
Blockchain Acceleration Using
FPGAs - Elliptic curves,
zk-SNARKs, and VDFs

Ben Devlin
September 30th 2019

Presentation Outline
● Introduction

○ Self introduction
○ FPGAs

● FPGA acceleration project
○ Equihash
○ Elliptic curve cryptography

■ secp256k1 engine (transparent transactions)
○ zk-SNARKs

■ bls12-381 pairing coprocessor (shielded transactions)
○ Future direction

● VDFs
○ Overview, example use case

● Conclusion
● Acknowledgments

2

Self introduction
● Graduated from Massey University, New Zealand

with BE in computer systems
● University of Tokyo, Japan in EE, with Ph.D. in

Electronic Engineering, focus was on
asynchronous circuits design and new FPGA
architectures, RSA acceleration

● First worked at Xilinx in FPGA architecture
research group in California, afterwards at Tower
Research (HFT) in New York

● Currently on one year non-compete
● Was able to work on Zcash grant project for

FPGA acceleration
3

Field Programmable Gate Array
● “Field Programmable” - Integrated chip that can be configured after

manufacturing - as opposed to application specific integrated circuit (ASIC)
● Wide usage in many applications

○ Often not consumer visible

● Recently has become more available
○ Amazon AWS F1 instances, ~$1.65 an hour to rent
○ High level synthesis (HLS), SDK driven flow

4

FPGAs
● Consists of array of logic gates and routing interconnects, and configuration

memory
● Programs written in hardware-description language (SystemVerilog, VHDL) and

then compiled (synthesis, place & route) into a chip image (bitstream)
● Can implement complex circuits

○ 8.938M Logic Cells, 1,976 IO pins, 165MB on chip RAM, 20B+ transistors (Xilinx VU19P)
○ Access 16nm, 7nm technology
○ Will have hard digital signal processors (DSP), ARM CPU cores, PCIe gen4 controllers, artificial

intelligence engines

5

FPGAs
● Circuits are created by

connecting routing
wires to blocks

● Performance will
depend on the
worst-case timing
between flip-flops
(registers)

● Usually 100’s - 400’s
MHz

○ Much slower than
3GHz+ modern CPU

6

FPGA Acceleration Targets
● FPGA acceleration is ideal for tasks that

○ Can be parallelized
■ FPGA can instantiate 1000’s of modules in

parallel
○ Contain custom logic not easily implemented on a

CPU
■ i.e. 381 bit data path, hash mixer functions

○ Not memory bandwidth bound
■ FPGAs will have 100’s of megabits on board
■ HBM / DDR allows for GB’s of memory but

latency starts to take a hit
○ Does not require a lot of communication from SW to

FPGA
■ PCIe can be 100’s to 1000’s of ns

7

FPGA acceleration project
● Goal to develop FPGA code to accelerate Zcash

blockchain
○ Focus on improving blockchain (not developing a miner)
○ Develop open source code code that doesn't exist
○ Research

● Three main goals
○ Equihash

■ Block header verification
○ Transparent transaction verification

■ ECDSA on secp256k1
○ Shielded transaction verification (zk-SNARK)

■ Pairings on bls12-381

8

Top level of FPGA design
● Top level of FPGA has control unit for

interfacing with SW
○ Developed interfaces USB-UART + python

lib (Bittware board) and PCIe + cpp library
(for AWS)

○ Uses messages with common header and
custom payload to communicate with SW

● FPGA has optional accelerators that
are enabled or disabled during build

9

typedef __packed__ struct {

 uint32_t cmd_type;

 uint32_t len;

} fpga_header_t;

typedef __packed__ struct {

 fpga_header_t hdr;

 uint64_t index;

 uint8_t result_mask; // [0] == DIFFICULTY_FAIL, [1] ==

XOR_NON_ZERO, [2] == BAD_IDX_ORDER, [3] == BAD_ZERO_ORDER;

} verify_equihash_rpl_t;

FPGA internal connections use SystemVerilog interfaces

● All connections on the FPGA use interfaces
○ Allows for back pressure
○ Source holds data when receiver ready is low, receiver only takes data when valid is high
○ Similar to AXI stream

● Easy to add resource arbitrators and have common blocks shared
● Example “packet” shown

10

FPGA supports modularity with resource arbitrators

● Control signal grows by ceil_log2(n) as the index is appended by control logic
● Optional pipelining registers so so provide better performance

