
Zcash FPGA acceleration engine
Version 1.1.x release

Ben Devlin
bsdevlin@gmail.com

Github repo: ​https://github.com/bsdevlin/zcash-fpga/

Release history 3

Terms used 4

Overview 5
Zcash FPGA project 5
Interfaces and FPGA hardware 5
Project goals 6

Phase 1 6
Phase 2 6
Optional goals / Future work 7

Implementation 8
Overview 8
FPGA Memory Map 8
Streaming commands 8

SW to FPGA 9
reset_fpga 9
get_fpga_status 9
verify_equihash 9
verify_secp256k1_sig 9

FPGA to SW 10
reset_fpga_rpl 10
fpga_status_rpl 10
fpga_ignore_rpl 11
verify_equihash_rpl 11
verify_secp256k1_sig_rpl 11
bls12_381_interrupt_rpl 11

FPGA command capability register 12
FPGA Architecture 12

Overview of blocks in the system 12
Interface module 13

AWS (Amazon) 13
VHH (Bittware) 13

Equihash Verification Engine 13
Overview 13

mailto:bsdevlin@gmail.com
https://github.com/bsdevlin/zcash-fpga/

Block diagram 14
Performance evaluation 14

FPGA resources 14
Clock cycles 14

Transparent Signature Verification Engine (secp256k1 ECDSA core) 15
Overview 15
Block diagram 16
Performance evaluation 16

FPGA resources 16
Clock cycles 16

Comparison to other FPGA work 17
Future Optimizations 17

BLS12-381 Coprocessor (zk-SNARK accelerator) 17
Overview 17
Instructions 18
Memory Map 19
Architecture 20
Performance Comparison 21

FPGA resources 21
Clock cycles 21

Future Optimizations 21

User Guide 22
Running Simulations 22

Module level simulations 22
AWS Board level 22

Usage with a local FPGA board 22
Usage on AWS 22

Building the FPGA image 23
Loading FPGA image 24
Rust interface 24
Startup test program 24
FPGA debug 24
Existing AFIs 24

Conclusions 26

Appendix 27
Example decoding Zcash block #346 27

Release history
● v1.1.x

○ First major release of the code, includes many reusable logic cores, along with the equihash
engine, secp256k1 signature verification engine, and bls12-381 coprocessor with Fp and Fp​2
point multiplication (pairing to be implemented in v1.2).

○ Top level module for the Zcash acceleration engine.
○ Top level board files for both Bittware VVH and Amazon AWS EC2 F1 FPGAs.

■ bls12-381 coprocessor so far has only been tested on AWS
○ Document still missing content for some sections, will be completed in v1.2

Terms used

FP (Field point) FE (Field element) JB (Jacobian) AF (Affine)

FPGA (Field
programmable gate
array)

EC (Elliptical curve) SW (Software - generally
meaning what runs on
the CPU)

AXI (Advanced
eXtensible Interface)

Non-adjacent form (NAF)

Overview

Zcash FPGA project
Zcash FPGA acceleration engine is a FPGA system used to accelerate the Zcash network. The ​first phase​ is
focused on accelerating verification components of the blockchain, and the ​second phase​ is focused on
zk-SNARK acceleration and elliptic curve operations required. All code developed is written in system verilog
and open source under the GPL 3.0 license, intended to be modular and parameterizable for reuse, and can
be found at the github repo on the first page of this document.

FPGA acceleration allows us to offload work to a chip that is configured at the gate level to do specific
hardware functions, and can bring several ​advantages ​over a CPU implementation:

1. Can be configured for large parallelism - e.g.you could configure an FPGA to do 1000x 32bit
multiplications all at the same time allowing for large throughputs

2. Specialized functions that an x86 processor takes many instructions to implement could be
implemented as a single instruction on an FPGA

3. Low latency direct access to data - e.g. you could develop custom TCP/IP hardware on an FPGA
bypassing a NIC card / having a CPU make decisions

But also has ​disadvantages​:
4. Clock speed is much slower on FPGA (100MHz - 300MHz depending on logic implemented) compared

to a CPU (3GHz+) with multiple cores
5. Getting data in and out of the FPGA from the CPU takes roughly ~300ns(PCIe roundtrip) which

translates to ~1000 clock cycles on a CPU even before we start processing
a. This is for an optimized core - AWS FPGAs used in this experiment take 1us+ roundtrip

6. Development cycle is much slower compared to CPU and not as easily accessible to a SW engineer

The goal of this work is not only to develop open source FPGA acceleration ocode for various Zcash systems
and that can be of use to the wider community, but also to investigate/research the direction for future
development (i.e. what cases are good candidates for acceleration and what cases are better left to SW).

Interfaces and FPGA hardware
The FPGA engine is designed to either be implemented on a Bittware board (VU37P FPGA w/ 8GB HBM,
16GB DDR4) or ran on an Amazon AWS EC2 F1 FPGA instance (VU9P w/ 64GB DDR4). Both FPGAs are the
same generation and speed grade, but depending on the board clock rates on FPGA might have to be scaled
so that timing closure can be met (AWS FPGAs require extra “glue” logic and seem to not meet timing as
easily as the VU37P). I have tried to use non-vendor specific blocks where possible (i.e. BRAMs, core logic, is
mostly written from scratch in systemverilog), but in case cases I have used Xilinx IP for simplicity (mainly in
the AWS top level, where the .xci files are included in the /ip folder). It would not take much work to implement
the same code on an Altera FPGA or older generation Xilinx FPGA.

Communication to FPGA is split into two main methods:

1. Based on commands that are formatted with a header, followed by optional data (inputs for the
command). FPGA sends replies to SW after a command is completed or in the case of any errors.
These are sent over an AXI4-stream interface.

2. Using an instruction memory and data register approach, SW has direct access to FPGA memory and
can configure more complex logic flows. Interrupt commands can be implemented so FPGA will send
data to SW without required polling of FPGA memory. This is used for the bls12-381 coprocessor in
phase 2. These are sent over an AXI4-lite interface.

Depending on the FPGA board used communication is either exposed to SW through a C++ library over PCIe
(when using AWS), or over USB-UART (when using the Bittware board). There are wrappers that convert the
communication method to the internal FPGA AXI-lite and AXI-stream interfaces.

