey::<SpendAuth>::try_from(vk_bytes.bytes)?.point
|
||||
}
|
||||
Inner::Binding { vk_bytes, .. } => {
|
||||
VerificationKey::<Binding>::try_from(vk_bytes.bytes)?.point
|
||||
}
|
||||
};
|
||||
|
||||
let z = Scalar::from_raw(gen_128_bits(&mut rng));
|
||||
|
||||
let P_coeff = z * s;
|
||||
match item.inner {
|
||||
Inner::SpendAuth { .. } => {
|
||||
P_spendauth_coeff -= P_coeff;
|
||||
}
|
||||
Inner::Binding { .. } => {
|
||||
P_binding_coeff -= P_coeff;
|
||||
}
|
||||
};
|
||||
|
||||
R_coeffs.push(z);
|
||||
Rs.push(R);
|
||||
|
||||
VK_coeffs.push(Scalar::zero() + (z * c));
|
||||
VKs.push(VK);
|
||||
}
|
||||
|
||||
use std::iter::once;
|
||||
|
||||
let scalars = once(&P_spendauth_coeff)
|
||||
.chain(once(&P_binding_coeff))
|
||||
.chain(VK_coeffs.iter())
|
||||
.chain(R_coeffs.iter());
|
||||
|
||||
let basepoints = [SpendAuth::basepoint(), Binding::basepoint()];
|
||||
let points = basepoints.iter().chain(VKs.iter()).chain(Rs.iter());
|
||||
|
||||
let check = ExtendedPoint::vartime_multiscalar_mul(scalars, points);
|
||||
|
||||
if check.is_small_order().into() {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(Error::InvalidSignature)
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,6 +1,5 @@
|
|||
use blake2b_simd::{Params, State};
|
||||
|
||||
use crate::Scalar;
|
||||
use blake2b_simd::{Params, State};
|
||||
|
||||
/// Provides H^star, the hash-to-scalar function used by RedJubjub.
|
||||
pub struct HStar {
|
||||
|
@ -19,13 +18,13 @@ impl Default for HStar {
|
|||
|
||||
impl HStar {
|
||||
/// Add `data` to the hash, and return `Self` for chaining.
|
||||
pub fn update(mut self, data: &[u8]) -> Self {
|
||||
self.state.update(data);
|
||||
pub fn update(&mut self, data: impl AsRef<[u8]>) -> &mut Self {
|
||||
self.state.update(data.as_ref());
|
||||
self
|
||||
}
|
||||
|
||||
/// Consume `self` to compute the hash output.
|
||||
pub fn finalize(self) -> Scalar {
|
||||
pub fn finalize(&self) -> Scalar {
|
||||
Scalar::from_bytes_wide(self.state.finalize().as_array())
|
||||
}
|
||||
}
|
||||
|
|
|
@ -5,9 +5,11 @@
|
|||
|
||||
//! Docs require the `nightly` feature until RFC 1990 lands.
|
||||
|
||||
pub mod batch;
|
||||
mod constants;
|
||||
mod error;
|
||||
mod hash;
|
||||
mod scalar_mul;
|
||||
mod signature;
|
||||
mod signing_key;
|
||||
mod verification_key;
|
||||
|
|
|
@ -0,0 +1,185 @@
|
|||
use std::{borrow::Borrow, fmt::Debug};
|
||||
|
||||
use jubjub::*;
|
||||
|
||||
use crate::Scalar;
|
||||
|
||||
pub trait NonAdjacentForm {
|
||||
fn non_adjacent_form(&self, w: usize) -> [i8; 256];
|
||||
}
|
||||
|
||||
/// A trait for variable-time multiscalar multiplication without precomputation.
|
||||
pub trait VartimeMultiscalarMul {
|
||||
/// The type of point being multiplied, e.g., `AffinePoint`.
|
||||
type Point;
|
||||
|
||||
/// Given an iterator of public scalars and an iterator of
|
||||
/// `Option`s of points, compute either `Some(Q)`, where
|
||||
/// $$
|
||||
/// Q = c\_1 P\_1 + \cdots + c\_n P\_n,
|
||||
/// $$
|
||||
/// if all points were `Some(P_i)`, or else return `None`.
|
||||
fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<Self::Point>
|
||||
where
|
||||
I: IntoIterator,
|
||||
I::Item: Borrow<Scalar>,
|
||||
J: IntoIterator<Item = Option<Self::Point>>;
|
||||
|
||||
/// Given an iterator of public scalars and an iterator of
|
||||
/// public points, compute
|
||||
/// $$
|
||||
/// Q = c\_1 P\_1 + \cdots + c\_n P\_n,
|
||||
/// $$
|
||||
/// using variable-time operations.
