// Bitcoin secp256k1 bindings // Written in 2014 by // Dawid Ciężarkiewicz // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! # Secp256k1 //! Rust bindings for Pieter Wuille's secp256k1 library, which is used for //! fast and accurate manipulation of ECDSA signatures on the secp256k1 //! curve. Such signatures are used extensively by the Bitcoin network //! and its derivatives. //! //! To minimize dependencies, some functions are feature-gated. To generate //! random keys or to re-randomize a context object, compile with the "rand" //! feature. To de/serialize objects with serde, compile with "serde". //! //! Where possible, the bindings use the Rust type system to ensure that //! API usage errors are impossible. For example, the library uses context //! objects that contain precomputation tables which are created on object //! construction. Since this is a slow operation (10+ milliseconds, vs ~50 //! microseconds for typical crypto operations, on a 2.70 Ghz i7-6820HQ) //! the tables are optional, giving a performance boost for users who only //! care about signing, only care about verification, or only care about //! parsing. In the upstream library, if you attempt to sign a message using //! a context that does not support this, it will trigger an assertion //! failure and terminate the program. In `rust-secp256k1`, this is caught //! at compile-time; in fact, it is impossible to compile code that will //! trigger any assertion failures in the upstream library. //! //! ```rust //! extern crate secp256k1; //! # #[cfg(feature="rand")] //! extern crate rand; //! //! # //! # fn main() { //! # #[cfg(feature="rand")] { //! use rand::OsRng; //! use secp256k1::{Secp256k1, Message}; //! //! let secp = Secp256k1::new(); //! let mut rng = OsRng::new().expect("OsRng"); //! let (secret_key, public_key) = secp.generate_keypair(&mut rng); //! let message = Message::from_slice(&[0xab; 32]).expect("32 bytes"); //! //! let sig = secp.sign(&message, &secret_key); //! assert!(secp.verify(&message, &sig, &public_key).is_ok()); //! # } } //! ``` //! //! The above code requires `rust-secp256k1` to be compiled with the `rand` //! feature enabled, to get access to [`generate_keypair`](struct.Secp256k1.html#method.generate_keypair) //! Alternately, keys can be parsed from slices, like //! //! ```rust //! # fn main() { //! use self::secp256k1::{Secp256k1, Message, SecretKey, PublicKey}; //! //! let secp = Secp256k1::new(); //! let secret_key = SecretKey::from_slice(&[0xcd; 32]).expect("32 bytes, within curve order"); //! let public_key = PublicKey::from_secret_key(&secp, &secret_key); //! let message = Message::from_slice(&[0xab; 32]).expect("32 bytes"); //! //! let sig = secp.sign(&message, &secret_key); //! assert!(secp.verify(&message, &sig, &public_key).is_ok()); //! # } //! ``` //! //! Users who only want to verify signatures can use a cheaper context, like so: //! //! ```rust //! # fn main() { //! use secp256k1::{Secp256k1, Message, Signature, PublicKey}; //! //! let secp = Secp256k1::verification_only(); //! //! let public_key = PublicKey::from_slice(&[ //! 0x02, //! 0xc6, 0x6e, 0x7d, 0x89, 0x66, 0xb5, 0xc5, 0x55, //! 0xaf, 0x58, 0x05, 0x98, 0x9d, 0xa9, 0xfb, 0xf8, //! 0xdb, 0x95, 0xe1, 0x56, 0x31, 0xce, 0x35, 0x8c, //! 0x3a, 0x17, 0x10, 0xc9, 0x62, 0x67, 0x90, 0x63, //! ]).expect("public keys must be 33 or 65 bytes, serialized according to SEC 2"); //! //! let message = Message::from_slice(&[ //! 0xaa, 0xdf, 0x7d, 0xe7, 0x82, 0x03, 0x4f, 0xbe, //! 0x3d, 0x3d, 0xb2, 0xcb, 0x13, 0xc0, 0xcd, 0x91, //! 0xbf, 0x41, 0xcb, 0x08, 0xfa, 0xc7, 0xbd, 0x61, //! 0xd5, 0x44, 0x53, 0xcf, 0x6e, 0x82, 0xb4, 0x50, //! ]).expect("messages must be 32 bytes and are expected to be hashes"); //! //! let sig = Signature::from_compact(&[ //! 0xdc, 0x4d, 0xc2, 0x64, 0xa9, 0xfe, 0xf1, 0x7a, //! 0x3f, 0x25, 0x34, 0x49, 0xcf, 0x8c, 0x39, 0x7a, //! 0xb6, 0xf1, 0x6f, 0xb3, 0xd6, 0x3d, 0x86, 0x94, //! 0x0b, 0x55, 0x86, 0x82, 0x3d, 0xfd, 0x02, 0xae, //! 0x3b, 0x46, 0x1b, 0xb4, 0x33, 0x6b, 0x5e, 0xcb, //! 0xae, 0xfd, 0x66, 0x27, 0xaa, 0x92, 0x2e, 0xfc, //! 0x04, 0x8f, 0xec, 0x0c, 0x88, 0x1c, 0x10, 0xc4, //! 0xc9, 0x42, 0x8f, 0xca, 0x69, 0xc1, 0x32, 0xa2, //! ]).expect("compact signatures are 64 bytes; DER signatures are 68-72 bytes"); //! //! assert!