diff --git a/Cargo.toml b/Cargo.toml index cadb48d..d7a609b 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -1,7 +1,7 @@ [package] name = "bitcoin-secp256k1-rs" -version = "0.0.1" +version = "0.1.1" authors = [ "Dawid Ciężarkiewicz ", "Andrew Poelstra (SecretData<'a, SecretKeyData>); -/// The number 1 encoded as a secret key -pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 1]); +/// Secret 256-bit key used as `x` in an ECDSA signature +struct SecretKeyData([u8, ..constants::SECRET_KEY_SIZE]); +impl_array_newtype!(SecretKeyData, u8, constants::SECRET_KEY_SIZE) + +impl Default for SecretKeyData { + fn default() -> SecretKeyData { + SecretKeyData([0, ..constants::SECRET_KEY_SIZE]) + } +} /// Public key #[deriving(Clone, PartialEq, Eq, Show)] @@ -98,7 +104,7 @@ impl Nonce { /// Generates a deterministic nonce by RFC6979 with HMAC-SHA512 #[inline] #[allow(non_snake_case)] // so we can match the names in the RFC - pub fn deterministic(msg: &[u8], key: &SecretKey) -> Nonce { + pub fn deterministic<'a>(msg: &[u8], key: &SecretKey<'a>) -> Nonce { static HMAC_SIZE: uint = 64; macro_rules! hmac( @@ -154,10 +160,16 @@ impl Nonce { } } -impl SecretKey { +impl<'a> SecretKey<'a> { + /// Creates a new zeroed-out secret key + #[inline] + pub fn new() -> SecretKey<'a> { + SecretKey(SecretData::new()) + } + /// Creates a new random secret key #[inline] - pub fn new(rng: &mut R) -> SecretKey { + pub fn init_rng(&'a mut self, rng: &mut R) { init(); let mut data = random_32_bytes(rng); unsafe { @@ -165,36 +177,47 @@ impl SecretKey { data = random_32_bytes(rng); } } - SecretKey(data) + let &SecretKey(ref mut selfdata) = self; + selfdata.move(&mut SecretKeyData(data)) } - /// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key + /// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key, + /// zeroing out the original data #[inline] - pub fn from_slice(data: &[u8]) -> Result { + pub fn init_slice(&'a mut self, data: &mut [u8]) -> Result<()> { init(); match data.len() { constants::SECRET_KEY_SIZE => { - let mut ret = [0, ..constants::SECRET_KEY_SIZE]; + let &SecretKey(ref mut selfdata) = self; unsafe { if ffi::secp256k1_ecdsa_seckey_verify(data.as_ptr()) == 0 { return Err(InvalidSecretKey); } - copy_nonoverlapping_memory(ret.as_mut_ptr(), + copy_nonoverlapping_memory(selfdata.data_mut().as_mut_ptr(), data.as_ptr(), data.len()); + zero_memory(data.as_mut_ptr(), data.len()); } - Ok(SecretKey(ret)) + Ok(()) } _ => Err(InvalidSecretKey) } } + /// Copies the data from one key to another without zeroing anyth out + #[inline] + pub fn clone_from<'b>(&'a mut self, other: &SecretKey<'b>) { + let &SecretKey(ref mut selfdata) = self; + let &SecretKey(ref otherdata) = other; + selfdata.clone_from(otherdata); + } + #[inline] /// Adds one secret key to another, modulo the curve order /// Marked `unsafe` since you must /// call `init()` (or construct a `Secp256k1`, which does this for you) before /// using this function - pub fn add_assign(&mut self, other: &SecretKey) -> Result<()> { + pub fn add_assign<'b>(&mut self, other: &SecretKey<'b>) -> Result<()> { init(); unsafe { if ffi::secp256k1_ecdsa_privkey_tweak_add(self.as_mut_ptr(), other.as_ptr()) != 1 { @@ -206,24 +229,24 @@ impl SecretKey { } #[inline] - /// Returns an iterator for the (sk, pk) pairs starting one after this one, - /// and incrementing by one each time - pub fn sequence(&self, compressed: bool) -> Sequence { - Sequence { last_sk: *self, compressed: compressed } + /// Returns an immutable view of the data as a byteslice + pub fn as_slice<'b>(&'b self) -> &'b [u8] { + let &SecretKey(ref