|
||||
///
|
||||
/// It is an error to call this function with two iterators of different lengths.
|
||||
fn vartime_multiscalar_mul<I, J>(scalars: I, points: J) -> Self::Point
|
||||
where
|
||||
I: IntoIterator,
|
||||
I::Item: Borrow<Scalar>,
|
||||
J: IntoIterator,
|
||||
J::Item: Borrow<Self::Point>,
|
||||
Self::Point: Clone,
|
||||
{
|
||||
Self::optional_multiscalar_mul(
|
||||
scalars,
|
||||
points.into_iter().map(|p| Some(p.borrow().clone())),
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
impl NonAdjacentForm for Scalar {
|
||||
/// Compute a width-\\(w\\) "Non-Adjacent Form" of this scalar.
|
||||
///
|
||||
/// Thanks to curve25519-dalek
|
||||
fn non_adjacent_form(&self, w: usize) -> [i8; 256] {
|
||||
// required by the NAF definition
|
||||
debug_assert!(w >= 2);
|
||||
// required so that the NAF digits fit in i8
|
||||
debug_assert!(w <= 8);
|
||||
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
|
||||
let mut naf = [0i8; 256];
|
||||
|
||||
let mut x_u64 = [0u64; 5];
|
||||
LittleEndian::read_u64_into(&self.to_bytes(), &mut x_u64[0..4]);
|
||||
|
||||
let width = 1 << w;
|
||||
let window_mask = width - 1;
|
||||
|
||||
let mut pos = 0;
|
||||
let mut carry = 0;
|
||||
while pos < 256 {
|
||||
// Construct a buffer of bits of the scalar, starting at bit `pos`
|
||||
let u64_idx = pos / 64;
|
||||
let bit_idx = pos % 64;
|
||||
let bit_buf: u64;
|
||||
if bit_idx < 64 - w {
|
||||
// This window's bits are contained in a single u64
|
||||
bit_buf = x_u64[u64_idx] >> bit_idx;
|
||||
} else {
|
||||
// Combine the current u64's bits with the bits from the next u64
|
||||
bit_buf = (x_u64[u64_idx] >> bit_idx) | (x_u64[1 + u64_idx] << (64 - bit_idx));
|
||||
}
|
||||
|
||||
// Add the carry into the current window
|
||||
let window = carry + (bit_buf & window_mask);
|
||||
|
||||
if window & 1 == 0 {
|
||||
// If the window value is even, preserve the carry and continue.
|
||||
// Why is the carry preserved?
|
||||
// If carry == 0 and window & 1 == 0, then the next carry should be 0
|
||||
// If carry == 1 and window & 1 == 0, then bit_buf & 1 == 1 so the next carry should be 1
|
||||
pos += 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
if window < width / 2 {
|
||||
carry = 0;
|
||||
naf[pos] = window as i8;
|
||||
} else {
|
||||
carry = 1;
|
||||
naf[pos] = (window as i8).wrapping_sub(width as i8);
|
||||
}
|
||||
|
||||
pos += w;
|
||||
}
|
||||
|
||||
naf
|
||||
}
|
||||
}
|
||||
|
||||
/// Holds odd multiples 1A, 3A, ..., 15A of a point A.
|
||||
#[derive(Copy, Clone)]
|
||||
pub(crate) struct LookupTable5<T>(pub(crate) [T; 8]);
|
||||
|
||||
impl<T: Copy> LookupTable5<T> {
|
||||
/// Given public, odd \\( x \\) with \\( 0 < x < 2^4 \\), return \\(xA\\).