Project goals
At a high level the FPGA architecture currently comprises several engines for dedicated tasks to handle the
commands from SW, where more engines are to be added as development continues:

● Blake2b hash
● SHA256 hash
● Equihash verification engine
● Transparent signature verification engine (accelerate point multiplication on the secp256k1 curve)
● BLS12-381 coprocessor (accelerate EC operations on the bls12-381 curve such as point multiplication

and pairing)

Phase 1
Phase 1 is focused on offloading various aspects of verifying the Zcash block chain onto the FPGA. These will
include:

1. A equihash verification engine, which can take in a block header + solution and verify it is correct, as
well as other fields in the block header that require processing (such as hashing)

2. Verifying transparent transaction in the block chain, which will be done by implementing a secp256k1
engine that can take in signatures and verify their correctness.

Phase 2
Phase 2 is focused on accelerating zk-SNARK operations.

1. This will be implemented a BLS12-381 coprocessor, where software can write instruction memory on
the FPGA that will allow for chaining of multiple commands without having to send data in and out of
the FPGA. This coprocessor will implement Fp and Fp​2 ​(and Fp​12​ due to twist) arithmetic over the
bls12-381 curve, as well as several higher level operations such as miller loop, exponentiation, and
pairing. Software can read and write both data and instruction memory to poll the current status of the
coprocessor, or interrupt instructions can be used to send interrupts back to SW when certain
commands complete.

The main goals for acceleration using this coprocessor:

● Generate a shielded Zcash (Sapling) transaction with acceleration from the coprocessor
● Sign a shielded Zcash (Sapling) transaction with acceleration from the coprocessor

Optional goals / Future work
Optional goals and future work are tasks that we would like to implement depending on how well the project
progresses:

● Implement mining algorithm for Equihash
● Implement a PoW algorithm that utilizes calculations from the bls12-381 coprocessor
● More functions that can be used to accelerate zk-SNARKs

Implementation

Overview
● FPGA:

○ Bittware XUPVVH dev board w/ Virtex UltraScale+ VU37P HBM VCU128-ES1 (8GB HBM,
16GB DDR4)

■ Interface to hose over UART (USB)
○ AWS EC2 F1 FPGA instance UltraScale+ VU9P (64GB DDR4)

■ Interface to host over PCIe
● Software API:

○ C++ library for AWS boards over PCIe - this is in the github repo
aws/cl_zcash/software/runtime/zcash_fpga.hpp

■ A rust interface is in development and should be released in a later version, to allow the
Zcash client to run on an AWS instance to utilize FPGA acceleration

○ USB-UART for Bittware boards using Python - this is in the github repo
bittware_xupvvh/software/zcash_fpga.py

FPGA Memory Map
The FPGA has 2 main methods of sending and receiving data, these are:

1. The AXI4 stream interface, which is used to send and receive commands and can be used with larger
amounts of data (detailed in the next section).

2. The AXI4 lite memory map interface, mainly used for configuration, debug, instruction, and data
memory. This is done via individual 32 bit writes and reads. The memory space of the FPGA is
organized as:

Name Address range

Top level control and configuration ** Not currently present in version v1.1.x

Stream control module (only present on AWS
builds)

0x0 to 0xFFF

BLS12-381 coprocessor 0x1000 to 0x4FFF

(each regions memory section is detailed in the architecture section)

Streaming commands
The streaming interface data is streamed from SW to FPGA with a 16 byte header at the very start, and then
depending on the command or reply type from FPGA there can be a sub-header and additional inputs /
outputs. All values here are little endian and length (len) is specified in bytes. The format of the header is:

typedef​ __packed__ ​struct​ {

 ​uint32_t​ cmd_type; // This is the command type (given below) either from SW or

from FPGA

 ​uint32_t​ len; // This is the total length in bytes of the packet either from

SW or from FPGA

} fpga_header_t;

Commands are capable of being sent back-to-back in the same stream, but the start of a new command must
be aligned to an 8 byte boundary.

SW to FPGA
These are the commands the FPGA is capable of receiving from SW.

reset_fpga
cmd_type: 0x00000000
len: 8 (no additional data follows the header)

This command resets the FPGA internal logic logic to its initial state. This should be called when first
connecting to the FPGA, or if any errors happen and the FPGA is unresponsive (if this command does not fix
the problem you will need to reprogram the FPGA). The FPGA will send a ​reset_fpga_rpl​ to SW after it has
been reset.

get_fpga_status
cmd_type: 0x00000001
len: 8 (no additional data follows the header)

This command asks the FPGA to reply with the current status using a fpga_status_rpl message.

verify_equihash
cmd_type: 0x00000100
len: 8 + 8 + length of block header (CBlockHeader) (1487 for N=200, K=9)

This command takes takes a block header and will verify the equihash solution is correct, according to Zcash
protocol doc, and passes the difficulty filter. The FPGA will send a ​verify_equihash_rpl ​back to SW with the
result of the check along with the index from the command so that it can be matched (in the case of multiple
concurrent operations).

typedef​ __packed__ ​struct​ {
 ​fpga_header_t​ hdr;
 ​uint64_t​ index; ​// This index is returned with the result
 CBlockHeader block_header; ​// Serialized data of block header class from Zcash code
block.h

} ​verify_equihash_t​;

verify_secp256k1_sig
cmd_type: 0x00000200

len: 8 + 8 + 160
This command verifies the signature used in a transparent transaction over the EC ​secp256k1​.
Inputs are the hash H(m) of the message m, the signature (comprised of two values - s and r​x ​), and Q (public
key of signer uncompressed). P is the base point of secp256k1 and stored on the FPGA. The FPGA then
decodes this command into a series of instructions for the secp256k1 ECDSA core.​ ​An index is also given that
it returned with the result to track multiple concurrent commands.

typedef​ __packed__ ​struct​ {
 ​fpga_header_t​ hdr;
 ​uint64_t​ index; ​// This index is returned with the result
 ​uint256_t​ s; ​// Signature
 ​uint256_t​ r; ​// Signature
 uint256_t​ hash; ​// Hash of message that was signed to be verified
 ​uint512_t​ Q; ​// Signers public key (uncompressed form)
} ​verify_secp256k1_sig_t​;

