// Bitcoin secp256k1 bindings // Written in 2014 by // Dawid Ciężarkiewicz // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! # Secp256k1 //! Rust bindings for Pieter Wuille's secp256k1 library, which is used for //! fast and accurate manipulation of ECDSA signatures on the secp256k1 //! curve. Such signatures are used extensively by the Bitcoin network //! and its derivatives. //! #![crate_type = "lib"] #![crate_type = "rlib"] #![crate_type = "dylib"] #![crate_name = "bitcoin-secp256k1-rs"] #![comment = "Bindings and wrapper functions for bitcoin secp256k1 library."] #![feature(phase)] #![feature(macro_rules)] #![feature(globs)] // for tests only // Coding conventions #![deny(non_uppercase_statics)] #![deny(non_camel_case_types)] #![deny(non_snake_case)] #![deny(unused_mut)] #![warn(missing_doc)] extern crate "rust-crypto" as crypto; extern crate libc; extern crate serialize; extern crate sync; extern crate test; use std::intrinsics::copy_nonoverlapping_memory; use std::io::IoResult; use std::rand::{OsRng, Rng, SeedableRng}; use libc::c_int; use sync::one::{Once, ONCE_INIT}; use crypto::fortuna::Fortuna; mod macros; pub mod constants; pub mod ffi; pub mod key; /// A tag used for recovering the public key from a compact signature pub struct RecoveryId(i32); /// An ECDSA signature pub struct Signature(uint, [u8, ..constants::MAX_SIGNATURE_SIZE]); impl Signature { /// Converts the signature to a raw pointer suitable for use /// with the FFI functions #[inline] pub fn as_ptr(&self) -> *const u8 { let &Signature(_, ref data) = self; data.as_slice().as_ptr() } /// Converts the signature to a mutable raw pointer suitable for use /// with the FFI functions #[inline] pub fn as_mut_ptr(&mut self) -> *mut u8 { let &Signature(_, ref mut data) = self; data.as_mut_slice().as_mut_ptr() } /// Converts the signature to a byte slice suitable for verification #[inline] pub fn as_slice<'a>(&'a self) -> &'a [u8] { let &Signature(len, ref data) = self; data.slice_to(len) } /// Returns the length of the signature #[inline] pub fn len(&self) -> uint { let &Signature(len, _) = self; len } /// Converts a byte slice to a signature #[inline] pub fn from_slice(data: &[u8]) -> Result { if data.len() <= constants::MAX_SIGNATURE_SIZE { let mut ret = [0, ..constants::MAX_SIGNATURE_SIZE]; unsafe { copy_nonoverlapping_memory(ret.as_mut_ptr(), data.as_ptr(), data.len()); } Ok(Signature(data.len(), ret)) } else { Err(InvalidSignature) } } } /// An ECDSA error #[deriving(PartialEq, Eq, Clone, Show)] pub enum Error { /// Signature failed verification IncorrectSignature, /// Bad public key InvalidPublicKey, /// Bad signature InvalidSignature, /// Bad secret key InvalidSecretKey, /// Bad nonce InvalidNonce, /// Boolean-returning function returned the wrong boolean Unknown } /// Result type pub type Result = ::std::prelude::Result; static mut Secp256k1_init : Once = ONCE_INIT; /// The secp256k1 engine, used to execute all signature operations pub struct Secp256k1 { rng: Fortuna } /// Does one-time initialization of the secp256k1 engine. Can be called /// multiple times, and is called by the `Secp256k1` constructor. This /// only needs to be called directly if you are using the library without /// a `Secp256k1` object, e.g. batch key generation through /// `key::PublicKey::from_secret_key`. pub fn init() { unsafe { Secp256k1_init.doit(|| { ffi::secp256k1_start(); }); } } impl Secp256k1 { /// Constructs a new secp256k1 engine. pub fn new() -> IoResult { init(); let mut osrng = try!(OsRng::new()); let mut seed = [0, ..2048]; osrng.fill_bytes(seed.as_mut_slice()); Ok(Secp256k1 { rng: SeedableRng::from_seed(seed.as_slice()) }) } /// Generates a random keypair. Convenience function for `key::SecretKey::new` /// and `key::PublicKey::from_secret_key`; call those functions directly for /// batch key generation. #[inline] pub fn generate_keypair(&mut self, compressed: bool) -> (key::SecretKey, key::PublicKey) { let sk = key::SecretKey::new(&mut self.rng); (sk, key::PublicKey::from_secret_key(&sk, compressed)) } /// Generates a random nonce. Convenience function for `key::Nonce::new`; call /// that function directly for batch nonce generation #[inline] pub fn generate_nonce(&mut self) -> key::Nonce { key::Nonce::new(&mut self.rng) } /// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce` pub fn sign(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce) -> Result { let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE]; let mut len = constants::MAX_SIGNATURE_SIZE as c_int; unsafe { if ffi::secp256k1_ecdsa_sign(msg.as_ptr(), msg.len() as c_int, sig.as_mut_slice().as_mut_ptr(), &mut len, sk.as_ptr(), nonce.as_ptr()) != 1 { return Err(InvalidNonce); } // This assertation is probably too late :) assert!