rust-secp256k1/src/secp256k1.rs

332 lines
10 KiB
Rust
Raw Normal View History

// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # Secp256k1
//! Rust bindings for Pieter Wuille's secp256k1 library, which is used for
//! fast and accurate manipulation of ECDSA signatures on the secp256k1
//! curve. Such signatures are used extensively by the Bitcoin network
//! and its derivatives.
//!
2014-07-06 22:41:22 -07:00
#![crate_type = "lib"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
2014-07-23 16:11:18 -07:00
#![crate_name = "bitcoin-secp256k1-rs"]
2014-07-06 22:41:22 -07:00
#![comment = "Bindings and wrapper functions for bitcoin secp256k1 library."]
2014-07-23 16:11:18 -07:00
#![feature(phase)]
2014-08-04 16:58:57 -07:00
#![feature(globs)] // for tests only
2014-07-23 16:11:18 -07:00
// Coding conventions
#![deny(non_uppercase_pattern_statics)]
#![deny(uppercase_variables)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case_functions)]
#![deny(unused_mut)]
#![warn(missing_doc)]
2014-07-06 22:41:22 -07:00
extern crate libc;
extern crate sync;
use std::io::{IoError, IoResult};
use std::rand::OsRng;
use libc::c_int;
2014-07-06 22:41:22 -07:00
use sync::one::{Once, ONCE_INIT};
pub mod constants;
pub mod ffi;
pub mod key;
2014-07-06 22:41:22 -07:00
/// A tag used for recovering the public key from a compact signature
pub struct RecoveryId(i32);
/// An ECDSA signature
pub struct Signature(uint, [u8, ..constants::MAX_SIGNATURE_SIZE]);
impl Signature {
/// Converts the signature to a mutable raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
let &Signature(_, ref mut data) = self;
data.as_mut_slice().as_mut_ptr()
}
/// Converts the signature to a byte slice suitable for verification
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [u8] {
let &Signature(len, ref data) = self;
data.slice_to(len)
}
/// Returns the length of the signature
#[inline]
pub fn len(&self) -> uint {
let &Signature(len, _) = self;
len
}
2014-07-06 22:41:22 -07:00
}
/// An ECDSA error
#[deriving(PartialEq, Eq, Clone, Show)]
2014-07-06 22:41:22 -07:00
pub enum Error {
/// Signature failed verification
IncorrectSignature,
/// Bad public key
2014-07-06 22:41:22 -07:00
InvalidPublicKey,
/// Bad signature
2014-07-06 22:41:22 -07:00
InvalidSignature,
/// Bad secret key
2014-07-06 22:41:22 -07:00
InvalidSecretKey,
/// Bad nonce
2014-07-06 22:41:22 -07:00
InvalidNonce,
/// Rng problem
RngError(IoError),
2014-07-06 22:41:22 -07:00
}
/// Result type
pub type Result<T> = ::std::prelude::Result<T, Error>;
2014-07-06 22:41:22 -07:00
static mut Secp256k1_init : Once = ONCE_INIT;
/// The secp256k1 engine, used to execute all signature operations
pub struct Secp256k1 {
rng: IoResult<OsRng>
}
2014-07-06 22:41:22 -07:00
/// Does one-time initialization of the secp256k1 engine. Can be called
/// multiple times, and is called by the `Secp256k1` constructor. This
/// only needs to be called directly if you are using the library without
/// a `Secp256k1` object, e.g. batch key generation through
/// `key::PublicKey::from_secret_key`.
pub fn init() {
unsafe {
Secp256k1_init.doit(|| {
ffi::secp256k1_start();
});
}
}
2014-07-06 22:41:22 -07:00
impl Secp256k1 {
/// Constructs a new secp256k1 engine.
pub fn new() -> Secp256k1 {
init();
Secp256k1 { rng: OsRng::new() }
2014-07-06 22:41:22 -07:00
}
/// Generates a random keypair. Convenience function for `key::SecretKey::new`
/// and `key::PublicKey::from_secret_key`; call those functions directly for
/// batch key generation.
pub fn generate_keypair(&mut self, compressed: bool)
-> Result<(key::SecretKey, key::PublicKey)> {
match self.rng {
Ok(ref mut rng) => {
let sk = key::SecretKey::new(rng);
Ok(unsafe { (sk, key::PublicKey::from_secret_key(&sk, compressed)) })
}
Err(ref e) => Err(RngError(e.clone()))
}
}
2014-07-06 22:41:22 -07:00
/// Generates a random nonce. Convenience function for `key::Nonce::new`; call
/// that function directly for batch nonce generation
pub fn generate_nonce(&mut self) -> Result<key::Nonce> {
match self.rng {
Ok(ref mut rng) => Ok(key::Nonce::new(rng)),
Err(ref e) => Err(RngError(e.clone()))
}
}
2014-07-06 22:41:22 -07:00
/// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce`
pub fn sign(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce)
-> Result<Signature> {
let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE];
let mut len = constants::MAX_SIGNATURE_SIZE as c_int;
unsafe {
if ffi::secp256k1_ecdsa_sign(msg.as_ptr(), msg.len() as c_int,
sig.as_mut_slice().as_mut_ptr(), &mut len,
sk.as_ptr(), nonce.as_ptr()) != 1 {
return Err(InvalidNonce);
}
// This assertation is probably too late :)
assert!(len as uint <= constants::MAX_SIGNATURE_SIZE);
2014-07-06 22:41:22 -07:00
};
Ok(Signature(len as uint, sig))
2014-07-06 22:41:22 -07:00
}
/// Constructs a compact signature for `msg` using the secret key `sk`
pub fn sign_compact(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce)
-> Result<(Signature, RecoveryId)> {
let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE];
2014-07-06 22:41:22 -07:00
let mut recid = 0;
unsafe {
if ffi::secp256k1_ecdsa_sign_compact(msg.as_ptr(), msg.len() as c_int,
sig.as_mut_slice().as_mut_ptr(), sk.as_ptr(),
nonce.as_ptr(), &mut recid) != 1 {
return Err(InvalidNonce);
}
2014-07-06 22:41:22 -07:00
};
Ok((Signature(constants::MAX_COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid)))
2014-07-06 22:41:22 -07:00
}
/// Determines the public key for which `sig` is a valid signature for
/// `msg`. Returns through the out-pointer `pubkey`.