FPGA to SW
These are the replies the FPGA is capable of sending to SW.

reset_fpga_rpl
cmd_type: 0x80000000
len: 8 (no additional data follows the header)

This tells SW that the FPGA has been reset successfully. After this a get_fpga_status message should be sent
to the FPGA to confirm it is in a good state.

fpga_status_rpl
Cmd_type: 0x80000001
len: 8 + 36

This reply tells SW the current status of the FPGA, the build information, what commands it is capable of
running, and any error flags or extra debug information that might be useful.

typedef​ __packed__ ​struct​ {
 ​fpga_header_t​ hdr;
 ​uint32_t​ fpga_version; ​// e.g. 0x00_01_00_00 (v 1.0.0, format
major.minor.patch)

 ​uint64_t​ fpga_build_date; ​// String of build date FPGA image was built
 ​uint64_t​ fpga_build_host; ​// String of machine name FPGA image was built
 ​uint64_t​ fpga_cmd_cap; ​// Bitmask of what commands are capable to run on
this FPGA build

 ​uint64_t​ fpga_state; ​// What the FPGA state is in and any error flags
} fpga_status_rpl_t;

fpga_ignore_rpl
Cmd_type: 0x80000002
len: 8 + 8

This reply tells SW that the the FPGA received a message it was unable to decode (either did not have the
capability or some error in the message, for example incorrect length), and is ignoring it.

typedef​ __packed__ ​struct​ {
 ​fpga_header_t​ hdr;
 ​fpga_header_t ​ignored_command; ​// This is the command that the FPGA ignored
} ​fpga_ignore_rpl_t​;

verify_equihash_rpl
cmd_type: 0x80000100
len: 8 + 8 + 1

This command from FPGA gives the result of a ​verify_equihash ​command, along with the index and resulting
bitmask for any errors found (will be all 0 if it verifies correctly).

typedef​ __packed__ ​struct​ {
 ​fpga_header_t​ hdr;
 ​uint64_t​ index;
 ​uint8_t​ result_mask; ​// [0] == DIFFICULTY_FAIL, [1] == XOR_NON_ZERO, [2] ==
BAD_IDX_ORDER, [3] == BAD_ZERO_ORDER;

} ​verify_equihash_rpl_t​;

verify_secp256k1_sig_rpl
cmd_type: 0x80000101
len: 8 + 8 + 1
This command replies to SW with the result of the verification check for a secp256k1 signing. We return the
result of the verification along with the index. The result passed if none of the result_mask bits are set.

typedef​ __packed__ ​struct​ {
 ​fpga_header_t​ hdr;
 ​uint64_t​ index;

 ​uint8_t​ result_mask; ​// []0] == R_OUT_OF_RANGE, [1] == S_OUT_OF_RANGE, [2] ==
X_INFINITY, [3] == SIGNATURE_VERIFICATION_FAILED

} ​verify_secp256k1_sig_rpl_t​;

bls12_381_interrupt_rpl
cmd_type: 0x80000200

len: 8 + 4 + N
This command replies to SW when an interrupt instruction is hit by the bls12-381 coprocessor, along with the
data that was pointed to by the instruction. The length in the header will for up to the data[N], to know how
much data to process in this message you need to parse the date_type.

typedef​ __packed__ ​struct​ {
 ​fpga_header_t​ hdr;
 ​uint32_t​ index; ​// Custom value from user in the instruction
 ​uint8_t​ data_type ​// What type of data (e.g. Affine point, scalar, JB point)
 ​uint8_t​ data[N] ​// Depending on data in slot this will be from 48 to 576 bytes
long

} ​bls12_381_interrupt_rpl_t​;

FPGA command capability register
This is the bit mask returned from the fpga_status_rpl_t message. If a command is sent to the FPGA for
something it has no capability to run, it will reply with a “fpga_ignore_rpl_t”.

Bit Capability Note

0 verify_equihash with N= 200, K = 9 Only one of these can be enabled per FPGA build

1 verify_equihash with N= 144, K = 5

2 verify_secp256k1_sig Verify a secp256k1 signature

3 BLS12-381 coprocessor enabled

FPGA Architecture

Overview of blocks in the system
These are the blocks in the system, build-time parameters can control which optional blocks are included in the
FPGA build (e.g. you might disable those that aren’t used so the system fits on a smaller FPGA). Depending
on if all blocks are enabled or not, the internet clock speed to FPGA might need to be lower to take into
account that the FPGA will have a harder time to close timing constraints.

● Top level board
○ Control block ​(required)
○ Equihash verification engine (optional)

■ Verify pow
■ Find solution (mine)
■ Blake2b for generating XORs
■ SHA256 for difficulty check
■ Hash Map for checking duplicates
■ Order checker of indexes

○ Transparent Signature Verification Engine (secp256k1 ECDSA core) (optional)
■ 256b Scalar multiplier mod p / mod n
■ 256b Scalar inversion mod p / mod n
■ High speed 256b integer multiplier with mod reduction stage of either n or p
■ Point add
■ Point double
■ Point multiply
■ Resource arbitrator (to share 256b multiplier core)

○ BLS12-381 Coprocessor (zk-SNARK accelerator) (optional)
■ Resource arbitrator sharing

● 381b integer multiplier mod p
● 381b integer adder mod p
● 381b integer subtractor mod p

■ Dual mode Fp / Fp​2​ point operations on bls12-381
● Point add / double
● Point multiply

■ Instruction memory
■ Data memory

○ Interface module ​(required)
■ UART (For Bittware board)
■ PCIe (For Amazon AWS)

This section talks in more detail about the architecture of each main engine on the FPGA, along with
performance results.

Interface module

AWS (Amazon)
The AWS top level has a wrapper cl_zcash_aws_wapper.sv which maps the data coming in over PCIe 512 bits
wide to the 64 bits wide expected by the Zcash internal logic. It is also responsible for mapping to the
streaming interface. The top level parameter “USE_AXI4” controls if AXI4 or AXI4-lite will be used for the
streaming interface.