○ Otherwise ready signal from sink to source needs to be combinatorial (line wire delay)

11

Equihash

12

Equihash proof of work
● Zcash proof of work, generalization of the birthday problem and requires

finding colliding hash values
● Has parameters n and k to adjust the algorithm memory and time

requirements. Currently Zcash uses n=200, k=9

13

● Algorithm flow:
○ Generate hashes of the block header, increasing index, and a

nonce
○ Need 2n/(k+1)+1 hashes (220 x 25B which is ~50MB RAM), was

originally thought to be ASIC resistant, but ASICs exist now.
Has been talked about a plan to move to n=144, k=5 which
would require 225 x 25B hashes which is ~800MB RAM

○ Then you need to find 2k hashes so that the XOR equals 0, as
well as some index ordering and duplicate restrictions

○ Resulting block header with solution is run through SHA256d
and checked with difficulty filter

Accelerating Equihash verification
● Block header contains miners Equihash solution, we want to design a FPGA

circuit that can check the conditions:
○ Hash list XORs to zero (solution check)
○ Order is followed (tree nodes have n bits 0)
○ No duplicate indexes
○ Difficulty filter passes

● Can be easily parallelized
● Need to implement

○ High performance BLAKE2b core (hash function used in Zcash)
○ Hash map
○ SHA256d
○ Control logic

14

Equihash engine
● Input is streamed in on

64bit bus and split into
three

● Using 200MHz and
300MHz clock domains

● Hash map uses two RAMs
and 32bit CRC for hash
function

● XOR check decodes
solution list and performs
BLAKE2b hashes

○ 64 clock cycles for a hash
result (two full rounds), new
result each clock cycle 15

Equihash engine results
● 207x speedup compared to 3GHz CPU (benchmark via cycle counter)

running Zcashd code
○ Able to exploit parallelism in BLAKE2b (64 calculations at once)

16

LUT FF DSP BRAM

87914 (3%) 54362 (3%) 0 6 (0.2%)

FPGA clock
cycles

FPGA throughput CPU cycles 3GHz CPU throughput

Solution check 600 @200MHz

Index order check 356 @200MHz

Duplicate check 1443 @300MHz

Difficulty check 1068 @300MHz

Equihash solution
verification

1068 @300MHz 207K op/s ~2868040 ~1K op/s

Elliptic curve cryptography

17

Elliptic curve cryptography (ECC)
● An approach to public-key cryptography first proposed in 1985, based on

elliptic curves over finite fields
○ Two keys, one public Q, (Q = x.G) and one private (x). G is the generator or “base” point

● Relies on the fact that it is easy to calculate Q if you know x and G, but very
difficult to calculate x only knowing Q and G

● The advantage of ECC compared to RSA is that it requires smaller key sizes
(bits) for equivalent levels of security

○ e.g. 2048 bit key sizes when using RSA in ECC only requires 224 bit keys

18

Elliptic curves over fields
● We will operate on integer values on a curve modulo a prime p

○ This is F(p) or Fp

● Also exists elliptic curves over binary finite fields
○ F(2m)
○ This makes the hardware implementation much faster (as there is no carry

propagation), but are less well studied and possibly not as secure as prime
field curves

○ Both curves we accelerate in this project are over prime fields

19
y2 = x3 + 4x + 20 y2 = x3 + 4x + 20 mod p

Curve operations & ECDSA
● RSA relies on modular exponentiation (cd

mod n), which can be calculated by repeated
multiplications and squarings

● ECC relies on point multiplications (Q = x.G)
○ x is an integer scalar, G is a generator point for the

curve (so has x and y coordinates), Q is the resulting
point on the curve

○ These can be calculated by repeated point doubling
and additions.

● Elliptic Curve Digital Signature Algorithm
(ECDSA) allows us to use ECC to securely
verify a person's signature of a hashed
message

20

1. w = s-1 mod n
2. u1 = (h * w) mod n
3. u2 = (r * w) mod n
4. (x2, y2) = (u1.G + u2.Q) mod n

ECC multiplication = point double and point add
● To calculate Q = x.G we use repeated point_add and

point_double depending on the binary values in x
● Point addition and doubling formulas can using affine

coordinates involve expensive divisions (require an
inversion), so we use Jacobian coordinates (X, Y, Z),
x = X/Z2 and y = Y/Z3