selfdata) = self; + selfdata.data().as_slice() } -} -/// An iterator of keypairs `(sk + 1, pk*G)`, `(sk + 2, pk*2G)`, ... -pub struct Sequence { - compressed: bool, - last_sk: SecretKey, -} - -impl<'a> Iterator<(SecretKey, PublicKey)> for Sequence { #[inline] - fn next(&mut self) -> Option<(SecretKey, PublicKey)> { - self.last_sk.add_assign(&ONE).unwrap(); - Some((self.last_sk, PublicKey::from_secret_key(&self.last_sk, self.compressed))) + /// Returns a raw pointer to the underlying secret key data + pub fn as_ptr(&self) -> *const u8 { + let &SecretKey(ref selfdata) = self; + selfdata.data().as_ptr() + } + + #[inline] + /// Returns a mutable raw pointer to the underlying secret key data + pub fn as_mut_ptr(&mut self) -> *mut u8 { + let &SecretKey(ref mut selfdata) = self; + selfdata.data_mut().as_mut_ptr() } } @@ -239,7 +262,7 @@ impl PublicKey { /// Creates a new public key from a secret key. #[inline] - pub fn from_secret_key(sk: &SecretKey, compressed: bool) -> PublicKey { + pub fn from_secret_key<'a>(sk: &SecretKey<'a>, compressed: bool) -> PublicKey { let mut pk = PublicKey::new(compressed); let compressed = if compressed {1} else {0}; let mut len = 0; @@ -337,7 +360,7 @@ impl PublicKey { #[inline] /// Adds the pk corresponding to `other` to the pk `self` in place - pub fn add_exp_assign(&mut self, other: &SecretKey) -> Result<()> { + pub fn add_exp_assign<'a>(&mut self, other: &SecretKey<'a>) -> Result<()> { init(); unsafe { if ffi::secp256k1_ecdsa_pubkey_tweak_add(self.as_mut_ptr(), @@ -421,9 +444,17 @@ impl , S> Encodable for PublicKey { } } -impl fmt::Show for SecretKey { +impl<'a> PartialEq for SecretKey<'a> { + fn eq(&self, other: &SecretKey<'a>) -> bool { + self.as_slice() == other.as_slice() + } +} + +impl<'a> Eq for SecretKey<'a> {} + +impl<'a> fmt::Show for SecretKey<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - self.as_slice().fmt(f) + write!(f, "[secret data]") } } @@ -432,9 +463,7 @@ mod test { use serialize::hex::FromHex; use std::rand::task_rng; - use test::Bencher; - - use super::super::{Secp256k1, InvalidNonce, InvalidPublicKey, InvalidSecretKey}; + use super::super::{InvalidNonce, InvalidPublicKey, InvalidSecretKey}; use super::{Nonce, PublicKey, SecretKey}; #[test] @@ -442,17 +471,16 @@ mod test { let n = Nonce::from_slice([1, ..31]); assert_eq!(n, Err(InvalidNonce)); - let n = SecretKey::from_slice([1, ..32]); - assert!(n.is_ok()); + let mut n = SecretKey::new(); + assert_eq!(n.init_slice([1, ..32]), Ok(())); } #[test] fn skey_from_slice() { - let sk = SecretKey::from_slice([1, ..31]); - assert_eq!(sk, Err(InvalidSecretKey)); - - let sk = SecretKey::from_slice([1, ..32]); - assert!(sk.is_ok()); + let mut sk = SecretKey::new(); + assert_eq!(sk.init_slice([1, ..31]), Err(InvalidSecretKey)); + let mut sk = SecretKey::new(); + assert_eq!(sk.init_slice([1, ..32]), Ok(())); } #[test] @@ -471,14 +499,17 @@ mod test { #[test] fn keypair_slice_round_trip() { - let mut s = Secp256k1::new().unwrap(); + let mut rng = task_rng(); + let mut sk1 = SecretKey::new(); + sk1.init_rng(&mut rng); + let mut sk2 = SecretKey::new(); + sk2.clone_from(&sk1); - let (sk1, pk1) = s.generate_keypair(true); - assert_eq!(SecretKey::from_slice(sk1.as_slice()), Ok(sk1)); + assert_eq!(sk1, sk2); + + let pk1 = PublicKey::from_secret_key(&sk1, false); assert_eq!(PublicKey::from_slice(pk1.as_slice()), Ok(pk1)); - - let (sk2, pk2) = s.generate_keypair(false); - assert_eq!(SecretKey::from_slice(sk2.as_slice()), Ok(sk2)); + let pk2 = PublicKey::from_secret_key(&sk1, true); assert_eq!