VHH (Bittware)
This top level has a wrapper to generate the required clocks, and to provide an interface from the USB-UART
into the Zcash internal logic.

Equihash Verification Engine

Overview
The equihash engine takes in a block header and then stores the data in global memory, and each sub-block is
given the data required for it to check, each which will set a single bit in the resulting block mask. The blake2b
block is fully unrolled and running at 200MHz, meaning it takes 64 clock cycles to get a single result, but after
that each clock cycle is a new result. This allows the hash of the 512 XOR strings in the equihash solution to
be computed at very high throughput. This is more important for parameters (n=200,k=9) than the proposed
(n=144, k=5) as there are less hases to be performed. The duplicate checker is a hash map and can run at a

higher frequency of 300MHz. All the checks run in parallel so the slowest check will determine the
performance, currently the duplicate check and difficulty check. This could be improved by moving both to a
higher clock frequency.

The Blake2b core is able to generate a new hash output after an initial delay of 2 + ceil(input bytes/128)*24, so
for the solution checker here (140B input, 512 hashes), we achieve 177M hash/s. Maximum performance
would be at 5G hash/s.

Block diagram

Performance evaluation

FPGA resources

Percentages reported for the VU37P

LUT FF DSP BRAM

87914 (3%) 54362 (3%) 0 6 (0.2%)

Clock cycles

 FPGA clock cycles FPGA throughput CPU cycles 3GHz CPU throughput

Solution check 600 @100MHz

Index order check 356 @100MHz

Duplicate check 1443 @300MHz

Difficulty check 1068 @300MHz

Equihash solution
verification

1068 @300MHz 207K op/s ~2868040 ~1K op/s

Here performance on FPGA is 207X faster, likely due to high performance Blake2b core, as well as all checks
being done in parallel.

Transparent Signature Verification Engine (secp256k1 ECDSA core)

Overview
This engine handles all the operations for the curve secp256k1. This block at a top level supports point
multiplication with a top level state controller, point multiplication, point addition, point doubling, point inversion,
integer multiplication, and integer modulo reduction blocks. Blocks are shared via a resource arbitrator.
We optionally can use the endomorphism of secp256k1 to split the k in ​X=kQ​ into two smaller half-size ​k1 ​and
k2​, by instantiating a “endomorphism decom block”, which gives close to a 2x improvement in throughput, at
the cost of having 2 more multiplication engines.

We create two ECC point multiplication modules which run in parallel to calculate X = u​1​P + u​2​Q required for
signature verification. These run in parallel, but due to the pipelined integer multiplication core we have both
point multiplication modules share this.

The algorithm used for point multiplication is the double and add method, but we take advantage of the FPGA
parallelism and do the double and add at the same time. Since doubling is faster than adding, we start the next
double if we have an unfinished add in progress, improving performance. Each point double takes 54 clock
cycles and each point addition takes 104 clock cycles.

The integer multiplication core is implemented with the karatsuba algorithm (2 levels) and each level is
pipelined over 3 flip-flops (for timing @ 200MHz), so that a result is valid after 6 clock cycles, with a new result
every clock cycle. On the output we can optionally bit shift (used for endomorph decomposition), reduce the
result mod p (taking 2 clock cycles as it takes advantage of the prime form), or reduce the result mod n which
takes longer as it uses barrett's algorithm. Mod n operations are only required at the start and very end so this
path does not need to be optimized too much.

Binary inversion uses the gcd algorithm and takes roughly 708 clock cycles, so this is avoided as much as
possible by: 1) Converting to jacobian coordinates for point multiplication and 2) the signature result can be
checked without converting back to affine coordinates using the same method as in Zcash’s git source code.

Block diagram

Performance evaluation
Average performance of the core is shown below for signature verification (which will depend on the number of
adds/doubles required). This is also compared to the same function from zcash’s git running on a 3GHz
processor (measured using average of CPU cycle counts). I did not try to optimize by using non-adjacent form
. (NAF) window methods / Shamir's trick, as on the FPGA we run the calculations truly in parallel and might
not benefit from these techniques, although this could be a point for future exploration. Improving the equations
used for point double and point add would also improve performance. The FPGA was successfully meeting
timing at a 200MHz clock. FPGA throughput could be improved by instantiating more cores.

FPGA resources

Percentages reported for the VU37P

 LUT FF DSP BRAM

secp256k1 ECDSA core (without endomorph enabled) 57697 (4.4%) 31751 (1.2%) 144 (1.6%) 2 (0.1%)

secp256k1 ECDSA core (with endomorph enabled) 98792 (7.5%) 61909 (2.1%) 144 (1.6%) 2 (0.1%)

Clock cycles

 FPGA clock cycles FPGA throughput CPU cycles 3GHz CPU

throughput

Point double mod p 54 3.7M op/s

Point add mod p 104 1.9M op/s

Inversion mod n 708 282K op/s

secp256k1 ECDSA core (without
endomorph enabled)

~20224 ~9.9K op/s/core ~223350 ~13.4K op/s

secp256k1 ECDSA core (endomorph
enabled)

~10100 ~20K op/s/core

FPGA performance is 1.5X compared to a 3GHz CPU. The FPGA could instantiate multiple ECC engines to
run in parallel.

Comparison to other FPGA work
This will be added in a future release

Future Optimizations
Investigating the impact using NAF has on performance would be the next possible optimization.

BLS12-381 Coprocessor (zk-SNARK accelerator)

Overview
This coprocessor is used to accelerate zk-SNARKS as the majority of elliptical arithmetic used during proving
and verifying is run on top of the bls12-381 curve.
Unlike previous cores, the coprocessor can be configured by writing to instruction memory rather than
accepted hard coded commands. This is to allow more flexibility in how the co-processor is used. SW can
either poll registers on the FPGA coprocessor or use interrupt instructions so that the FPGA will send data to
SW.