(secp.verify(&message, &sig, &public_key).is_ok()); //! # } //! ``` //! //! Observe that the same code using, say [`signing_only`](struct.Secp256k1.html#method.signing_only) //! to generate a context would simply not compile. //! #![crate_type = "lib"] #![crate_type = "rlib"] #![crate_type = "dylib"] #![crate_name = "secp256k1"] // Coding conventions #![deny(non_upper_case_globals)] #![deny(non_camel_case_types)] #![deny(non_snake_case)] #![deny(unused_mut)] #![warn(missing_docs)] #![cfg_attr(feature = "dev", allow(unstable_features))] #![cfg_attr(feature = "dev", feature(plugin))] #![cfg_attr(feature = "dev", plugin(clippy))] #![cfg_attr(all(test, feature = "unstable"), feature(test))] #[cfg(all(test, feature = "unstable"))] extern crate test; #[cfg(any(test, feature = "rand"))] pub extern crate rand; #[cfg(any(test, feature = "rand_core"))] extern crate rand_core; #[cfg(feature = "serde")] pub extern crate serde; #[cfg(all(test, feature = "serde"))] extern crate serde_test; use std::{error, fmt, ptr, str}; #[cfg(any(test, feature = "rand"))] use rand::RngCore; #[macro_use] mod macros; pub mod constants; pub mod ecdh; pub mod ffi; pub mod key; pub use key::SecretKey; pub use key::PublicKey; use std::marker::PhantomData; /// A tag used for recovering the public key from a compact signature #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct RecoveryId(i32); /// An ECDSA signature #[derive(Copy, Clone, PartialEq, Eq)] pub struct Signature(ffi::Signature); impl fmt::Debug for Signature { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self, f) } } impl fmt::Display for Signature { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut v = [0; 72]; let mut len = v.len() as usize; unsafe { let err = ffi::secp256k1_ecdsa_signature_serialize_der( ffi::secp256k1_context_no_precomp, v.as_mut_ptr(), &mut len, self.as_ptr() ); debug_assert!(err == 1); } for ch in &v[..] { write!(f, "{:02x}", *ch)?; } Ok(()) } } impl str::FromStr for Signature { type Err = Error; fn from_str(s: &str) -> Result { let mut res = [0; 72]; match from_hex(s, &mut res) { Ok(x) => Signature::from_der(&res[0..x]), _ => Err(Error::InvalidSignature), } } } /// An ECDSA signature with a recovery ID for pubkey recovery #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct RecoverableSignature(ffi::RecoverableSignature); /// Trait describing something that promises to be a 32-byte random number; in particular, /// it has negligible probability of being zero or overflowing the group order. Such objects /// may be converted to `Message`s without any error paths. pub trait ThirtyTwoByteHash { /// Converts the object into a 32-byte array fn into_32(self) -> [u8; 32]; } impl RecoveryId { #[inline] /// Allows library users to create valid recovery IDs from i32. pub fn from_i32(id: i32) -> Result { match id { 0 | 1 | 2 | 3 => Ok(RecoveryId(id)), _ => Err(Error::InvalidRecoveryId) } } #[inline] /// Allows library users to convert recovery IDs to i32. pub fn to_i32(&self) -> i32 { self.0 } } impl Signature { #[inline] /// Converts a DER-encoded byte slice to a signature pub fn from_der(data: &[u8]) -> Result { let mut ret = unsafe { ffi::Signature::blank() }; unsafe { if ffi::secp256k1_ecdsa_signature_parse_der( ffi::secp256k1_context_no_precomp, &mut ret, data.as_ptr(), data.len() as usize, ) == 1 { Ok(Signature(ret)) } else { Err(Error::InvalidSignature) } } } /// Converts a 64-byte compact-encoded byte slice to a signature pub fn from_compact(data: &[u8]) -> Result { let mut ret = unsafe { ffi::Signature::blank() }; if data.len() != 64 { return Err(Error::InvalidSignature) } unsafe { if ffi::secp256k1_ecdsa_signature_parse_compact( ffi::secp256k1_context_no_precomp, &mut ret, data.as_ptr(), ) == 1 { Ok(Signature(ret)) } else { Err(Error::InvalidSignature) } } } /// Converts a "lax DER"-encoded byte slice to a signature. This is basically /// only useful for validating signatures in the Bitcoin blockchain from before /// 2016. It should never be used in new applications. This library does not /// support serializing to this "format" pub fn from_der_lax(data: &[u8]) -> Result { unsafe { let mut ret = ffi::Signature::blank(); if ffi::ecdsa_signature_parse_der_lax( ffi::secp256k1_context_no_precomp, &mut