○ This way we don’t have to do any divisions

21

N ← G
Q ← 0
for i from 0 to m do
 if xi = 1 then
 Q ← point_add(Q, N)
 N ← point_double(N)
return Q

Secp256k1
● secp256k1 is an elliptic curve with 256 bit prime

modulus
● Originally used by Bitcoin, Zcash also uses for

transparent transaction signature
● Several hardware friendly features

○ p = 2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1
■ Can do modulo reduction with bit shifts and additions, do

not need to use Barret or Montgomery reduction for
arithmetic in Fp

○ Has an efficient endomorph
■ A point multiplication Q = x.G can be split into two half size

multiplications which can be done in parallel, x = x1 + x2ƛ
(mod n)

22

FPGA secp256k1 engine
● Top level has control logic (CL) for parsing ECDSA messages and returning

results
● For calculating inverses we use the binary GCD algorithm which only involves

additions, subtractions, and bit shifts
● We use the endomorph and run the 4 point multiplications for ECDSA

23

Secp256k1 Fp arithmetic unit
● We have a single multiplication, addition, and

subtraction block
○ Shared via resource arbitration

● Multiplier uses 2 stages of Karatsuba algorithm
recursions, each recursion takes 3 clock cycles

○ x.y = z2B
2m + z1B

m + z0
■ z2 = x1.y1
■ z1 = (x0-x1).(y0-y1) + z2 + z0
■ z0 = x0.y0

● Modular reduction is either
○ mod p = fast reduction only using shifts and

additions, 3 clocks
○ mod n = Barrets algorithm, requires 2 more

multiplications and 2 subtractions
○ Simple 256 bit shift (used during endomorph

calculation)
● Subtraction and adder use double pipeline to

check if we need to add or subtract modulus 24

Secp256k1 engine results
● Achieved 1.5x speedup

○ Not as great likely due to only 4x parallelism or heavily optimized SW

25

LUT FF DSP BRAM

secp256k1 ECDSA core (without endomorph enabled) 57697 (4.4%) 31751 (1.2%) 144 (1.6%) 2 (0.1%)

secp256k1 ECDSA core (with endomorph enabled) 98792 (7.5%) 61909 (2.1%) 144 (1.6%) 2 (0.1%)

FPGA clock cycles FPGA throughput CPU cycles 3GHz CPU
throughput

Point double mod p 54 3.7M op/s

Point add mod p 104 1.9M op/s

Inversion mod n 708 282K op/s

secp256k1 ECDSA core (without
endomorph enabled)

20224 9.9K op/s/core 223350 13.4K op/s

secp256k1 ECDSA core (endomorph
enabled)

10100 20K op/s/core

zk-SNARKs

26

zk-SNARKs

27

● Stands for Zero-Knowledge
Succinct Non-Interactive
Argument of Knowledge

● Allows you to create a proof
that you know something
without revealing any
knowledge

● Allows for shielded transactions
on the Zcash blockchain

● Different proving systems,
complexity is in ECC operations
(point mult, pairing), FFT
calculations https://electriccoin.co/blog/zsl/

zk-SNARKs used by Zcash blockchain
● In October 2018 Zcash had a

network upgrade “Sapling”
(client v2)

● Greatly improves performance
of shielded transactions
(zk-SNARKs)

● Uses Groth16 proving system,
over bls12-381 curve

○ Verification pairing operations
○ Creating a proof is multi-exp and

FFTs

● We decided to accelerate the
bls12-381 curve (pairings and
multi-exp)

28https://electriccoin.co/blog/reducing-shielded-proving-time-in-sapling/

https://electriccoin.co/blog/reducing-shielded-proving-time-in-sapling/

Pairings on elliptic curves
● Compared to previous operations, we

now add a lot more complexity
● We are operating on points in G1 and G2

which are in fields Fp and Fp2, with the
pairing producing an element in Fp12

● In addition to point addition and
doubling, we need to run Miller loop and
final exponentiation algorithms

● We tower the extension fields for
efficiency

● Need to be able to perform more
complex arithmetic on all extension
fields 29

Towered arithmetic
● Adopting a tower of extensions (such as Fp12 → Fp6 → Fp2 → Fp) has

advantage that we can perform Karatsuba multiplication methods rather than
schoolbook at each level

○ For example a schoolbook multiplication of a single Fp12 element would be 144 Fp
multiplications, but using Karatsuba algorithms and towering we only need 54

● We implement towered arithmetic using equations similar to point addition
and doubling