The coprocessor has instruction memory that can be written to, after a reset command the entire memory is
initialized to NOOP-WAIT. The coprocessor has a memory bank with addressable data slots each 64 bytes
wide per address for variables that can be used with instructions, example sizes for variables are:

● Scalar integer takes 1 slot
● Point in Fp takes 3 in jacobian coordinates (2 in affine)
● Point in Fp​2​ take 6 in jacobian coordinates (4 in affine)
● Fp​12​ element takes 12 slots

Each data slot only uses 48 bytes on the FPGA (64 bytes of address space is used in SW to simplify the
mapping of memory to slot index). The first 381 bits of a slot store that elements data, the remaining 3 bits are
used as a format for the type of element stored (more bits can be added if needed).

0 Scalar

1 Fp element

2 Fp​2​ element

3 Fp​12​ element

4 Fp point AF

5 Fp point JB

6 Fp​2​ point AF

7 Fp​2​ point JB

Instructions
Instructions are 8 bytes each (1 byte for op-code, and then the rest is used to address variables).

Interrupts are sent by using the SEND-INTERRUPT instruction which can be used to send the result of a
calculation to SW. SW will have a method of registering a callback function that would be called when an
interrupt is detected, the function will take a pointer to memory that will hold the data sent from FPGA.

Montgomery form is not used in any of the operations (as we can use barret reduction with only +1 bits in the
multiplier to keep the architecture simpler).

All point operations can be given inputs in affine or jacobian coordinates, but outputs will be in JB unless
otherwise stated. There is not a specific instruction for converting to affine coordinates because you can get
the same result by multiplying the point element (Fp or Fp​2​) by INV-ELEMENT(MUL-ELEMENT(Z, Z)).

Do not use the same slot location for input and output as for some commands this will corrupt the result.
Instructions ​highlighted in grey​ have not been implemented yet and are planned for future releases.

Instruction Description

NOOP_WAIT (0x0) Coprocessor waits at this command and does nothing (used to stall or
after a reset)

COPY_REG(0x1, a, b) Copy contents of register b = a

JUMP(0x2, a) Jump instruction pointer to location a

JUMP_ZERO(0x3, a, b) Jump instruction pointer to location a if b == 0

JUMP_EQ(0x4, a, b, c) Jump instruction pointer to location a if b == c

JUMP_NONZERO-SUB(0x5, a, b) If b != 0 then jump to a and b--, otherwise continue

SEND_INTERRUPT(0x6, a, b) Send an interrupt to SW along with the data in slot a. Amount of bytes
sent will depend on data type stored in slot. 16 bit value of b will be
appended to the interrupt message header (see streaming commands
for bls12_381_interrupt_rpl_t)

MUL-ELEMENT (0x10, a, b, c) Do Fp / Fp​2​ field element multiplication, c = a x b

ADD-ELEMENT (0x11, a, b, c) Do Fp / Fp​2​ field element addition, c = a + b

SUB-ELEMENT (0x12, a, b, c) Do Fp / Fp​2​ field element subtraction, c = a - b

INV-ELEMENT(0x13, a, b) Calculate the inverse of a Fp / Fp​2​ field element a and store in b

POINT_NEG(0x20, a, b) Negate a Fp / Fp​2​ point in a and store result point in b. b = -a

POINT_ADD(0x21, a, b, c) Do a point addition using Fp / Fp​2​ points a and b, and store result
jacobian point in c. c = a + b

POINT_DBL(0x21, a, b, c) Do a point double using Fp / Fp​2​ points a and b, and store result
jacobian point in c. c = a + b

POINT_MULT(0x22, a, b, c) Do a Fp / Fp​2​ ​ ​point multiplication using scalar a and Fp / Fp​2​ point b,
and store result jacobian point in c. c = a x b

1​FP_FPOINT_MULT(0x23, a, b) Do a fixed Fp point multiplication using scalar a and Fp generator
point, and store result jacobian point in b. b = a x G

1​FP2_FPOINT_MULT(0x24, a, b) Do a fixed Fp​2 ​point multiplication using scalar a and Fp​2​ ​ ​generator
point, and store result jacobian point in b. b = a x G

PAIRING(0x28, a, b, c) Do a ate pairing of the G1 Fp point in a and G2 Fp​2​ point in b, and
store result Fp​12​ field element in c

Notes:
1​Currently the FPOINT instructions do not use pre calculated values, but this can be changed to improve
performance in a future version.

Memory Map
This is the AXI-lite portion of the core that can be used for configuration, as well as writing/reading
instruction/data memory.

Register Name Address Access

Instruction memory offset / reset
control

0x0 Read: returns the memory offset where instruction
memory begins
Write: A ‘1’ to bit[0] will reset the instruction memory, a ‘1’
to bit[1] will reset the data memory

Data memory offset 0x4 Read only: returns the memory offset where data memory
begins

Data memory size 0x8 Read only: returns the power of 2 number of data memory
slots (i.e. 8 => 256 slots)

Instruction memory size 0xc Read only: returns the power of 2 number of instruction
memory slots

Current instruction pointer 0x10 Read: returns current instruction memory pointer
Write: sets the instruction memory pointer (will wait until
current operation finishes)

Last instruction cycle count 0x14 Read only: returns the number of clock cycles the last
instruction took to complete

Architecture

The coprocessor operates on a shared 381 bit bus with a main state machine with pointers into a data and
instruction memory (implemented using Xilinx Ultra RAM on the FPGA). The top level multiplier, adder, and
subtractor are all fully pipelined (so a new result each clock) and are resource shared with the entire
coprocessor (so inversion block, dual mode point multiplier, pairing engine,... all use this).
The entire coprocessor uses parameterized values and modulo reduction is done via Barrets algorithm, so
could easily be adapted to other curves with minimal effort.
Due to bls12-381 not having a hardware-friendly modulus (such as a Mersenne prime) the bulk of performance
(66%+) is consumed by the multiplication reduction algorithm. For example at 381 bits we use a three stage
karabutsa multiplier, which has 3 pipeline stages per logic stage. So a 381 multiplication takes 9 clock cycles,
but then the following reduction with Barrets algorithm takes a further 2 multiplications + shifts, so we end up
adding 18+ clock cycles.

Performance Comparison

FPGA resources

Percentages reported for the VU37P

LUT FF DSP BRAM

Clock cycles

Here performance was benchmarked vs the Rust bls12_381 crate on a 32GB, 3.7GHz i5-9600K CPU. FPGA is
running at 200MHz.