ret, data.as_ptr(), data.len() as usize, ) == 1 { Ok(Signature(ret)) } else { Err(Error::InvalidSignature) } } } /// Normalizes a signature to a "low S" form. In ECDSA, signatures are /// of the form (r, s) where r and s are numbers lying in some finite /// field. The verification equation will pass for (r, s) iff it passes /// for (r, -s), so it is possible to ``modify'' signatures in transit /// by flipping the sign of s. This does not constitute a forgery since /// the signed message still cannot be changed, but for some applications, /// changing even the signature itself can be a problem. Such applications /// require a "strong signature". It is believed that ECDSA is a strong /// signature except for this ambiguity in the sign of s, so to accommodate /// these applications libsecp256k1 will only accept signatures for which /// s is in the lower half of the field range. This eliminates the /// ambiguity. /// /// However, for some systems, signatures with high s-values are considered /// valid. (For example, parsing the historic Bitcoin blockchain requires /// this.) For these applications we provide this normalization function, /// which ensures that the s value lies in the lower half of its range. pub fn normalize_s(&mut self) { unsafe { // Ignore return value, which indicates whether the sig // was already normalized. We don't care. ffi::secp256k1_ecdsa_signature_normalize( ffi::secp256k1_context_no_precomp, self.as_mut_ptr(), self.as_ptr(), ); } } /// Obtains a raw pointer suitable for use with FFI functions #[inline] pub fn as_ptr(&self) -> *const ffi::Signature { &self.0 as *const _ } /// Obtains a raw mutable pointer suitable for use with FFI functions #[inline] pub fn as_mut_ptr(&mut self) -> *mut ffi::Signature { &mut self.0 as *mut _ } #[inline] /// Serializes the signature in DER format pub fn serialize_der(&self) -> Vec { let mut ret = Vec::with_capacity(72); let mut len: usize = ret.capacity() as usize; unsafe { let err = ffi::secp256k1_ecdsa_signature_serialize_der( ffi::secp256k1_context_no_precomp, ret.as_mut_ptr(), &mut len, self.as_ptr(), ); debug_assert!(err == 1); ret.set_len(len as usize); } ret } #[inline] /// Serializes the signature in compact format pub fn serialize_compact(&self) -> [u8; 64] { let mut ret = [0; 64]; unsafe { let err = ffi::secp256k1_ecdsa_signature_serialize_compact( ffi::secp256k1_context_no_precomp, ret.as_mut_ptr(), self.as_ptr(), ); debug_assert!(err == 1); } ret } } /// Creates a new signature from a FFI signature impl From for Signature { #[inline] fn from(sig: ffi::Signature) -> Signature { Signature(sig) } } impl RecoverableSignature { #[inline] /// Converts a compact-encoded byte slice to a signature. This /// representation is nonstandard and defined by the libsecp256k1 /// library. pub fn from_compact(data: &[u8], recid: RecoveryId) -> Result { let mut ret = unsafe { ffi::RecoverableSignature::blank() }; unsafe { if data.len() != 64 { Err(Error::InvalidSignature) } else if ffi::secp256k1_ecdsa_recoverable_signature_parse_compact( ffi::secp256k1_context_no_precomp, &mut ret, data.as_ptr(), recid.0, ) == 1 { Ok(RecoverableSignature(ret)) } else { Err(Error::InvalidSignature) } } } /// Obtains a raw pointer suitable for use with FFI functions #[inline] pub fn as_ptr(&self) -> *const ffi::RecoverableSignature { &self.0 as *const _ } #[inline] /// Serializes the recoverable signature in compact format pub fn serialize_compact(&self) -> (RecoveryId, [u8; 64]) { let mut ret = [0u8; 64]; let mut recid = 0i32; unsafe { let err = ffi::secp256k1_ecdsa_recoverable_signature_serialize_compact( ffi::secp256k1_context_no_precomp, ret.as_mut_ptr(), &mut recid, self.as_ptr(), ); assert!(err == 1); } (RecoveryId(recid), ret) } /// Converts a recoverable signature to a non-recoverable one (this is needed /// for verification #[inline] pub fn to_standard(&self) -> Signature { let mut ret = unsafe { ffi::Signature::blank() }; unsafe { let err = ffi::secp256k1_ecdsa_recoverable_signature_convert( ffi::secp256k1_context_no_precomp, &mut ret, self.as_ptr(), ); assert!