rust-secp256k1/src/key.rs

509 lines
16 KiB
Rust
Raw Normal View History

// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Public/Private keys
use std::intrinsics::copy_nonoverlapping;
use std::{fmt, ops};
use rand::Rng;
2014-09-04 18:21:09 -07:00
use serialize::{Decoder, Decodable, Encoder, Encodable};
use super::init;
use super::Error::{self, InvalidPublicKey, InvalidSecretKey, Unknown};
2014-09-04 18:21:09 -07:00
use constants;
use ffi;
/// Secret 256-bit key used as `x` in an ECDSA signature
pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]);
impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE);
/// The number 1 encoded as a secret key
pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1]);
/// Public key
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct PublicKey(PublicKeyData);
#[derive(Copy, Eq)]
enum PublicKeyData {
Compressed([u8; constants::COMPRESSED_PUBLIC_KEY_SIZE]),
Uncompressed([u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE])
}
fn random_32_bytes<R:Rng>(rng: &mut R) -> [u8; 32] {
let mut ret = [0u8; 32];
rng.fill_bytes(&mut ret);
2014-08-16 02:21:35 -07:00
ret
}
impl SecretKey {
/// Creates a new random secret key
#[inline]
pub fn new<R:Rng>(rng: &mut R) -> SecretKey {
init();
let mut data = random_32_bytes(rng);
unsafe {
while ffi::secp256k1_ec_seckey_verify(data.as_ptr()) == 0 {
data = random_32_bytes(rng);
}
}
SecretKey(data)
}
/// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
#[inline]
pub fn from_slice(data: &[u8]) -> Result<SecretKey, Error> {
init();
match data.len() {
constants::SECRET_KEY_SIZE => {
let mut ret = [0; constants::SECRET_KEY_SIZE];
unsafe {
if ffi::secp256k1_ec_seckey_verify(data.as_ptr()) == 0 {
return Err(InvalidSecretKey);
}
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(SecretKey(ret))
}
_ => Err(InvalidSecretKey)
}
}
#[inline]
/// Adds one secret key to another, modulo the curve order
/// Marked `unsafe` since you must
/// call `init()` (or construct a `Secp256k1`, which does this for you) before
/// using this function
pub fn add_assign(&mut self, other: &SecretKey) -> Result<(), Error> {
init();
unsafe {
if ffi::secp256k1_ec_privkey_tweak_add(self.as_mut_ptr(), other.as_ptr()) != 1 {
Err(Unknown)
} else {
Ok(())
}
}
}
#[inline]
/// Returns an iterator for the (sk, pk) pairs starting one after this one,
/// and incrementing by one each time
pub fn sequence(&self, compressed: bool) -> Sequence {
Sequence { last_sk: *self, compressed: compressed }
}
}
/// An iterator of keypairs `(sk + 1, pk*G)`, `(sk + 2, pk*2G)`, ...
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Sequence {
compressed: bool,
last_sk: SecretKey,
}
impl Iterator for Sequence {
type Item = (SecretKey, PublicKey);
#[inline]
fn next(&mut self) -> Option<(SecretKey, PublicKey)> {
self.last_sk.add_assign(&ONE).unwrap();
Some((self.last_sk, PublicKey::from_secret_key(&self.last_sk, self.compressed)))
}
}
impl PublicKey {
/// Creates a new zeroed out public key
#[inline]
pub fn new(compressed: bool) -> PublicKey {
PublicKey(
if compressed {
PublicKeyData::Compressed([0; constants::COMPRESSED_PUBLIC_KEY_SIZE])
} else {
PublicKeyData::Uncompressed([0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE])
}
)
}
/// Creates a new public key from a secret key.