 FPGA clock cycles FPGA throughput 3GHz CPU throughput

Fp element inversion

Fp​2​ element inversion

Fp multiplication + modulo reduction

Fp​2​ multiplication + modulo reduction

Fp point multiplication 71148 2808 (op/s) 4926 (op/s)

Fp​2​ point multiplication 88664 2257 (op/s) 1499 (op/s)

Comparison to other FPGA work
This will be added in a future release
eg: ​https://eprint.iacr.org/2016/569.pdf

Future Optimizations
Investigating the impact of NAF on point multiplication, as well as pre-computation for the double / add values
used in the miller loop over Fp​2​.

https://eprint.iacr.org/2016/569.pdf

User Guide
This section goes over example usage of the system.

Running Simulations

Module level simulations
Most modules have a corresponding “_tb.sv” in the tb/ folder, and are self checking so can be added to local
copy of Vivado and ran, and will print a message that all tests passed for that module if there are no problems.
A top level simulation that tests all functions and emulates the Bittware VVH top level is here
https://github.com/bsdevlin/zcash-fpga/blob/master/zcash_fpga/src/tb/zcash_fpga_top_tb.sv

AWS Board level
The simulation test cases for the AWS board are in the repo folder
https://github.com/bsdevlin/zcash-fpga/tree/master/aws/cl_zcash/verif/tests​ and can be run by:

1. cd ​/home/centos/aws-fpga/hdk/cl/developer_designs/cl_zcash/verif/scripts
2. make all

This will compile the test cases and then run them, they are all self checking, so if not ERRORs are printed and
the simulation finishes then there are no problems. If something unexpected happens you can run xsim and
look at the waveforms.

Usage with a local FPGA board
If the board is local, it can be configured over USB-UART (note this is very low bandwidth and just mainly used
for proof of concept / testing).
Commands can be called from the python script: bittware_xupvvh/software/zcash_fpga.py

Usage on AWS
AWS runs over PCIe and has a higher bandwidth, but due to timing a slower clock is used (as there is more
glue logic on the FPGA).
At the time of writing this these were the versions used in the AWS toolchain:

Developer Kit
Version (HDK)

Tool Version
Supported (Vivado)

Compatible FPGA developer AMI
Version

1.4.8-1.4.X 2018.3 v1.6.0 (Xilinx SDx 2018.3)

https://github.com/bsdevlin/zcash-fpga/blob/master/zcash_fpga/src/tb/zcash_fpga_top_tb.sv
https://github.com/bsdevlin/zcash-fpga/tree/master/aws/cl_zcash/verif/tests

Building the FPGA image
If you make changes to the code or want to build a new image, you can follow the steps below. If you do not
want to do this, you can skip to the next section “Loading FPGA image” and use one of the pre-built images
listed in “Existing AFIs”.

1. Start an AWS instance and load it with the FPGA Developer AMI
(​https://aws.amazon.com/marketplace/pp/B06VVYBLZZ​)

a. This should be a f1 instance (e.g. f1.2xlarge) so you have access to an FPGA
b. If you just want to build the FPGA image you can use a cheaper instance like r5.xlarge (just

need at least 32GB RAM)
2. Clone the zcash git repo
3. Clone the aws-fpga repo

a. git clone https://github.com/aws/aws-fpga.git
4. Copy the folder ​zcash-fpga/aws/cl_zcash​ to the AWS folder

a. cp -r /home/centos/zcash-fpga/aws/cl_zcash /home/centos/aws-fpga/hdk/cl/developer_designs/
5. Copy the folder ​/home/centos/aws-fpga/hdk/cl/examples/common

a. cp -r /home/centos/aws-fpga/hdk/cl/examples/common
/home/centos/aws-fpga/hdk/cl/developer_designs/

6. Run the hdk_source.sh script to setup the AWS environment
a. cd /home/centos/aws-fpga; source hdk_setup.sh
b. Note: If you get an error with Vivado not being present, it might be due to locale issue, try:

i. export LC_ALL="en_US.UTF-8"
7. Set the variables for Zcash scripts:

a. export CL_DIR=/home/centos/aws-fpga/hdk/cl/developer_designs/cl_zcash; export
ZCASH_DIR=/home/centos/zcash-fpga/

8. Generate the FPGA IP files
a. cd ​/home/centos/aws-fpga/hdk/cl/developer_designs/cl_zcash/ip/​ ; ./​run_cl_sde_ip_flow

9. Start building the FPGA image
a. cd ​/home/centos/aws-fpga/hdk/cl/developer_designs/cl_zcash/build/scripts​ ;

./aws_build_dcp_from_cl.sh -clock_recipe_a A0 -clock_recipe_b B1
b. Note: AWS clock recipes are here:

https://github.com/aws/aws-fpga/blob/master/hdk/docs/clock_recipes.csv​ , a higher performance
version of the core can use “​-clock_recipe_a A1 -clock_recipe_b B0”​, a slower version (but
easier to build and meet timing) could use​ ​“​-clock_recipe_a A2 -clock_recipe_b B1 -strategy
BASIC”

i. Note: this will not work with an ILA debug core since the clock speed (15MHz) is too
slow compared to JTAG frequency

c. You can check progress by looking at
“/home/centos/aws-fpga/hdk/cl/developer_designs/cl_zcash/build/scripts/last_log”

The build should run and will take several hours, depending on the instance type / clock recipe. If there are no
problems, the output will be in
/home/centos/aws-fpga/hdk/cl/developer_designs/​cl_zcash​/build/checkpoints/to_aws/*.tar and needs to be
uploaded to an Amazon S3 bucket. The bucket used in this project is “zcash-fpga-west”. From here you can
follow the standard flow detailed on the AWS FPGA github:
https://github.com/aws/aws-fpga/blob/master/hdk/README.md#step3​ .

https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://github.com/aws/aws-fpga/blob/master/hdk/docs/clock_recipes.csv
https://github.com/aws/aws-fpga/blob/master/hdk/README.md#step3

After this you should have an agfi-ID that can be used to program the FPGA.