(PublicKey::from_slice(pk2.as_slice()), Ok(pk2)); } @@ -491,28 +522,33 @@ mod test { #[test] fn invalid_secret_key() { + let mut sk = SecretKey::new(); // Zero - assert_eq!(SecretKey::from_slice([0, ..32]), Err(InvalidSecretKey)); + assert_eq!(sk.init_slice([0, ..32]), Err(InvalidSecretKey)); // -1 - assert_eq!(SecretKey::from_slice([0xff, ..32]), Err(InvalidSecretKey)); + assert_eq!(sk.init_slice([0xff, ..32]), Err(InvalidSecretKey)); // Top of range - assert!(SecretKey::from_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, - 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, - 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok()); + assert_eq!(sk.init_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, + 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, + 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]), Ok(())); // One past top of range - assert!(SecretKey::from_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, - 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, - 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, - 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err()); + assert_eq!(sk.init_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, + 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, + 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]), Err(InvalidSecretKey)); } #[test] fn test_addition() { - let mut s = Secp256k1::new().unwrap(); + let mut rng = task_rng(); - let (mut sk1, mut pk1) = s.generate_keypair(true); - let (mut sk2, mut pk2) = s.generate_keypair(true); + let mut sk1 = SecretKey::new(); + let mut sk2 = SecretKey::new(); + sk1.init_rng(&mut rng); + sk2.init_rng(&mut rng); + let mut pk1 = PublicKey::from_secret_key(&sk1, true); + let mut pk2 = PublicKey::from_secret_key(&sk2, true); assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1); assert!(sk1.add_assign(&sk2).is_ok()); @@ -533,7 +569,10 @@ mod test { // from ecdsa.curves import SECP256k1 // # This key was generated randomly // sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81 - let sk = SecretKey::from_slice(hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81")).unwrap(); + let mut sk = SecretKey::new(); + sk.init_slice(hex_slice_mut!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81")).unwrap(); + assert_eq!(sk.as_slice(), + hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81")); // "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest()) let nonce = Nonce::deterministic([], &sk); @@ -547,7 +586,7 @@ mod test { // # Decrease the secret key by one // sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80 - let sk = SecretKey::from_slice(hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80")).unwrap(); + sk.init_slice(hex_slice_mut!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80")).unwrap(); // "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest()) let nonce = Nonce::deterministic([], &sk); @@ -559,14 +598,6 @@ mod test { assert_eq!(nonce.as_slice(), hex_slice!("355c589ff662c838aee454d62b12c50a87b7e95ede2431c7cfa40b6ba2fddccd")); } - - #[bench] - pub fn sequence_iterate(bh: &mut Bencher) { - let mut s = Secp256k1::new().unwrap(); - let (sk, _) = s.generate_keypair(true); - let mut iter = sk.sequence(true); - bh.iter(|| iter.next()) - } } diff --git a/src/macros.rs b/src/macros.rs index f29bf45..33dad7a 100644 --- a/src/macros.rs +++ b/src/macros.rs @@ -27,6 +27,7 @@ macro_rules! impl_array_newtype( } #[inline] + #[allow(dead_code)] /// Provides an immutable view into the object from index `s` inclusive to `e` exclusive pub fn slice<'a>(&'a self, s: uint, e: uint) -> &'a [$ty] { let &$thing(ref dat) = self; @@ -34,6 +35,7 @@ macro_rules! impl_array_newtype( } #[inline] + #[allow(dead_code)] /// Provides an immutable view into the object, up to index `n` exclusive pub fn slice_to<'a>(&'a self, n: uint) -> &'a [$ty] { let &$thing(ref dat) = self; @@ -41,6 +43,7 @@ macro_rules! impl_array_newtype( } #[inline] + #[allow(dead_code)] /// Provides an immutable view into the object, starting from index `n` pub fn slice_from<'a>(&'a self, n: uint) -> &'a [$ty] { let &$thing(ref dat) = self; @@ -62,6 +65,7 @@ macro_rules! impl_array_newtype( } #[inline] + #[allow(dead_code)] /// Returns the length of the object as an array pub fn len(&self) -> uint { $len } } @@ -129,3 +133,10 @@ macro_rules! hex_slice( ) ) +macro_rules! hex_slice_mut( + ($s:expr) => ( + $s.from_hex().unwrap().as_mut_slice() + ) +) + + diff --git a/src/secp256k1.rs b/src/secp256k1.rs index dd62976..524d2f1 100644 --- a/src/secp256k1.rs +++ b/src/secp256k1.rs @@ -37,6 +37,7 @@ #![warn(missing_doc)] extern crate "rust-crypto" as crypto; +extern crate secretdata; extern crate libc; extern crate serialize; @@ -44,13 +45,9 @@ extern crate sync; extern crate test; use std::intrinsics::copy_nonoverlapping_memory; -use std::io::IoResult; -use std::rand::{OsRng, Rng, SeedableRng}; use libc::c_int; use sync::one::{Once, ONCE_INIT}; -use crypto::fortuna::Fortuna; - mod macros; pub mod constants; pub mod ffi; @@ -135,11 +132,6 @@ pub type Result = ::std::prelude::Result; static mut Secp256k1_init : Once = ONCE_INIT; -/// The secp256k1 engine, used to execute all signature operations -pub struct Secp256k1 { - rng: Fortuna -} - /// Does one-time initialization of the secp256k1 engine. Can be called /// multiple times, and is called by the `Secp256k1` constructor. This /// only needs to be called directly if you are using the library without @@ -153,114 +145,86 @@ pub fn init() { } } -impl Secp256k1 { - /// Constructs a new secp256k1 engine. - pub fn new() -> IoResult { - init(); - let mut osrng = try!(OsRng::new()); - let mut seed = [0, ..2048]; - osrng.fill_bytes(seed.as_mut_slice()); - Ok(Secp256k1 { rng: SeedableRng::from_seed(seed.as_slice()) }) - } - - /// Generates a random keypair. Convenience function for `key::SecretKey::new` - /// and `key::PublicKey::from_secret_key`; call those functions directly for - /// batch key generation. - #[inline] - pub fn generate_keypair(&mut self, compressed: bool) - -> (key::SecretKey, key::PublicKey) { - let sk = key::SecretKey::new(&mut self.rng); - (sk, key::PublicKey::from_secret_key(&sk, compressed)) - } - - /// Generates a random nonce. Convenience function for `key::Nonce::new`; call - /// that function directly for batch nonce generation - #[inline] - pub fn generate_nonce(&mut self) -> key::Nonce { - key::Nonce::new(&mut self.rng) - } - - /// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce` - pub fn sign(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce) - -> Result { - let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE]; - let mut len = constants::MAX_SIGNATURE_SIZE as c_int; - unsafe { - if ffi::secp256k1_ecdsa_sign(msg.as_ptr(), msg.len() as c_int, - sig.as_mut_slice().as_mut_ptr(), &mut len, - sk.as_ptr(), nonce.as_ptr()) != 1 { - return Err(InvalidNonce); - } - // This assertation is probably too late :) - assert!(len as uint <= constants::MAX_SIGNATURE_SIZE); - }; - Ok(Signature(len as uint, sig)) - } +/// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce` +pub fn sign<'a>(msg: &[u8], sk: &key::SecretKey<'a>, nonce: &key::Nonce) + -> Result { + let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE]; + let mut len = constants::MAX_SIGNATURE_SIZE as c_int; + unsafe { + if ffi::secp256k1_ecdsa_sign(msg.as_ptr(), msg.len() as c_int, + sig.as_mut_slice().as_mut_ptr(), &mut len, + sk.as_ptr(), nonce.as_ptr()) != 1 { + return Err(InvalidNonce); + } + // This assertation is probably too late :) + assert!