● Each block on FPGA contains interfaces to lower extension field arithmetic
● Field elements are stored as streams on the FPGA, where each coefficient is

streamed in ascending order so we never have busses wider than the base
field element size (e.g. 381 or 762 bits)

○ e.g. Fp6 is streamed →{c0, c1, c2, c3, c4, c5}→
○ Arithmetic with multiple elements is streamed →{a0b0, a1b1, a2b2, a3b3, a4b4, a5b5}→ 30

ECC point double on extension field
● Example of point double

formula, same as formula for
base group Fp, just all
multiplications / etc are in Fp2

● FPGA streaming architecture
allows for point operations in
any field

31

 function fp2_jb_point_t dbl_fp2_jb_point(input fp2_jb_point_t p);
 fe2_t I_X, I_Y, I_Z, A, B, C, D, X, Y, Z;

 I_X = p.x;
 I_Y = p.y;
 I_Z = p.z;
 A = fe2_mul(I_Y, I_Y);
 B = fe2_mul(fe2_mul(4, I_X), A);
 C = fe2_mul(fe2_mul(8, A), A);
 D = fe2_mul(fe2_mul(3, I_X), I_X);
 X = fe2_mul(D, D);
 X = fe2_sub(X, fe2_mul(2, B));

 Y = fe2_mul(D, fe2_sub(B, X));
 Y = fe2_sub(Y, C);
 Z = fe2_mul(fe2_mul(2, I_Y), I_Z);

 return {X, Y, Z};
 endfunction

Group operations
● In order to compute the optimal ate pairing on FPGA, need to be able to:

○ Miller loop (result is a Fp12 element)
■ Point doubling in Fp2 (these can be reused to implement point multiplication)

■ Point addition in Fp2

■ Addition, Subtraction, Multiplication in Fp2

■ Squaring in Fp12, sparse multiplication in Fp12

○ Final exponentiation, (p12 −1)/r (result is a Fp12 element)
■ Inversion in Fp12, Fp6, Fp2, Fp
■ Exponentiation of Fp12

● Repeated Fp12 squarings and Fp12 multiplications
■ Frobenius map

● Multiplications in Fp2, Fp
■ Subtraction in Fp12, multiplication in Fp12

32

Bls12-381 curve
● The elliptic curve Zcash uses for zk-SNARKs
● 381 bit prime, embedding degree k=12
● Pairing-friendly curve

○ z-value of bls curve has low hamming weight, makes Miller loop more efficient
○ k is not too large

■ k is the smallest integer such that r divides qk-1

● Security level ~128 bits, due to subgroup order r ~ 2255

● Prime modulus is not any special form we can take advantage of, so
arithmetic needs to use Barret / Montgomery / Lookup table algorithms for
reduction

● Rust implementation: https://github.com/zkcrypto/bls12_381

33

https://github.com/zkcrypto/bls12_381

Bls12-381 coprocessor
● Decided to implement

coprocessor than has a
custom instruction set, data
memory, instruction memory

○ Can be programmed by SW to
run more complex flows

● Data memory is in slots, one
slot is 381 bit + metadata

● Coprocessor can send
interrupts to SW

● Both pairings, multi-pairings,
and multi-exp are possible

34

POINT_MULT(0x20, a, b, c)

MILLER_LOOP(0x21, a, b, c)

FINAL_EXP(0x22, a, b)

ATE_PAIRING(0x23, a, b, c)

NOOP_WAIT (0x0)

COPY_REG(0x1, a, b)

JUMP(0x2, a)

JUMP_IF_EQ(0x4, a, b, c)

JUMP_NONZERO_SUB(0x5, a, b)

SEND_INTERRUPT(0x6, a, b)

MUL_ELEMENT (0x10, a, b, c)

ADD_ELEMENT (0x11, a, b, c)

SUB_ELEMENT (0x12, a, b, c)

INV_ELEMENT(0x13, a, b)

0 Scalar

1 Fp element

2 Fp2 element

3 Fp12 element

4 Fp point AF

5 Fp point JB

6 Fp2 point AF

7 Fp2 point JB

Bls12-381 coprocessor diagram
● SW can access entire coprocessor memory region via AXI-lite interface
● FPGA can initiate sends to SW via interrupt instructions on AXI-4
● Towered arithmetic is shared
● Point multiplication instruction reuses Miller loop blocks

35

Bls12-381 towered arithmetic
● Can represent

towered arithmetic by
equations on lower
levels

● Addition and
subtraction don’t need
anything special, just
add/sub each
coefficient