Loading FPGA image
To load an FPGA image you need it’s agfi-ID, either from the previous step or from the table in the following
section “Existing AFIs”.

Run this commands to load the FPGA:

1. sudo fpga-load-local-image -S 0 -I -F ​agfi-ID

Note​: You can check for errors / metrics by running the command “sudo fpga-describe-local-image -S 0
--metrics”. If you see all 0’s then there is no problem, but if you see some timeouts like this:

ocl-slave-timeout-addr=0x2001
ocl-slave-timeout-count=4

You should reload the FPGA image (step 1 above). There is a known issue with AWS where the first load will
sometimes show this problem, but reloading FPGA fixes it.

Rust interface
A rust interface has been developed to allow the Zcash client to utilize the FPGA acceleration.

Startup test program
A simple program is in /home/centos/aws-fpga/hdk/cl/developer_designs/​cl_zcash​/software/runtime/
(test_zcash)

1. Run the sdk_source.sh script to setup the software AWS environment
a. cd /home/centos/aws-fpga; source sdk_setup.sh

Run the make file and then the test program (using sudo), and check there are no errors. Expected output
would be this:
This will be added in a future release

FPGA debug
Debug instructions can be found here:
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md
There is a parameter in cl_zcash.sv, USE_ILA = “NO” which can be changed to “YES” to enable a build with
the debug logic. You can change the connections as needed.

Existing AFIs
These are the AFIs that already exist that can be used for testing / using the Zcash FPGA image on AWS.
Version is tracked in the top level package zcash_fpga_pkg.sv

https://github.com/aws/aws-fpga/blob/master/hdk/docs/Virtual_JTAG_XVC.md

agfi-ID afi-ID Notes

agfi-0528daff45454ed7c afi-09056704c94b5280b v1.0.0 First test version used for testing AWS flow,
will not work with test program.

agfi-05561b352d56b5f57 afi-0c8109482d730073c v1.0.1 Test version

agfi-0fa84678db6b2752f afi-07ec21206df23e398 v1.1.0, Has all modules enabled but on a slow
clock recipe for testing. BLS12_381 core has Fp
and Fp2 fpoint instructions

agfi-019c2736fd0141219 afi-0b891a8fc9644f1a0 v1.1.0_150, only has BLS coprocessor enabled but
running at 125MHz, uses AXI4 as PCIe interface

agfi-05468e41c302eb331 afi-06a4b56d6e4bfd896 v1.1.1, contains all cores @ 125MHz, uses AXI-lite
as PCIe interface

agfi-0fce4c1ad9e0c6c43

afi-0da67f631a2573656 v1.1.2 contains all cores @ 125MHz

agfi-0c4a39d7638bc6010 afi-0bcef9f0c08bee7c1 v1.1.2 contains all cores @ 15MHz

agfi-0abc260b651d87d41 afi-0075820f5d00bd799 v1.1.3 Bug fixes to BLS12_381 core, 125MHz

agfi-07ae22f20d6e90559 afi-0e49dd7ef17fda51a v1.1.4, bug fix for multiple back to back interrupts,
125MHz

agfi-0db37e1358c1d885f afi-0907df570f7dc7b2b Debug version of v1.1.4 above (15MHz)

 v1.1.5, debug version 125MHz, BASIC flow

Conclusions
This will be added in a future release (project is still a work in progress)

Appendix

Example decoding Zcash block #346
Hash 0x000000eff179fb1e47b7aa8667ad4d8e1ef3dbb0d79144030482bf93b5e6339f

Hex dump of block (CBlock):

0 04 00 00 00 13 d6 d1 a4 10 51 42 19 f7 2f f3 a0 df d5 c3 8b 62 1c c2 c6 68 78 4d 2f d6 fd 10 8f

20 48 00 00 00 30 16 31 55 23 12 34 9d d5 3b 6b 9e 23 1d f8 bc b8 c2 d3 32 64 cc 02 f5 cd d9 a9 69

40 fb 93 80 50 00

60 00 00 00 00 3f 85 13 58 bf c3 03 1e 1b b2 b5 50 a4 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00

80 00 00 00 00 00 00 00 00 00 00 00 03 ​fd 40 05 00 9d fa 04 89 e1 18 99 dc 5e 50 5d 91 24 57 44 49

a0 28 12 b3 f6 0e 31 04 e2 1e 98 b2 7d 80 38 c4 41 82 ca de 1a e2 ec dc e2 77 10 4f 9f a6 5d d4 b6

c0 a1 b6 ab 44 66 24 ef 6a 0a c2 a8 5e 2e a3 32 19 7c d3 cd 51 b6 e8 a3 31 d4 04 d4 68 bc ed 6b e6

e0 19 e4 8f 0b 8f c4 3b f9 dd 44 b2 f1 05 b4 7c b8 e7 e5 eb 21 96 bd 12 89 0e df 36 07 41 1e 55 81

100 b9 14 c2 91 b2 a7 1f 27 19 79 7c bc 49 13 42 34 62 bd 11 fb d7 b8 00 31 85 01 31 4f 2b 4e 15 1a

120 87 f6 40 16 9f d2 19 ef 51 bd 9c 19 94 38 7c 69 88 bf 68 77 7d 69 e3 06 2f dc 61 0e 4a 43 99 04

140 b7 d1 f6 26 78 fb e8 a9 2f f1 2a 38 0c b0 5b 29 33 4b 37 7c c5 30 11 e5 db a4 80 01 30 56 b5 a5

160 71 1b 10 e6 35 1e 5d 72 f5 4b 93 63 3b 0e 5d 4c 0b 12 ff 9b d6 20 31 84 5f 47 fb 90 23 af db 3c

180 15 bd 4a 51 ab b9 9a d8 0d 4c ef 21 b5 c9 da e9 a3 a5 61 a8 97 74 c2 ff 4e 3d 89 92 20 94 37 b7

1a0 63 f8 9d 22 61 6b 01 15 62 12 f7 40 47 ba a3 43 6a a0 5e bf 3a 25 d5 b9 df f7 d9 d0 b7 e0 ba 43