(len as uint <= constants::MAX_SIGNATURE_SIZE); }; Ok(Signature(len as uint, sig)) } /// Constructs a compact signature for `msg` using the secret key `sk` pub fn sign_compact(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce) -> Result<(Signature, RecoveryId)> { let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE]; let mut recid = 0; unsafe { if ffi::secp256k1_ecdsa_sign_compact(msg.as_ptr(), msg.len() as c_int, sig.as_mut_slice().as_mut_ptr(), sk.as_ptr(), nonce.as_ptr(), &mut recid) != 1 { return Err(InvalidNonce); } }; Ok((Signature(constants::MAX_COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid))) } /// Determines the public key for which `sig` is a valid signature for /// `msg`. Returns through the out-pointer `pubkey`. pub fn recover_compact(&self, msg: &[u8], sig: &[u8], compressed: bool, recid: RecoveryId) -> Result { let mut pk = key::PublicKey::new(compressed); let RecoveryId(recid) = recid; unsafe { let mut len = 0; if ffi::secp256k1_ecdsa_recover_compact(msg.as_ptr(), msg.len() as c_int, sig.as_ptr(), pk.as_mut_ptr(), &mut len, if compressed {1} else {0}, recid) != 1 { return Err(InvalidSignature); } assert_eq!(len as uint, pk.len()); }; Ok(pk) } /// Checks that `sig` is a valid ECDSA signature for `msg` using the public /// key `pubkey`. Returns `Ok(true)` on success. #[inline] pub fn verify(msg: &[u8], sig: &Signature, pk: &key::PublicKey) -> Result<()> { init(); // This is a static function, so we have to init let res = unsafe { ffi::secp256k1_ecdsa_verify(msg.as_ptr(), msg.len() as c_int, sig.as_ptr(), sig.len() as c_int, pk.as_ptr(), pk.len() as c_int) }; match res { 1 => Ok(()), 0 => Err(IncorrectSignature), -1 => Err(InvalidPublicKey), -2 => Err(InvalidSignature), _ => unreachable!() } } } #[cfg(test)] mod tests { use std::rand; use std::rand::Rng; use test::{Bencher, black_box}; use key::{PublicKey, Nonce}; use super::{Secp256k1, Signature}; use super::{InvalidPublicKey, IncorrectSignature, InvalidSignature}; #[test] fn invalid_pubkey() { let mut msg = Vec::from_elem(32, 0u8); let sig = Signature::from_slice([0, ..72]).unwrap(); let pk = PublicKey::new(true); rand::task_rng().fill_bytes(msg.as_mut_slice()); assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidPublicKey)); } #[test] fn valid_pubkey_uncompressed() { let mut s = Secp256k1::new().unwrap(); let (_, pk) = s.generate_keypair(false); let mut msg = Vec::from_elem(32, 0u8); let sig = Signature::from_slice([0, ..72]).unwrap(); rand::task_rng().fill_bytes(msg.as_mut_slice()); assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature)); } #[test] fn valid_pubkey_compressed() { let mut s = Secp256k1::new().unwrap(); let (_, pk) = s.generate_keypair(true); let mut msg = Vec::from_elem(32, 0u8); let sig = Signature::from_slice([0, ..72]).unwrap(); rand::task_rng().fill_bytes(msg.as_mut_slice()); assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature)); } #[test] fn sign() { let mut s = Secp256k1::new().unwrap(); let mut msg = [0u8, ..32]; rand::task_rng().fill_bytes(msg); let (sk, _) = s.generate_keypair(false); let nonce = s.generate_nonce(); s.sign(msg.as_slice(), &sk, &nonce).unwrap(); } #[test] fn sign_and_verify() { let mut s = Secp256k1::new().unwrap(); let mut msg = Vec::from_elem(32, 0u8); rand::task_rng().fill_bytes(msg.as_mut_slice()); let (sk, pk) = s.generate_keypair(false); let nonce = s.generate_nonce(); let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap(); assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Ok(())); } #[test] fn sign_and_verify_fail() { let mut s = Secp256k1::new().unwrap(); let mut msg = Vec::from_elem(32, 0u8); rand::task_rng().fill_bytes(msg.as_mut_slice()); let (sk, pk) = s.generate_keypair(false); let nonce = s.generate_nonce(); let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap(); rand::task_rng().fill_bytes(msg.as_mut_slice()); assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Err(IncorrectSignature)); } #[test] fn sign_compact_with_recovery() { let mut s = Secp256k1::new().unwrap(); let mut msg = [0u8, ..32]; rand::task_rng().fill_bytes(msg.as_mut_slice()); let (sk, pk) = s.generate_keypair(false); let nonce = s.generate_nonce(); let (sig, recid) = s.sign_compact(msg.as_slice(), &sk, &nonce).unwrap(); assert_eq!(s.recover_compact(msg.as_slice(), sig.as_slice(), false, recid), Ok(pk)); } #[test] fn deterministic_sign() { let mut msg = [0u8, ..32]; rand::task_rng().fill_bytes(msg.as_mut_slice()); let mut s = Secp256k1::new().unwrap(); let (sk, pk) = s.generate_keypair(true); let nonce = Nonce::deterministic(msg, &sk); let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap(); assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Ok(())); } #[bench] pub fn generate_compressed(bh: &mut Bencher) { let mut s = Secp256k1::new().unwrap(); bh.iter( || { let (sk, pk) = s.generate_keypair(true); black_box(sk); black_box(pk); }); } #[bench] pub fn generate_uncompressed(bh: &mut Bencher) { let mut s = Secp256k1::new().unwrap(); bh.iter( || { let (sk, pk) = s.generate_keypair(false); black_box(sk); black_box(pk); }); } }