#[inline]
pub fn from_secret_key(sk: &SecretKey, compressed: bool) -> PublicKey {
let mut pk = PublicKey::new(compressed);
let compressed = if compressed {1} else {0};
let mut len = 0;
init();
unsafe {
// We can assume the return value because it's not possible to construct
// an invalid `SecretKey` without transmute trickery or something
assert_eq!(ffi::secp256k1_ec_pubkey_create(
pk.as_mut_ptr(), &mut len,
sk.as_ptr(), compressed), 1);
}
assert_eq!(len as usize, pk.len());
pk
}
/// Creates a public key directly from a slice
#[inline]
pub fn from_slice(data: &[u8]) -> Result<PublicKey, Error> {
match data.len() {
constants::COMPRESSED_PUBLIC_KEY_SIZE => {
let mut ret = [0; constants::COMPRESSED_PUBLIC_KEY_SIZE];
unsafe {
if ffi::secp256k1_ec_pubkey_verify(data.as_ptr(),
2014-08-31 14:04:14 -07:00
data.len() as ::libc::c_int) == 0 {
return Err(InvalidPublicKey);
}
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(PublicKey(PublicKeyData::Compressed(ret)))
}
constants::UNCOMPRESSED_PUBLIC_KEY_SIZE => {
let mut ret = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
unsafe {
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(PublicKey(PublicKeyData::Uncompressed(ret)))
}
_ => Err(InvalidPublicKey)
}
}
/// Returns whether the public key is compressed or uncompressed
#[inline]
pub fn is_compressed(&self) -> bool {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(_) => true,
PublicKeyData::Uncompressed(_) => false
}
}
/// Returns the length of the public key
#[inline]
pub fn len(&self) -> usize {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(ref x) => x.len(),
PublicKeyData::Uncompressed(ref x) => x.len()
}
}
/// Converts the public key to a raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_ptr(&self) -> *const u8 {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(ref x) => x.as_ptr(),
PublicKeyData::Uncompressed(ref x) => x.as_ptr()
}
}
/// Converts the public key to a mutable raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
let &mut PublicKey(ref mut data) = self;
match *data {
PublicKeyData::Compressed(ref mut x) => x.as_mut_ptr(),
PublicKeyData::Uncompressed(ref mut x) => x.as_mut_ptr()
}
}
#[inline]
/// Adds the pk corresponding to `other` to the pk `self` in place
pub fn add_exp_assign(&mut self, other: &SecretKey) -> Result<(), Error> {
init();
unsafe {
if ffi::secp256k1_ec_pubkey_tweak_add(self.as_mut_ptr(),
self.len() as ::libc::c_int,
other.as_ptr()) != 1 {
Err(Unknown)
} else {
Ok(())
}
}
}
}
// We have to do all these impls ourselves as Rust can't derive
// them for arrays
2014-08-27 10:19:10 -07:00
impl Clone for PublicKeyData {
fn clone(&self) -> PublicKeyData { *self }
}
impl PartialEq for PublicKeyData {
fn eq(&self, other: &PublicKeyData) -> bool {
2015-03-25 18:36:57 -07:00
&self[..] == &other[..]
}
}
2015-03-25 11:59:54 -07:00
impl fmt::Debug for PublicKeyData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2015-03-25 18:36:57 -07:00
(&self[..]).fmt(f)
}
}
impl ops::Index<usize> for PublicKeyData {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
match *self {
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
}
}
}
impl ops::Index<usize> for PublicKey {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
let &PublicKey(ref dat) = self;
&dat[index]
}
}
impl ops::Index<ops::Range<usize>> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range<usize>) -> &[u8] {
match *self {
2015-04-05 10:16:56 -07:00
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
2015-03-25 18:36:57 -07:00
}
}
}
impl ops::Index<ops::Range<usize>> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range<usize>) -> &[u8] {
let &PublicKey(ref dat) = self;
2015-04-05 10:16:56 -07:00
&dat[index]
2015-03-25 18:36:57 -07:00
}
}
impl ops::Index<ops::RangeTo<usize>> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeTo<usize>) -> &[u8] {
match *self {
2015-04-05 10:16:56 -07:00
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
2015-03-25 18:36:57 -07:00
}
}
}
impl ops::Index<ops::RangeTo<usize>> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeTo<usize>) -> &[u8] {
let &PublicKey(ref dat) = self;
2015-04-05 10:16:56 -07:00
&dat[index]
2015-03-25 18:36:57 -07:00
}
}
impl ops::Index<ops::RangeFrom<usize>> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &[u8] {
match *self {
2015-04-05 10:16:56 -07:00
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
2015-03-25 18:36:57 -07:00
}
}
}
impl ops::Index<ops::RangeFrom<usize>> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &[u8] {
let &PublicKey(ref dat) = self;
2015-04-05 10:16:56 -07:00
&dat[index]
2015-03-25 18:36:57 -07:00
}
}
impl ops::Index<ops::RangeFull> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[..],
PublicKeyData::Uncompressed(ref x) => &x[..]
}
}
}
impl ops::Index<ops::RangeFull> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[..]