● Fp multiplier is main
bottleneck

36

Bls12-381 Fp multiplier
● Originally we used Karatsuba multiplier with Barret reduction algorithm

○ But this was taking ~30 clock cycles

● Replaced with parallel multiplier + carry look-ahead trees + RAM for reduction
○ Takes 9 clock cycles (3x speedup)
○ Could be better if we could use redundant form

37

Bls12-381 coprocessor results
● Achieved 2.9x compared to benchmarked Rust code on 3.7GHz CPU

38

LUT FF DSP RAM

327k (25.1%) 226.6k (8.7%) 345 (3.8%) 133 URAM (13.8%), 231 BRAM (11.4%), 14164 LUTRAM (2.3%)

FPGA clock cycles FPGA throughput (op/s) 3.7GHz CPU throughput
(op/s)

Fp inversion 2685 74.5K 109K

Fp12 inversion 3565 56K 60.5K

Fp multiplication + modulo reduction 9 22M 20.8M

Fp12 multiplication + modulo reduction 270 740K 228K

Fp point multiplication 49800 (dedicated
Fp2 point mult block)

4016 4926

Fp2 point multiplication 62064 (dedicated
Fp2 point mult block)

3222 1499

Optimal Ate pairing miller loop stage 38844 5148 1747

Optimal Ate pairing final exponentiation stage 87800 2277 854

Optimal Ate pairing total 126644 1580 553

AWS F1 FPGA
Instance

● Developed and
tested flow to
simulation / build
the Zcash FPGA
on AWS

● Created public AFI
(FPGA image)

● All documented in
user guide in
GitHub

39

[centos@ip-172-31-15-165 runtime]$ sudo ./test_zcash

INFO: AFI PCI Vendor ID: 0x1d0f, Device ID 0xf000

...

INFO: FPGA capability register: 0xc [ENB_VERIFY_EQUIHASH_200_9: 0, ENB_VERIFY_EQUIHASH_144_5 0, ENB_VERIFY_SECP256K1_SIG 1,

ENB_BLS12_381 1]

INFO: Finished initializing FPGA.

INFO: Testing secp256k1 core...

INFO: write_stream::Wrote 176 bytes of data

INFO: Read FIFO shows 19 bytes waiting to be read from FPGA

INFO: Read 20 bytes from read_stream()

INFO: verify_secp256k1_sig_rpl.hdr.cmd = 0x80000101

INFO: verify_secp256k1_sig_rpl.bm = 0x0

INFO: verify_secp256k1_sig_rpl.index = 0xa

INFO: verify_secp256k1_sig_rpl.cycle_cnt = 0x2de5

INFO: Testing bls12_381 coprocessor...

INFO: Resetting instruction memory

INFO: Resetting data memory reset

INFO: Set BLS12_381 current instruction slot to 0 (was 7)

INFO: Set BLS12_381 current instruction slot to 1 (was 0)

INFO: Read FIFO shows 64 bytes waiting to be read from FPGA

INFO: Read 64 bytes from read_stream()

INFO: Read FIFO shows 592 bytes waiting to be read from FPGA

INFO: Read 592 bytes from read_stream()

INFO: BLS12_381 current instruction slot is 7

INFO: Data slot is now 7

slot 0, pt: 0, data:0x000a

slot 1, pt: 3, data:0x04fb0f149dd925d2c590a960936763e519c2b62e14c7759f96672cd852194325904197b0b19c6b528ab33566946af39b

slot 2, pt: 3, data:0x185ef728cf41a1b7b700b7e445f0b372bc29e370bc227d443c70ae9dbcf73fee8acedbd317a286a53266562d817269c0

slot 3, pt: 3, data:0x03a3734dbeb064bf4bc4a03f945a4921e49d04ab8d45fd753a28b8fa082616b4b17bbcb685e455ff3bf8f60c3bd32a0c

slot 4, pt: 3, data:0x1409cebef9ef393aa00f2ac64673675521e8fc8fddaf90976e607e62a740ac59c3dddf95a6de4fba15beb30c43d4e3f8

slot 5, pt: 3, data:0x1692a61ce5f4d7a093b2c46aa4bca6c4a66cf873d405ebc9c35d8aa639763720177b23beffaf522d5e41d3c5310ea333