(len as uint <= constants::MAX_SIGNATURE_SIZE); + }; + Ok(Signature(len as uint, sig)) +} /// Constructs a compact signature for `msg` using the secret key `sk` - pub fn sign_compact(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce) - -> Result<(Signature, RecoveryId)> { - let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE]; - let mut recid = 0; - unsafe { - if ffi::secp256k1_ecdsa_sign_compact(msg.as_ptr(), msg.len() as c_int, - sig.as_mut_slice().as_mut_ptr(), sk.as_ptr(), - nonce.as_ptr(), &mut recid) != 1 { - return Err(InvalidNonce); - } - }; - Ok((Signature(constants::MAX_COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid))) - } - - /// Determines the public key for which `sig` is a valid signature for - /// `msg`. Returns through the out-pointer `pubkey`. - pub fn recover_compact(&self, msg: &[u8], sig: &[u8], - compressed: bool, recid: RecoveryId) - -> Result { - let mut pk = key::PublicKey::new(compressed); - let RecoveryId(recid) = recid; - - unsafe { - let mut len = 0; - if ffi::secp256k1_ecdsa_recover_compact(msg.as_ptr(), msg.len() as c_int, - sig.as_ptr(), pk.as_mut_ptr(), &mut len, - if compressed {1} else {0}, - recid) != 1 { - return Err(InvalidSignature); - } - assert_eq!(len as uint, pk.len()); - }; - Ok(pk) - } - - /// Checks that `sig` is a valid ECDSA signature for `msg` using the public - /// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot - /// be used for Bitcoin consensus checking since there are transactions out - /// there with zero-padded signatures that don't fit in the `Signature` type. - /// Use `verify_raw` instead. - #[inline] - pub fn verify(msg: &[u8], sig: &Signature, pk: &key::PublicKey) -> Result<()> { - Secp256k1::verify_raw(msg, sig.as_slice(), pk) - } - - /// Checks that `sig` is a valid ECDSA signature for `msg` using the public - /// key `pubkey`. Returns `Ok(true)` on success. - #[inline] - pub fn verify_raw(msg: &[u8], sig: &[u8], pk: &key::PublicKey) -> Result<()> { - init(); // This is a static function, so we have to init - let res = unsafe { - ffi::secp256k1_ecdsa_verify(msg.as_ptr(), msg.len() as c_int, - sig.as_ptr(), sig.len() as c_int, - pk.as_ptr(), pk.len() as c_int) - }; - - match res { - 1 => Ok(()), - 0 => Err(IncorrectSignature), - -1 => Err(InvalidPublicKey), - -2 => Err(InvalidSignature), - _ => unreachable!() +pub fn sign_compact<'a>(msg: &[u8], sk: &key::SecretKey<'a>, nonce: &key::Nonce) + -> Result<(Signature, RecoveryId)> { + let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE]; + let mut recid = 0; + unsafe { + if ffi::secp256k1_ecdsa_sign_compact(msg.as_ptr(), msg.len() as c_int, + sig.as_mut_slice().as_mut_ptr(), sk.as_ptr(), + nonce.as_ptr(), &mut recid) != 1 { + return Err(InvalidNonce); } + }; + Ok((Signature(constants::MAX_COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid))) +} + +/// Determines the public key for which `sig` is a valid signature for +/// `msg`. Returns through the out-pointer `pubkey`. +pub fn recover_compact(msg: &[u8], sig: &[u8], + compressed: bool, recid: RecoveryId) + -> Result { + let mut pk = key::PublicKey::new(compressed); + let RecoveryId(recid) = recid; + + unsafe { + let mut len = 0; + if ffi::secp256k1_ecdsa_recover_compact(msg.as_ptr(), msg.len() as c_int, + sig.as_ptr(), pk.as_mut_ptr(), &mut len, + if compressed {1} else {0}, + recid) != 1 { + return Err(InvalidSignature); + } + assert_eq!