(err == 1); } Signature(ret) } } /// Creates a new recoverable signature from a FFI one impl From for RecoverableSignature { #[inline] fn from(sig: ffi::RecoverableSignature) -> RecoverableSignature { RecoverableSignature(sig) } } #[cfg(feature = "serde")] impl ::serde::Serialize for Signature { fn serialize(&self, s: S) -> Result { s.serialize_bytes(&self.serialize_der()) } } #[cfg(feature = "serde")] impl<'de> ::serde::Deserialize<'de> for Signature { fn deserialize>(d: D) -> Result { use ::serde::de::Error; let sl: &[u8] = ::serde::Deserialize::deserialize(d)?; Signature::from_der(sl).map_err(D::Error::custom) } } /// A (hashed) message input to an ECDSA signature pub struct Message([u8; constants::MESSAGE_SIZE]); impl_array_newtype!(Message, u8, constants::MESSAGE_SIZE); impl_pretty_debug!(Message); impl Message { /// Converts a `MESSAGE_SIZE`-byte slice to a message object #[inline] pub fn from_slice(data: &[u8]) -> Result { if data == &[0; constants::MESSAGE_SIZE] { return Err(Error::InvalidMessage); } match data.len() { constants::MESSAGE_SIZE => { let mut ret = [0; constants::MESSAGE_SIZE]; ret[..].copy_from_slice(data); Ok(Message(ret)) } _ => Err(Error::InvalidMessage) } } } impl From for Message { /// Converts a 32-byte hash directly to a message without error paths fn from(t: T) -> Message { Message(t.into_32()) } } /// An ECDSA error #[derive(Copy, PartialEq, Eq, Clone, Debug)] pub enum Error { /// Signature failed verification IncorrectSignature, /// Badly sized message ("messages" are actually fixed-sized digests; see the `MESSAGE_SIZE` /// constant) InvalidMessage, /// Bad public key InvalidPublicKey, /// Bad signature InvalidSignature, /// Bad secret key InvalidSecretKey, /// Bad recovery id InvalidRecoveryId, /// Invalid tweak for add_*_assign or mul_*_assign InvalidTweak, } // Passthrough Debug to Display, since errors should be user-visible impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { f.write_str(error::Error::description(self)) } } impl error::Error for Error { fn cause(&self) -> Option<&error::Error> { None } fn description(&self) -> &str { match *self { Error::IncorrectSignature => "secp: signature failed verification", Error::InvalidMessage => "secp: message was not 32 bytes (do you need to hash?)", Error::InvalidPublicKey => "secp: malformed public key", Error::InvalidSignature => "secp: malformed signature", Error::InvalidSecretKey => "secp: malformed or out-of-range secret key", Error::InvalidRecoveryId => "secp: bad recovery id", Error::InvalidTweak => "secp: bad tweak", } } } /// Marker trait for indicating that an instance of `Secp256k1` can be used for signing. pub trait Signing {} /// Marker trait for indicating that an instance of `Secp256k1` can be used for verification. pub trait Verification {} /// Represents the set of capabilities needed for signing. pub struct SignOnly {} /// Represents the set of capabilities needed for verification. pub struct VerifyOnly {} /// Represents the set of all capabilities. pub struct All {} impl Signing for SignOnly {} impl Signing for All {} impl Verification for VerifyOnly {} impl Verification for All {} /// The secp256k1 engine, used to execute all signature operations pub struct Secp256k1 { ctx: *mut ffi::Context, phantom: PhantomData } // The underlying secp context does not contain any references to memory it does not own unsafe impl Send for Secp256k1 {} // The API does not permit any mutation of `Secp256k1` objects except through `&mut` references unsafe impl Sync for Secp256k1 {} impl Clone for Secp256k1 { fn clone(&self) -> Secp256k1 { Secp256k1 { ctx: unsafe { ffi::secp256k1_context_clone(self.ctx) }, phantom: self.phantom } } } impl PartialEq for Secp256k1 { fn eq(&self, _other: &Secp256k1) -> bool { true } } impl Eq for Secp256k1 { } impl Drop for Secp256k1 { fn drop(&mut self) { unsafe { ffi::secp256k1_context_destroy(self.ctx); } } } impl fmt::Debug for Secp256k1 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "", self.ctx) } } impl fmt::Debug for Secp256k1 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "", self.ctx) } } impl fmt::Debug for Secp256k1 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "", self.ctx) } } impl Secp256k1 { /// Creates a new Secp256k1 context with all capabilities pub fn new() -> Secp256k1 { Secp256k1 { ctx: unsafe { ffi::secp256k1_context_create(ffi::SECP256K1_START_SIGN | ffi::SECP256K1_START_VERIFY) }, phantom: PhantomData } } } impl