}
}
impl Decodable for PublicKey {
fn decode<D: Decoder>(d: &mut D) -> Result<PublicKey, D::Error> {
2014-09-04 18:21:09 -07:00
d.read_seq(|d, len| {
if len == constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
unsafe {
use std::mem;
let mut ret: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
2015-03-25 12:41:02 -07:00
for i in 0..len {
2014-09-04 18:21:09 -07:00
ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
}
Ok(PublicKey(PublicKeyData::Uncompressed(ret)))
2014-09-04 18:21:09 -07:00
}
} else if len == constants::COMPRESSED_PUBLIC_KEY_SIZE {
unsafe {
use std::mem;
let mut ret: [u8; constants::COMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
2015-03-25 12:41:02 -07:00
for i in 0..len {
2014-09-04 18:21:09 -07:00
ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
}
Ok(PublicKey(PublicKeyData::Compressed(ret)))
2014-09-04 18:21:09 -07:00
}
} else {
Err(d.error("Invalid length"))
}
})
}
}
impl Encodable for PublicKey {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
2015-03-25 18:36:57 -07:00
(&self[..]).encode(s)
2014-09-04 18:21:09 -07:00
}
}
2015-03-25 11:59:54 -07:00
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
2015-03-25 18:36:57 -07:00
(&self[..]).fmt(f)
}
}
#[cfg(test)]
mod test {
use test::Bencher;
use super::super::Secp256k1;
use super::super::Error::{InvalidPublicKey, InvalidSecretKey};
use super::{PublicKey, SecretKey};
2014-08-09 19:02:09 -07:00
#[test]
fn skey_from_slice() {
let sk = SecretKey::from_slice(&[1; 31]);
assert_eq!(sk, Err(InvalidSecretKey));
let sk = SecretKey::from_slice(&[1; 32]);
assert!(sk.is_ok());
2014-08-09 19:02:09 -07:00
}
#[test]
fn pubkey_from_slice() {
assert_eq!(PublicKey::from_slice(&[]), Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&[1, 2, 3]), Err(InvalidPublicKey));
let uncompressed = PublicKey::from_slice(&[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]);
assert!(uncompressed.is_ok());
assert!(!uncompressed.unwrap().is_compressed());
let compressed = PublicKey::from_slice(&[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]);
assert!(compressed.is_ok());
assert!(compressed.unwrap().is_compressed());
}
#[test]
fn keypair_slice_round_trip() {
let mut s = Secp256k1::new().unwrap();
let (sk1, pk1) = s.generate_keypair(true);
2015-03-25 18:52:09 -07:00
assert_eq!(SecretKey::from_slice(&sk1[..]), Ok(sk1));
assert_eq!(PublicKey::from_slice(&pk1[..]), Ok(pk1));
let (sk2, pk2) = s.generate_keypair(false);
2015-03-25 18:52:09 -07:00
assert_eq!(SecretKey::from_slice(&sk2[..]), Ok(sk2));
assert_eq!(PublicKey::from_slice(&pk2[..]), Ok(pk2));
}
2014-08-09 19:02:09 -07:00
#[test]
fn invalid_secret_key() {
// Zero
assert_eq!(SecretKey::from_slice(&[0; 32]), Err(InvalidSecretKey));
// -1
assert_eq!(SecretKey::from_slice(&[0xff; 32]), Err(InvalidSecretKey));
// Top of range
assert!(SecretKey::from_slice(&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok());
// One past top of range
assert!(SecretKey::from_slice(&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
}
#[test]
fn test_addition() {
let mut s = Secp256k1::new().unwrap();
let (mut sk1, mut pk1) = s.generate_keypair(true);
let (mut sk2, mut pk2) = s.generate_keypair(true);
assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1);
assert!(sk1.add_assign(&sk2).is_ok());
assert!(pk1.add_exp_assign(&sk2).is_ok());
assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1);
assert_eq!(PublicKey::from_secret_key(&sk2, true), pk2);
assert!(sk2.add_assign(&sk1).is_ok());
assert!(pk2.add_exp_assign(&sk1).is_ok());
assert_eq!(PublicKey::from_secret_key(&sk2, true), pk2);
}
#[bench]
pub fn sequence_iterate(bh: &mut Bencher) {
let mut s = Secp256k1::new().unwrap();
let (sk, _) = s.generate_keypair(true);
let mut iter = sk.sequence(true);
bh.iter(|| iter.next())
}
}