|
||||
pub fn select(&self, x: usize) -> T {
|
||||
debug_assert_eq!(x & 1, 1);
|
||||
debug_assert!(x < 16);
|
||||
|
||||
self.0[x / 2]
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Debug> Debug for LookupTable5<T> {
|
||||
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
|
||||
write!(f, "LookupTable5({:?})", self.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> From<&'a ExtendedPoint> for LookupTable5<ExtendedNielsPoint> {
|
||||
#[allow(non_snake_case)]
|
||||
fn from(A: &'a ExtendedPoint) -> Self {
|
||||
let mut Ai = [A.to_niels(); 8];
|
||||
let A2 = A.double();
|
||||
for i in 0..7 {
|
||||
Ai[i + 1] = (&A2 + &Ai[i]).to_niels();
|
||||
}
|
||||
// Now Ai = [A, 3A, 5A, 7A, 9A, 11A, 13A, 15A]
|
||||
LookupTable5(Ai)
|
||||
}
|
||||
}
|
||||
|
||||
impl VartimeMultiscalarMul for ExtendedPoint {
|
||||
type Point = ExtendedPoint;
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn optional_multiscalar_mul<I, J>(scalars: I, points: J) -> Option<ExtendedPoint>
|
||||
where
|
||||
I: IntoIterator,
|
||||
I::Item: Borrow<Scalar>,
|
||||
J: IntoIterator<Item = Option<ExtendedPoint>>,
|
||||
{
|
||||
let nafs: Vec<_> = scalars
|
||||
.into_iter()
|
||||
.map(|c| c.borrow().non_adjacent_form(5))
|
||||
.collect();
|
||||
|
||||
let lookup_tables = points
|
||||
.into_iter()
|
||||
.map(|P_opt| P_opt.map(|P| LookupTable5::<ExtendedNielsPoint>::from(&P)))
|
||||
.collect::<Option<Vec<_>>>()?;
|
||||
|
||||
let mut r = ExtendedPoint::identity();
|
||||
|
||||
for i in (0..256).rev() {
|
||||
let mut t = r.double();
|
||||
|
||||
for (naf, lookup_table) in nafs.iter().zip(lookup_tables.iter()) {
|
||||
if naf[i] > 0 {
|
||||
t = &t + &lookup_table.select(naf[i] as usize);
|
||||
} else if naf[i] < 0 {
|
||||
t = &t - &lookup_table.select(-naf[i] as usize);
|
||||
}
|
||||
}
|
||||
|
||||
r = t;
|
||||
}
|
||||
|
||||
Some(r)
|
||||
}
|
||||
}
|
|
@ -1,4 +1,8 @@
|
|||
use std::{convert::TryFrom, marker::PhantomData};
|
||||
use std::{
|
||||
convert::TryFrom,
|
||||
hash::{Hash, Hasher},
|
||||
marker::PhantomData,
|
||||
};
|
||||
|
||||
use crate::{Error, Randomizer, Scalar, SigType, Signature, SpendAuth};
|
||||
|
||||
|
@ -30,6 +34,13 @@ impl<T: SigType> From<VerificationKeyBytes<T>> for [u8; 32] {
|
|||
}
|
||||
}
|
||||
|
||||
impl<T: SigType> Hash for VerificationKeyBytes<T> {
|
||||
fn hash<H: Hasher>(&self, state: &mut H) {
|
||||
self.bytes.hash(state);
|
||||
self._marker.hash(state);
|
||||
}
|
||||
}
|
||||
|
||||
/// A valid RedJubJub verification key.
|
||||
///
|
||||
/// This type holds decompressed state used in signature verification; if the
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
use rand::thread_rng;
|
||||
|
||||
use redjubjub::*;
|
||||
|
||||
#[test]
|
||||
fn spendauth_batch_verify() {
|
||||
let rng = thread_rng();
|
||||
let mut batch = batch::Verifier::new();
|
||||
for _ in 0..32 {
|
||||
let sk = SigningKey::<SpendAuth>::new(rng);
|
||||
let vk = VerificationKey::from(&sk);
|
||||
let msg = b"BatchVerifyTest";
|
||||
let sig = sk.sign(rng, &msg[..]);
|
||||
batch.queue((vk.into(), sig, msg));
|
||||
}
|
||||
assert!(batch.verify(rng).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn binding_batch_verify() {
|
||||
let rng = thread_rng();
|
||||
let mut batch = batch::Verifier::new();
|
||||
for _ in 0..32 {
|
||||
let sk = SigningKey::<SpendAuth>::new(rng);
|
||||
let vk = VerificationKey::from(&sk);
|
||||
let msg = b"BatchVerifyTest";
|
||||
let sig = sk.sign(rng, &msg[..]);
|
||||
batch.queue((vk.into(), sig, msg));
|
||||
}
|
||||
assert!(batch.verify(rng).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn alternating_batch_verify() {
|
||||
let rng = thread_rng();
|
||||
let mut batch = batch::Verifier::new();
|
||||
for i in 0..32 {
|
||||
match i % 2 {
|
||||
0 => {
|
||||
let sk = SigningKey::<SpendAuth>::new(rng);
|
||||
let vk = VerificationKey::from(&sk);
|
||||
let msg = b"BatchVerifyTest";
|
||||
let sig = sk.sign(rng, &msg[..]);
|
||||
batch.queue((vk.into(), sig, msg));
|
||||
}
|
||||
1 => {
|
||||
let sk = SigningKey::<Binding>::new(rng);
|
||||
let vk = VerificationKey::from(&sk);
|
||||
let msg = b"BatchVerifyTest";
|
||||
let sig = sk.sign(rng, &msg[..]);
|
||||
batch.queue((vk.into(), sig, msg));
|
||||
}
|
||||
_ => panic!(),
|
||||
}
|
||||
}
|
||||
assert!(batch.verify(rng).is_ok());
|
||||
}
|
Loading…
Reference in New Issue