pub fn recover_compact(&self, msg: &[u8], sig: &[u8],
compressed: bool, recid: RecoveryId)
-> Result<key::PublicKey> {
let mut pk = key::PublicKey::new(compressed);
let RecoveryId(recid) = recid;
2014-07-06 22:41:22 -07:00
unsafe {
let mut len = 0;
if ffi::secp256k1_ecdsa_recover_compact(msg.as_ptr(), msg.len() as c_int,
sig.as_ptr(), pk.as_mut_ptr(), &mut len,
if compressed {1} else {0},
recid) != 1 {
return Err(InvalidSignature);
}
assert_eq!(len as uint, pk.len());
2014-07-06 22:41:22 -07:00
};
Ok(pk)
2014-07-06 22:41:22 -07:00
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success.
pub fn verify(&self, msg: &[u8], sig: &[u8], pk: &key::PublicKey) -> Result<()> {
2014-07-06 22:41:22 -07:00
let res = unsafe {
ffi::secp256k1_ecdsa_verify(msg.as_ptr(), msg.len() as c_int,
sig.as_ptr(), sig.len() as c_int,
pk.as_ptr(), pk.len() as c_int)
2014-07-06 22:41:22 -07:00
};
match res {
1 => Ok(()),
0 => Err(IncorrectSignature),
2014-07-06 22:41:22 -07:00
-1 => Err(InvalidPublicKey),
-2 => Err(InvalidSignature),
_ => unreachable!()
2014-07-06 22:41:22 -07:00
}
}
}
2014-08-04 16:58:57 -07:00
#[cfg(test)]
mod test {
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
use std::rand;
use std::rand::Rng;
use super::*;
use key::PublicKey;
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn invalid_pubkey() {
let s = Secp256k1::new();
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
let mut msg = Vec::from_elem(32, 0u8);
let sig = Vec::from_elem(32, 0u8);
let pk = PublicKey::new(true);
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
rand::task_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
assert_eq!(s.verify(msg.as_mut_slice(), sig.as_slice(), &pk), Err(InvalidPublicKey));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn valid_pubkey_uncompressed() {
let mut s = Secp256k1::new();
let (_, pk) = s.generate_keypair(false).unwrap();
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
let mut msg = Vec::from_elem(32, 0u8);
let sig = Vec::from_elem(32, 0u8);
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
rand::task_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
assert_eq!(s.verify(msg.as_mut_slice(), sig.as_slice(), &pk), Err(InvalidSignature));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn valid_pubkey_compressed() {
let mut s = Secp256k1::new();
2014-07-06 22:41:22 -07:00
let (_, pk) = s.generate_keypair(true).unwrap();
2014-08-04 16:58:57 -07:00
let mut msg = Vec::from_elem(32, 0u8);
let sig = Vec::from_elem(32, 0u8);
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
rand::task_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
assert_eq!(s.verify(msg.as_mut_slice(), sig.as_slice(), &pk), Err(InvalidSignature));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn sign() {
let mut s = Secp256k1::new();
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
let mut msg = [0u8, ..32];
rand::task_rng().fill_bytes(msg);
2014-07-06 22:41:22 -07:00
let (sk, _) = s.generate_keypair(false).unwrap();
let nonce = s.generate_nonce().unwrap();
s.sign(msg.as_slice(), &sk, &nonce).unwrap();
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn sign_and_verify() {
let mut s = Secp256k1::new();
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
let mut msg = Vec::from_elem(32, 0u8);
rand::task_rng().fill_bytes(msg.as_mut_slice());
let (sk, pk) = s.generate_keypair(false).unwrap();
let nonce = s.generate_nonce().unwrap();
2014-07-06 22:41:22 -07:00
let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap();
2014-07-06 22:41:22 -07:00
assert_eq!(s.verify(msg.as_slice(), sig.as_slice(), &pk), Ok(()));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn sign_and_verify_fail() {
let mut s = Secp256k1::new();
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
let mut msg = Vec::from_elem(32, 0u8);
rand::task_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
let (sk, pk) = s.generate_keypair(false).unwrap();
let nonce = s.generate_nonce().unwrap();
let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap();
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
rand::task_rng().fill_bytes(msg.as_mut_slice());
assert_eq!(s.verify(msg.as_slice(), sig.as_slice(), &pk), Err(IncorrectSignature));
2014-08-04 16:58:57 -07:00
}
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
#[test]
fn sign_compact_with_recovery() {
let mut s = Secp256k1::new();
2014-07-06 22:41:22 -07:00
2014-08-04 16:58:57 -07:00
let mut msg = [0u8, ..32];
rand::task_rng().fill_bytes(msg.as_mut_slice());
2014-07-06 22:41:22 -07:00
let (sk, pk) = s.generate_keypair(false).unwrap();
let nonce = s.generate_nonce().unwrap();
2014-07-06 22:41:22 -07:00
let (sig, recid) = s.sign_compact(msg.as_slice(), &sk, &nonce).unwrap();
2014-07-06 22:41:22 -07:00
assert_eq!(s.recover_compact(msg.as_slice(), sig.as_slice(), false, recid), Ok(pk));
2014-08-04 16:58:57 -07:00
}
}