Secp256k1 { /// Creates a new Secp256k1 context that can only be used for signing pub fn signing_only() -> Secp256k1 { Secp256k1 { ctx: unsafe { ffi::secp256k1_context_create(ffi::SECP256K1_START_SIGN) }, phantom: PhantomData } } } impl Secp256k1 { /// Creates a new Secp256k1 context that can only be used for verification pub fn verification_only() -> Secp256k1 { Secp256k1 { ctx: unsafe { ffi::secp256k1_context_create(ffi::SECP256K1_START_VERIFY) }, phantom: PhantomData } } } impl Secp256k1 { /// (Re)randomizes the Secp256k1 context for cheap sidechannel resistance; /// see comment in libsecp256k1 commit d2275795f by Gregory Maxwell. Requires /// compilation with "rand" feature. #[cfg(any(test, feature = "rand"))] pub fn randomize(&mut self, rng: &mut R) { let mut seed = [0; 32]; rng.fill_bytes(&mut seed); unsafe { let err = ffi::secp256k1_context_randomize(self.ctx, seed.as_ptr()); // This function cannot fail; it has an error return for future-proofing. // We do not expose this error since it is impossible to hit, and we have // precedent for not exposing impossible errors (for example in // `PublicKey::from_secret_key` where it is impossible to create an invalid // secret key through the API.) // However, if this DOES fail, the result is potentially weaker side-channel // resistance, which is deadly and undetectable, so we take out the entire // thread to be on the safe side. assert!(err == 1); } } } impl Secp256k1 { /// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce /// Requires a signing-capable context. pub fn sign(&self, msg: &Message, sk: &key::SecretKey) -> Signature { let mut ret = unsafe { ffi::Signature::blank() }; unsafe { // We can assume the return value because it's not possible to construct // an invalid signature from a valid `Message` and `SecretKey` assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_ptr(), sk.as_ptr(), ffi::secp256k1_nonce_function_rfc6979, ptr::null()), 1); } Signature::from(ret) } /// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce /// Requires a signing-capable context. pub fn sign_recoverable(&self, msg: &Message, sk: &key::SecretKey) -> RecoverableSignature { let mut ret = unsafe { ffi::RecoverableSignature::blank() }; unsafe { // We can assume the return value because it's not possible to construct // an invalid signature from a valid `Message` and `SecretKey` assert_eq!( ffi::secp256k1_ecdsa_sign_recoverable( self.ctx, &mut ret, msg.as_ptr(), sk.as_ptr(), ffi::secp256k1_nonce_function_rfc6979, ptr::null() ), 1 ); } RecoverableSignature::from(ret) } /// Generates a random keypair. Convenience function for `key::SecretKey::new` /// and `key::PublicKey::from_secret_key`; call those functions directly for /// batch key generation. Requires a signing-capable context. Requires compilation /// with the "rand" feature. #[inline] #[cfg(any(test, feature = "rand"))] pub fn generate_keypair(&self, rng: &mut R) -> (key::SecretKey, key::PublicKey) { let sk = key::SecretKey::new(rng); let pk = key::PublicKey::from_secret_key(self, &sk); (sk, pk) } } impl Secp256k1 { /// Determines the public key for which `sig` is a valid signature for /// `msg`. Requires a verify-capable context. pub fn recover(&self, msg: &Message, sig: &RecoverableSignature) -> Result { let mut pk = unsafe { ffi::PublicKey::blank() }; unsafe { if ffi::secp256k1_ecdsa_recover(self.ctx, &mut pk, sig.as_ptr(), msg.as_ptr()) != 1 { return Err(Error::InvalidSignature); } }; Ok(key::PublicKey::from(pk)) } /// Checks that `sig` is a valid ECDSA signature for `msg` using the public /// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot /// be used for Bitcoin consensus checking since there may exist signatures /// which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a /// verify-capable context. #[inline] pub fn verify(&self, msg: &Message, sig: &Signature, pk: &key::PublicKey) -> Result<(), Error> { unsafe { if ffi::secp256k1_ecdsa_verify(self.ctx, sig.as_ptr(), msg.as_ptr(), pk.as_ptr()) == 0 { Err(Error::IncorrectSignature) } else { Ok(()) } } } } /// Utility function used to parse hex into a target u8 buffer. Returns /// the number of bytes converted or an error if it encounters an invalid /// character or unexpected end of string. fn from_hex(hex: &str, target: &mut [u8]) -> Result { if hex.len() % 2 == 1 || hex.len() > target.len() * 2 { return Err(()); } let mut b = 0; let mut idx = 0; for c in hex.bytes() { b <<= 4; match c { b'A'...b'F' => b |= c - b'A' + 10, b'a'...b'f' => b |= c - b'a' + 10, b'0'...b'9' => b |= c - b'0', _ => return Err(()), } if (idx & 1) == 1 { target[idx / 2] = b; b = 0; } idx += 1; } Ok(idx / 2) } #[cfg(test)] mod tests { use rand::{RngCore, thread_rng}; use std::str::FromStr; use key::{SecretKey, PublicKey}; use super::from_hex; use super::constants; use super::{Secp256k1, Signature, RecoverableSignature, Message, RecoveryId}; use super::Error::{InvalidMessage, IncorrectSignature, InvalidSignature}; macro_rules! hex { ($hex:expr) => ({ let mut result = vec![0; $hex.len() / 2]; from_hex($hex, &mut result).expect("valid hex string"); result }); } #[test] fn capabilities() { let sign = Secp256k1::signing_only(); let vrfy = Secp256k1::verification_only(); let full = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); // Try key generation let (sk, pk) = full.generate_keypair(&mut thread_rng()); // Try signing assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk)); assert_eq!(sign.sign_recoverable(&msg, &sk), full.sign_recoverable(&msg, &sk)); let sig = full.sign(&msg, &sk); let sigr = full.sign_recoverable(&msg, &sk); // Try verifying assert!(vrfy.verify(&msg, &sig, &pk).is_ok()); assert!(full.verify(&msg, &sig, &pk).is_ok()); // Try pk recovery assert!(vrfy.recover(&msg, &sigr).is_ok()); assert!(full.recover(&msg, &sigr).is_ok()); assert_eq!(vrfy.recover(&msg, &sigr), full.recover(&msg, &sigr)); assert_eq!(full.recover(&msg, &sigr), Ok(pk)); // Check that we can produce keys from slices with no precomputation let (pk_slice, sk_slice) = (&pk.serialize(), &sk[..]); let new_pk = PublicKey::from_slice(pk_slice).unwrap(); let new_sk = SecretKey::from_slice(sk_slice).unwrap(); assert_eq!(sk, new_sk); assert_eq!(pk, new_pk); } #[test] fn recid_sanity_check() { let one = RecoveryId(1); assert_eq!(one, one.clone()); } #[test] fn sign() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let one = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]; let sk = SecretKey::from_slice(&one).unwrap(); let msg = Message::from_slice(&one).unwrap(); let sig = s.sign_recoverable(&msg, &sk); assert_eq!(Ok(sig), RecoverableSignature::from_compact(&[ 0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f, 0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6, 0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65, 0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98, 0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8, 0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f, 0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06, 0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89], RecoveryId(1))) } #[test] fn signature_serialize_roundtrip() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0; 32]; for _ in 0..100 { thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, _) = s.generate_keypair(&mut thread_rng()); let sig1 = s.sign(&msg, &sk); let der = sig1.serialize_der(); let sig2 = Signature::from_der(&der[..]).unwrap(); assert_eq!(sig1, sig2); let compact = sig1.serialize_compact(); let sig2 = Signature::from_compact(&compact[..]).unwrap(); assert_eq!(sig1, sig2); assert!(Signature::from_compact(&der[..]).is_err()); assert!(Signature::from_compact(&compact[0..4]).is_err()); assert!(Signature::from_der(&compact[..]).is_err()); assert!(Signature::from_der(&der[0..4]).is_err()); } } #[test] fn signature_display() { let hex_str = "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45"; let byte_str = hex!(hex_str); assert_eq!( Signature::from_der(&byte_str).expect("byte str decode"), Signature::from_str(&hex_str).expect("byte str decode") ); let sig = Signature::from_str(&hex_str).expect("byte str decode"); assert_eq!(&sig.to_string(), hex_str); assert_eq!(&format!("{:?}", sig), hex_str); assert!(Signature::from_str( "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab4" ).is_err()); assert!(Signature::from_str( "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab" ).is_err()); assert!(Signature::from_str( "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eabxx" ).is_err()); assert!