(len as uint, pk.len()); + }; + Ok(pk) +} + +/// Checks that `sig` is a valid ECDSA signature for `msg` using the public +/// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot +/// be used for Bitcoin consensus checking since there are transactions out +/// there with zero-padded signatures that don't fit in the `Signature` type. +/// Use `verify_raw` instead. +#[inline] +pub fn verify(msg: &[u8], sig: &Signature, pk: &key::PublicKey) -> Result<()> { + verify_raw(msg, sig.as_slice(), pk) +} + +/// Checks that `sig` is a valid ECDSA signature for `msg` using the public +/// key `pubkey`. Returns `Ok(true)` on success. +#[inline] +pub fn verify_raw(msg: &[u8], sig: &[u8], pk: &key::PublicKey) -> Result<()> { + init(); // This is a static function, so we have to init + let res = unsafe { + ffi::secp256k1_ecdsa_verify(msg.as_ptr(), msg.len() as c_int, + sig.as_ptr(), sig.len() as c_int, + pk.as_ptr(), pk.len() as c_int) + }; + + match res { + 1 => Ok(()), + 0 => Err(IncorrectSignature), + -1 => Err(InvalidPublicKey), + -2 => Err(InvalidSignature), + _ => unreachable!() } } @@ -272,9 +236,9 @@ mod tests { use test::{Bencher, black_box}; - use key::{PublicKey, Nonce}; - use super::{Secp256k1, Signature}; - use super::{InvalidPublicKey, IncorrectSignature, InvalidSignature}; + use key::{SecretKey, PublicKey, Nonce}; + use super::{verify, sign, sign_compact, recover_compact}; + use super::{Signature, InvalidPublicKey, IncorrectSignature, InvalidSignature}; #[test] fn invalid_pubkey() { @@ -284,126 +248,134 @@ mod tests { rand::task_rng().fill_bytes(msg.as_mut_slice()); - assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidPublicKey)); + assert_eq!(verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidPublicKey)); } #[test] fn valid_pubkey_uncompressed() { - let mut s = Secp256k1::new().unwrap(); - - let (_, pk) = s.generate_keypair(false); + let mut sk = SecretKey::new(); + sk.init_rng(&mut rand::task_rng()); + let pk = PublicKey::from_secret_key(&sk, false); let mut msg = Vec::from_elem(32, 0u8); let sig = Signature::from_slice([0, ..72]).unwrap(); rand::task_rng().fill_bytes(msg.as_mut_slice()); - assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature)); + assert_eq!(verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature)); } #[test] fn valid_pubkey_compressed() { - let mut s = Secp256k1::new().unwrap(); + let mut sk = SecretKey::new(); + sk.init_rng(&mut rand::task_rng()); + let pk = PublicKey::from_secret_key(&sk, true); - let (_, pk) = s.generate_keypair(true); let mut msg = Vec::from_elem(32, 0u8); let sig = Signature::from_slice([0, ..72]).unwrap(); rand::task_rng().fill_bytes(msg.as_mut_slice()); - assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature)); + assert_eq!(verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature)); } #[test] - fn sign() { - let mut s = Secp256k1::new().unwrap(); + fn sign_random() { + let mut rng = rand::task_rng(); + + let mut sk = SecretKey::new(); + sk.init_rng(&mut rng); let mut msg = [0u8, ..32]; - rand::task_rng().fill_bytes(msg); + rng.fill_bytes(msg); - let (sk, _) = s.generate_keypair(false); - let nonce = s.generate_nonce(); + let nonce = Nonce::new(&mut rng); - s.sign(msg.as_slice(), &sk, &nonce).unwrap(); + sign(msg.as_slice(), &sk, &nonce).unwrap(); } #[test] fn sign_and_verify() { - let mut s = Secp256k1::new().unwrap(); + let mut rng = rand::task_rng(); - let mut msg = Vec::from_elem(32, 0u8); - rand::task_rng().fill_bytes(msg.as_mut_slice()); + let mut sk = SecretKey::new(); + sk.init_rng(&mut rng); + let pk = PublicKey::from_secret_key(&sk, true); + let mut msg = [0u8, ..32]; + rng.fill_bytes(msg); + let nonce = Nonce::new(&mut rng); - let (sk, pk) = s.generate_keypair(false); - let nonce = s.generate_nonce(); - - let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap(); - - assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Ok(())); + let sig = sign(msg.as_slice(), &sk, &nonce).unwrap(); + assert_eq!