slot 6, pt: 3, data:0x081abd33a78d31eb8d4c1bb3baab0529bb7baf1103d848b4cead1a8e0aa7a7b260fbe79c67dbe41ca4d65ba8a54a72b6

slot 7, pt: 3, data:0x0900410bb2751d0a6af0fe175dcf9d864ecaac463c6218745b543f9e06289922434ee446030923a3e4c4473b4e3b1914

slot 8, pt: 3, data:0x113286dee21c9c63a458898beb35914dc8daaac453441e7114b21af7b5f47d559879d477cf2a9cbd5b40c86becd07128

slot 9, pt: 3, data:0x06d8046c6b3424c4cd2d72ce98d279f2290a28a87e8664cb0040580d0c485f34df45267f8c215dcbcd862787ab555c7e

slot 10, pt: 3, data:0x0f6b8b52b2b5d0661cbf232820a257b8c5594309c01c2a45e64c6a7142301e4fb36e6e16b5a85bd2e437599d103c3ace

slot 11, pt: 3, data:0x017f1c95cf79b22b459599ea57e613e00cb75e35de1f837814a93b443c54241015ac9761f8fb20a44512ff5cfc04ac7f

slot 12, pt: 3, data:0x079ab7b345eb23c944c957a36a6b74c37537163d4cbf73bad9751de1dd9c68ef72cb21447e259880f72a871c3eda1b0c

INFO: All tests passed!

VDFs
● A Verifiable Delay Functions (VDF) is a function that takes some

medium-large quantity of non-parallelizable work to compute, but can be
verified very quickly

● Good points for FPGA acceleration
○ Memory is not bottleneck
○ Custom data path
○ Not a lot of communication required between FPGA and SW
○ Compared to CPU can get 10-20x

■ CPU took 3 years vs FPGA 2 months to solve 1999 MIT’s time capsule problem (~80
trillion repeated squarings) - was expected to take 30 years originally

● Compared to ASIC maybe ~10x slower (but not 100x)
○ Due to fact this can’t be parallelized, so ASIC just has advantage of no programmability →

smaller delays → faster clock

● Useful for proof of history, guaranteeing some bound of runtime
40

VDFs- randomness on the blockchain in Ethereum 2.0
● Being able to have a trustworthy source of reliable random values on the

blockchain is a big plus
○ Can be used for a proof of stake system where you need to random select a block to be added to the

blockchain

● RANDAO is a scheme that can be used to generate random numbers by having
participants each submit their own random number (can’t be trusted), but then a
central system combines them to produce a trusted random number

○ But the problem is if a dishonest user withholds their number after seeing everyones else because
they know it can affect the randomness

● Can be solved with VDFs - you specify the maximum time a participant has to
submit their random number (e.g. 5 min), and then the actual random number to
be published is the result of a 100min VDF

○ We can produce a reliable bound on the run time even when compared to ASIC

41

Conclusions
● Developed three main projects on the FPGA

○ Equihash verification → 207x speedup
■ Can exploit parallelism in BLAKE2b and required checks 💚

○ Transparent transactions (secp256k1 engine) → 1.5x speedup
■ Less opportunity for parallelism, 256 bit data pipeline is not so far from native

implementation on CPU (already 15x disadvantage) ❌
■ Multiple cores could increase FPGA advantage 💚

○ Shielded transactions (bls12-381 coprocessor) → 2.9x speedup
■ Pairing operation has more parallelism 💚
■ 381 bit data pipeline favours more custom approach 💚
■ Able to implement high performance modulo reduction 💚

○ All modules enabled uses 58% LUT, 17% DSP, 27% BRAM

● All code is open source and released under GPL-3 license
○ Designed to use interfaces and equations, so can be easily ported to other curves or used in

other projects
42

Future direction
● zk-SNARKs also use FFTs for creating proofs which would be good

candidates for FPGA acceleration
○ Focus on parallelisms in multi-exp for greater speedups

● Other curves
○ Zcash’s Halo or Bitcoin’s Bulletproof are emerging technologies, don’t use pairings but do use

ECC point multiplications

● Optimizing underlying arithmetic on FPGA
○ Use redundant form or RNS

43

Acknowledgements

We would like to thank the Zcash Foundation for supporting this work with a grant,
and especially show our gratitude for all the valuable feedback and guidance
provided from Josh Cincinnati, Ian Munoz, George Tankersley, Henry de Valence,
Deirdre Connolly, Jack Grigg, and Sonya Mann.

44