(Signature::from_str( "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45" ).is_err()); } #[test] fn signature_lax_der() { macro_rules! check_lax_sig( ($hex:expr) => ({ let sig = hex!($hex); assert!(Signature::from_der_lax(&sig[..]).is_ok()); }) ); check_lax_sig!("304402204c2dd8a9b6f8d425fcd8ee9a20ac73b619906a6367eac6cb93e70375225ec0160220356878eff111ff3663d7e6bf08947f94443845e0dcc54961664d922f7660b80c"); check_lax_sig!("304402202ea9d51c7173b1d96d331bd41b3d1b4e78e66148e64ed5992abd6ca66290321c0220628c47517e049b3e41509e9d71e480a0cdc766f8cdec265ef0017711c1b5336f"); check_lax_sig!("3045022100bf8e050c85ffa1c313108ad8c482c4849027937916374617af3f2e9a881861c9022023f65814222cab09d5ec41032ce9c72ca96a5676020736614de7b78a4e55325a"); check_lax_sig!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45"); check_lax_sig!("3046022100eaa5f90483eb20224616775891397d47efa64c68b969db1dacb1c30acdfc50aa022100cf9903bbefb1c8000cf482b0aeeb5af19287af20bd794de11d82716f9bae3db1"); check_lax_sig!("3045022047d512bc85842ac463ca3b669b62666ab8672ee60725b6c06759e476cebdc6c102210083805e93bd941770109bcc797784a71db9e48913f702c56e60b1c3e2ff379a60"); check_lax_sig!("3044022023ee4e95151b2fbbb08a72f35babe02830d14d54bd7ed1320e4751751d1baa4802206235245254f58fd1be6ff19ca291817da76da65c2f6d81d654b5185dd86b8acf"); } #[test] fn sign_and_verify() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0; 32]; for _ in 0..100 { thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()); let sig = s.sign(&msg, &sk); assert_eq!(s.verify(&msg, &sig, &pk), Ok(())); } } #[test] fn sign_and_verify_extreme() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); // Wild keys: 1, CURVE_ORDER - 1 // Wild msgs: 1, CURVE_ORDER - 1 let mut wild_keys = [[0; 32]; 2]; let mut wild_msgs = [[0; 32]; 2]; wild_keys[0][0] = 1; wild_msgs[0][0] = 1; use constants; wild_keys[1][..].copy_from_slice(&constants::CURVE_ORDER[..]); wild_msgs[1][..].copy_from_slice(&constants::CURVE_ORDER[..]); wild_keys[1][0] -= 1; wild_msgs[1][0] -= 1; for key in wild_keys.iter().map(|k| SecretKey::from_slice(&k[..]).unwrap()) { for msg in wild_msgs.iter().map(|m| Message::from_slice(&m[..]).unwrap()) { let sig = s.sign(&msg, &key); let pk = PublicKey::from_secret_key(&s, &key); assert_eq!(s.verify(&msg, &sig, &pk), Ok(())); } } } #[test] fn sign_and_verify_fail() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()); let sigr = s.sign_recoverable(&msg, &sk); let sig = sigr.to_standard(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature)); let recovered_key = s.recover(&msg, &sigr).unwrap(); assert!(recovered_key != pk); } #[test] fn sign_with_recovery() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()); let sig = s.sign_recoverable(&msg, &sk); assert_eq!(s.recover(&msg, &sig), Ok(pk)); } #[test] fn bad_recovery() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let msg = Message::from_slice(&[0x55; 32]).unwrap(); // Zero is not a valid sig let sig = RecoverableSignature::from_compact(&[0; 64], RecoveryId(0)).unwrap(); assert_eq!(s.recover(&msg, &sig), Err(InvalidSignature)); // ...but 111..111 is let sig = RecoverableSignature::from_compact(&[1; 64], RecoveryId(0)).unwrap(); assert!(s.recover(&msg, &sig).is_ok()); } #[test] fn test_bad_slice() { assert_eq!(Signature::from_der(&[0; constants::MAX_SIGNATURE_SIZE + 1]), Err(InvalidSignature)); assert_eq!(Signature::from_der(&[0; constants::MAX_SIGNATURE_SIZE]), Err(InvalidSignature)); assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE - 1]), Err(InvalidMessage)); assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE + 1]), Err(InvalidMessage)); assert_eq!( Message::from_slice(&[0; constants::MESSAGE_SIZE]), Err(InvalidMessage) ); assert!(Message::from_slice(&[1; constants::MESSAGE_SIZE]).is_ok()); } #[test] fn test_debug_output() { let sig = RecoverableSignature::from_compact(&[ 0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f, 0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6, 0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65, 0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98, 0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8, 0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f, 0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06, 0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89], RecoveryId(1)).unwrap(); assert_eq!