(verify(msg.as_slice(), &sig, &pk), Ok(())); } #[test] fn sign_and_verify_fail() { - let mut s = Secp256k1::new().unwrap(); + let mut rng = rand::task_rng(); - let mut msg = Vec::from_elem(32, 0u8); - rand::task_rng().fill_bytes(msg.as_mut_slice()); + let mut sk = SecretKey::new(); + sk.init_rng(&mut rng); + let pk = PublicKey::from_secret_key(&sk, true); + let mut msg = [0u8, ..32]; + rng.fill_bytes(msg); + let nonce = Nonce::new(&mut rng); - let (sk, pk) = s.generate_keypair(false); - let nonce = s.generate_nonce(); - - let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap(); - - rand::task_rng().fill_bytes(msg.as_mut_slice()); - assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Err(IncorrectSignature)); + let sig = sign(msg.as_slice(), &sk, &nonce).unwrap(); + rng.fill_bytes(msg.as_mut_slice()); + assert_eq!(verify(msg.as_slice(), &sig, &pk), Err(IncorrectSignature)); } #[test] fn sign_compact_with_recovery() { - let mut s = Secp256k1::new().unwrap(); + let mut rng = rand::task_rng(); + let mut sk = SecretKey::new(); + sk.init_rng(&mut rng); + assert!(sk != SecretKey::new()); + let pk = PublicKey::from_secret_key(&sk, false); + let pk_comp = PublicKey::from_secret_key(&sk, true); let mut msg = [0u8, ..32]; - rand::task_rng().fill_bytes(msg.as_mut_slice()); + rng.fill_bytes(msg); + let nonce = Nonce::new(&mut rng); - let (sk, pk) = s.generate_keypair(false); - let nonce = s.generate_nonce(); + let (sig, recid) = sign_compact(msg.as_slice(), &sk, &nonce).unwrap(); - let (sig, recid) = s.sign_compact(msg.as_slice(), &sk, &nonce).unwrap(); - - assert_eq!(s.recover_compact(msg.as_slice(), sig.as_slice(), false, recid), Ok(pk)); + assert_eq!(recover_compact(msg.as_slice(), sig.as_slice(), false, recid), Ok(pk)); + assert_eq!(recover_compact(msg.as_slice(), sig.as_slice(), true, recid), Ok(pk_comp)); } #[test] fn deterministic_sign() { - let mut msg = [0u8, ..32]; - rand::task_rng().fill_bytes(msg.as_mut_slice()); + let mut rng = rand::task_rng(); - let mut s = Secp256k1::new().unwrap(); - let (sk, pk) = s.generate_keypair(true); + let mut sk = SecretKey::new(); + sk.init_rng(&mut rng); + let pk = PublicKey::from_secret_key(&sk, true); + let mut msg = [0u8, ..32]; + rng.fill_bytes(msg); let nonce = Nonce::deterministic(msg, &sk); - let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap(); - - assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Ok(())); + let sig = sign(msg.as_slice(), &sk, &nonce).unwrap(); + assert_eq!(verify(msg.as_slice(), &sig, &pk), Ok(())); } #[bench] pub fn generate_compressed(bh: &mut Bencher) { - let mut s = Secp256k1::new().unwrap(); + let mut rng = rand::task_rng(); + let mut sk = SecretKey::new(); bh.iter( || { - let (sk, pk) = s.generate_keypair(true); - black_box(sk); - black_box(pk); + sk.init_rng(&mut rng); + black_box(PublicKey::from_secret_key(&sk, true)); }); } #[bench] pub fn generate_uncompressed(bh: &mut Bencher) { - let mut s = Secp256k1::new().unwrap(); + let mut rng = rand::task_rng(); + let mut sk = SecretKey::new(); bh.iter( || { - let (sk, pk) = s.generate_keypair(false); - black_box(sk); - black_box(pk); + sk.init_rng(&mut rng); + black_box(PublicKey::from_secret_key(&sk, false)); }); } }