redjubjub/src/verification_key.rs

200 lines
6.7 KiB
Rust

// -*- mode: rust; -*-
//
// This file is part of redjubjub.
// Copyright (c) 2019-2021 Zcash Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Deirdre Connolly <deirdre@zfnd.org>
// - Henry de Valence <hdevalence@hdevalence.ca>
use std::{
convert::TryFrom,
hash::{Hash, Hasher},
marker::PhantomData,
};
use crate::{Error, Randomizer, Scalar, SigType, Signature, SpendAuth};
/// A refinement type for `[u8; 32]` indicating that the bytes represent
/// an encoding of a RedJubJub verification key.
///
/// This is useful for representing a compressed verification key; the
/// [`VerificationKey`] type in this library holds other decompressed state
/// used in signature verification.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct VerificationKeyBytes<T: SigType> {
pub(crate) bytes: [u8; 32],
pub(crate) _marker: PhantomData<T>,
}
impl<T: SigType> From<[u8; 32]> for VerificationKeyBytes<T> {
fn from(bytes: [u8; 32]) -> VerificationKeyBytes<T> {
VerificationKeyBytes {
bytes,
_marker: PhantomData,
}
}
}
impl<T: SigType> From<VerificationKeyBytes<T>> for [u8; 32] {
fn from(refined: VerificationKeyBytes<T>) -> [u8; 32] {
refined.bytes
}
}
impl<T: SigType> Hash for VerificationKeyBytes<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.bytes.hash(state);
self._marker.hash(state);
}
}
/// A valid RedJubJub verification key.
///
/// This type holds decompressed state used in signature verification; if the
/// verification key may not be used immediately, it is probably better to use
/// [`VerificationKeyBytes`], which is a refinement type for `[u8; 32]`.
///
/// ## Consensus properties
///
/// The `TryFrom<VerificationKeyBytes>` conversion performs the following Zcash
/// consensus rule checks:
///
/// 1. The check that the bytes are a canonical encoding of a verification key;
/// 2. The check that the verification key is not a point of small order.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(try_from = "VerificationKeyBytes<T>"))]
#[cfg_attr(feature = "serde", serde(into = "VerificationKeyBytes<T>"))]
#[cfg_attr(feature = "serde", serde(bound = "T: SigType"))]
pub struct VerificationKey<T: SigType> {
// XXX-jubjub: this should just be Point
pub(crate) point: jubjub::ExtendedPoint,
pub(crate) bytes: VerificationKeyBytes<T>,
}
impl<T: SigType> From<VerificationKey<T>> for VerificationKeyBytes<T> {
fn from(pk: VerificationKey<T>) -> VerificationKeyBytes<T> {
pk.bytes
}
}
impl<T: SigType> From<VerificationKey<T>> for [u8; 32] {
fn from(pk: VerificationKey<T>) -> [u8; 32] {
pk.bytes.bytes
}
}
impl<T: SigType> TryFrom<VerificationKeyBytes<T>> for VerificationKey<T> {
type Error = Error;
fn try_from(bytes: VerificationKeyBytes<T>) -> Result<Self, Self::Error> {
// XXX-jubjub: this should not use CtOption
// XXX-jubjub: this takes ownership of bytes, while Fr doesn't.
// This checks that the encoding is canonical...
let maybe_point = jubjub::AffinePoint::from_bytes(bytes.bytes);
if maybe_point.is_some().into() {
let point: jubjub::ExtendedPoint = maybe_point.unwrap().into();
// This checks that the verification key is not of small order.
if <bool>::from(point.is_small_order()) == false {
Ok(VerificationKey { point, bytes })
} else {
Err(Error::MalformedVerificationKey)
}
} else {
Err(Error::MalformedVerificationKey)
}
}
}
impl<T: SigType> TryFrom<[u8; 32]> for VerificationKey<T> {
type Error = Error;
fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
use std::convert::TryInto;
VerificationKeyBytes::from(bytes).try_into()
}
}
impl VerificationKey<SpendAuth> {
/// Randomize this verification key with the given `randomizer`.
///
/// Randomization is only supported for `SpendAuth` keys.
pub fn randomize(&self, randomizer: &Randomizer) -> VerificationKey<SpendAuth> {
use crate::private::Sealed;
let point = &self.point + &(&SpendAuth::basepoint() * randomizer);
let bytes = VerificationKeyBytes {
bytes: jubjub::AffinePoint::from(&point).to_bytes(),
_marker: PhantomData,
};
VerificationKey { bytes, point }
}
}
impl<T: SigType> VerificationKey<T> {
pub(crate) fn from(s: &Scalar) -> VerificationKey<T> {
let point = &T::basepoint() * s;
let bytes = VerificationKeyBytes {
bytes: jubjub::AffinePoint::from(&point).to_bytes(),
_marker: PhantomData,
};
VerificationKey { bytes, point }
}
/// Verify a purported `signature` over `msg` made by this verification key.
// This is similar to impl signature::Verifier but without boxed errors
pub fn verify(&self, msg: &[u8], signature: &Signature<T>) -> Result<(), Error> {
use crate::HStar;
let c = HStar::default()
.update(&signature.r_bytes[..])
.update(&self.bytes.bytes[..]) // XXX ugly
.update(msg)
.finalize();
self.verify_prehashed(signature, c)
}
/// Verify a purported `signature` with a prehashed challenge.
#[allow(non_snake_case)]
pub(crate) fn verify_prehashed(
&self,
signature: &Signature<T>,
c: Scalar,
) -> Result<(), Error> {
let r = {
// XXX-jubjub: should not use CtOption here
// XXX-jubjub: inconsistent ownership in from_bytes
let maybe_point = jubjub::AffinePoint::from_bytes(signature.r_bytes);
if maybe_point.is_some().into() {
jubjub::ExtendedPoint::from(maybe_point.unwrap())
} else {
return Err(Error::InvalidSignature);
}
};
let s = {
// XXX-jubjub: should not use CtOption here
let maybe_scalar = Scalar::from_bytes(&signature.s_bytes);
if maybe_scalar.is_some().into() {
maybe_scalar.unwrap()
} else {
return Err(Error::InvalidSignature);
}
};
// XXX rewrite as normal double scalar mul
// Verify check is h * ( - s * B + R + c * A) == 0
// h * ( s * B - c * A - R) == 0
let sB = &T::basepoint() * &s;
let cA = &self.point * &c;
let check = sB - cA - r;
if check.is_small_order().into() {
Ok(())
} else {
Err(Error::InvalidSignature)
}
}
}