(&format!("{:?}", sig), "RecoverableSignature(98882e09f4ed6dc3659e43fc771e0cafa60b1f926f2b77041f744721adff7366898cb609d0ee128d06ae9aa3c48020ff9f705e02f80e1280a8ade05216971a4c01)"); let msg = Message([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 255]); assert_eq!(&format!("{:?}", msg), "Message(0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fff)"); } #[test] fn test_recov_sig_serialize_compact() { let recid_in = RecoveryId(1); let bytes_in = &[ 0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f, 0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6, 0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65, 0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98, 0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8, 0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f, 0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06, 0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89]; let sig = RecoverableSignature::from_compact( bytes_in, recid_in, ).unwrap(); let (recid_out, bytes_out) = sig.serialize_compact(); assert_eq!(recid_in, recid_out); assert_eq!(&bytes_in[..], &bytes_out[..]); } #[test] fn test_recov_id_conversion_between_i32() { assert!(RecoveryId::from_i32(-1).is_err()); assert!(RecoveryId::from_i32(0).is_ok()); assert!(RecoveryId::from_i32(1).is_ok()); assert!(RecoveryId::from_i32(2).is_ok()); assert!(RecoveryId::from_i32(3).is_ok()); assert!(RecoveryId::from_i32(4).is_err()); let id0 = RecoveryId::from_i32(0).unwrap(); assert_eq!(id0.to_i32(), 0); let id1 = RecoveryId(1); assert_eq!(id1.to_i32(), 1); } #[test] fn test_low_s() { // nb this is a transaction on testnet // txid 8ccc87b72d766ab3128f03176bb1c98293f2d1f85ebfaf07b82cc81ea6891fa9 // input number 3 let sig = hex!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45"); let pk = hex!("031ee99d2b786ab3b0991325f2de8489246a6a3fdb700f6d0511b1d80cf5f4cd43"); let msg = hex!("a4965ca63b7d8562736ceec36dfa5a11bf426eb65be8ea3f7a49ae363032da0d"); let secp = Secp256k1::new(); let mut sig = Signature::from_der(&sig[..]).unwrap(); let pk = PublicKey::from_slice(&pk[..]).unwrap(); let msg = Message::from_slice(&msg[..]).unwrap(); // without normalization we expect this will fail assert_eq!(secp.verify(&msg, &sig, &pk), Err(IncorrectSignature)); // after normalization it should pass sig.normalize_s(); assert_eq!(secp.verify(&msg, &sig, &pk), Ok(())); } #[cfg(feature = "serde")] #[test] fn test_signature_serde() { use serde_test::{Token, assert_tokens}; let s = Secp256k1::new(); let msg = Message::from_slice(&[1; 32]).unwrap(); let sk = SecretKey::from_slice(&[2; 32]).unwrap(); let sig = s.sign(&msg, &sk); static SIG_BYTES: [u8; 71] = [ 48, 69, 2, 33, 0, 157, 11, 173, 87, 103, 25, 211, 42, 231, 107, 237, 179, 76, 119, 72, 102, 103, 60, 189, 227, 244, 225, 41, 81, 85, 92, 148, 8, 230, 206, 119, 75, 2, 32, 40, 118, 231, 16, 47, 32, 79, 107, 254, 226, 108, 150, 124, 57, 38, 206, 112, 44, 249, 125, 75, 1, 0, 98, 225, 147, 247, 99, 25, 15, 103, 118 ]; assert_tokens(&sig, &[Token::BorrowedBytes(&SIG_BYTES[..])]); } } #[cfg(all(test, feature = "unstable"))] mod benches { use rand::{Rng, thread_rng}; use test::{Bencher, black_box}; use super::{Secp256k1, Message}; #[bench] pub fn generate(bh: &mut Bencher) { struct CounterRng(u32); impl Rng for CounterRng { fn next_u32(&mut self) -> u32 { self.0 += 1; self.0 } } let s = Secp256k1::new(); let mut r = CounterRng(0); bh.iter( || { let (sk, pk) = s.generate_keypair(&mut r); black_box(sk); black_box(pk); }); } #[bench] pub fn bench_sign(bh: &mut Bencher) { let s = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, _) = s.generate_keypair(&mut thread_rng()); bh.iter(|| { let sig = s.sign(&msg, &sk); black_box(sig); }); } #[bench] pub fn bench_verify(bh: &mut Bencher) { let s = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()); let sig = s.sign(&msg, &sk); bh.iter(|| { let res = s.verify(&msg, &sig, &pk).unwrap(); black_box(res); }); } #[bench] pub fn bench_recover(bh: &mut Bencher) { let s = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, _) = s.generate_keypair(&mut thread_rng()); let sig = s.sign_recoverable(&msg, &sk); bh.iter(|| { let res = s.recover(&msg, &sig).unwrap(); black_box(res); }); } }