1c0 83 9c 1d 00 b2 3c 01 d1 e9 a8 42 95 06 8f 65 20 fb 53 59 d2 f7 c9 b2 60 44 ab 0f 0f de de 8a 02

1e0 45 62 8d 43 4a 64 bd 96 8d 93 8f 22 6f a9 75 32 ec b7 a0 af 27 06 0a aa 7f 97 3a 2d b2 95 83 20

200 35 de d2 92 4b 08 bc 6a 4a 06 f8 b1 d4 db b8 55 c1 f0 37 01 db ba a7 55 52 93 c4 3a 86 9c 23 3e

220 3f 2c c7 50 14 bd 2c ef 23 aa ad e5 1b 3e d9 08 fc 7b 1a 03 c7 a2 d8 71 8d 16 37 97 28 52 af 95

240 64 23 21 c5 57 7d 14 80 14 fd 68 e0 a0 96 87 03 c7 7a d1 8b 7a ad 29 99 a6 78 d6 0f 63 04 8f 33

260 30 ff d3 1c bb 75 3c c6 66 c8 35 1f 35 cf ac 76 46 93 0b b7 1c 17 8f 86 05 ff 7e 6f a1 94 71 c8

280 e1 09 cc 59 13 61 62 07 8b 17 e5 e5 e7 4f db 49 01 c4 6a 17 2e 25 15 6d bd 35 43 87 39 f3 a4 da

2a0 ec 96 ea dc fc 78 a4 77 9a dd 07 26 70 f6 5f 6d d1 0c 74 96 5c f3 8b f2 f2 d6 85 42 b4 54 99 d4

2c0 58 f5 2d c9 25 63 35 9c 87 47 48 90 f6 dd 47 61 d8 24 76 6e f6 4f 07 fd 5b 5c 38 12 ed 9c b4 4d

2e0 85 69 47 e0 c2 b2 02 f4 b9 fa 7d ce c3 da 05 03 53 6d a5 1d 65 99 92 19 72 25 96 2c b6 63 2c c1

300 c9 ff 91 35 e2 20 a3 d9 33 ff 8d fa 2b 24 61 12 93 ad ae 45 99 76 1b 2e 0e 32 2a 36 7c a3 ea f5

320 44 33 da 78 95 27 53 6d d5 6a 26 c7 f9 5f b7 01 cf 9e 2f 00 52 68 11 70 fa 95 50 ad 69 bd 5e 15

340 f6 9c 81 5f 1b c7 f7 79 fa 18 30 47 dd 86 f4 61 b1 a3 e3 3b 97 ec 3d 59 b3 17 c4 8d 36 de ba 7d

360 8d fc d6 e3 71 a8 d9 32 1e 7e d7 79 c0 a4 44 66 44 16 15 2c ad f5 e1 17 64 ba f0 5f 11 79 cb 8f

380 fa 4c 42 0a d3 5f b5 d8 f4 39 73 b9 c7 33 da e1 e5 55 1a 57 00 14 fc 03 4f 08 ff 76 4c 64 b5 e1

3a0 c9 7d 75 d7 a2 40 49 7b 01 66 9f d3 e8 25 55 69 f9 64 4a 2f 5f 7d 82 36 1a 08 d7 dd 46 35 8f 79

3c0 47 3e 6b 5d 65 c0 37 66 5e 7b c0 94 69 30 84 ff 7b 1f 76 60 dd 77 e8 03 fa 95 75 e0 5d 3d 43 fb

3e0 e3 d0 74 0c 11 ee 51 eb f1 af 9b 47 08 98 f7 1f 75 4a 7a d9 bf 5e f1 7a f2 14 4c dc 95 4e 4f 69

400 e8 13 b0 0f 5f e9 4e 93 1d b2 b3 37 cd 10 44 c3 e7 50 e0 9b 68 b2 18 e1 41 5e 25 54 4c b9 52 83

420 65 96 0b e4 bf 02 62 c3 5e 6d f3 0f 35 85 5e 5e 2f 09 63 8a 14 61 20 1b 0d 53 1e 53 42 96 ba 19

440 12 dc 73 d0 5d a3 de 37 9e f4 b2 c2 40 3b 2b 41 e6 57 d6 45 37 11 03 09 ad e0 1b 40 78 fe d6 c2

460 da cc 31 05 3e 9d 28 ff cf a4 13 db 62 8a 68 2e 95 1f 88 23 63 9a a7 d1 1b 9d 79 60 b1 ac 35 04

480 4f bb c8 3e d4 5f 2e a6 9c b4 4b 1c a5 f9 89 fa 9e ba fc 23 2e 44 45 0a c8 55 44 9b aa 53 d6 f2

4a0 39 f3 a6 5a 1f 59 d3 3f 06 1e c4 14 35 db 63 48 cf ef df d4 0b 4c 42 20 6f 16 63 5a 82 b6 25 9b

4c0 52 d9 ec 0f 0f 9f 0a fb 85 6a 2c e0 6f fa 23 29 9e b4 0f 05 db 50 74 02 83 28 6b a9 ba 71 b4 20

4e0 bd 47 c5 18 c3 af 7c eb 15 a9 05 3f 26 d7 de a7 89 31 11 9b 1c 58 64 ae a4 96 3a 55 6b 06 50 84

500 36 6b 8a cc 2d 36 7a d2 2c 7f 5a ec d2 2d 1c d1 c3 57 2a 2e 52 bf 26 cb 46 00 e0 d7 05 85 ae 38

520 a7 12 94 78 78 d4 38 07 8c 59 a0 1d 5f 34 f3 6c 08 c1 87 97 5e 98 b4 a7 9b b3 93 37 12 16 72 d6

540 ef cf 39 6b f8 33 12 d8 9b 51 b4 15 d7 71 3c f3 5b 19 ea e7 ae 71 4b 50 93 7e ee 11 a1 9e 38 58

560 a8 98 0a 4c 1b 52 33 24 b9 9f 08 e0 a2 d1 a2 2b 93 47 e2 43 fb ad a5 38 1a fe 0a 09 40 fc ca b0

580 ca 34 52 c2 6f 15 b3 82 f3 67 bb 23 89 7e fe fd 19 30 f8 db 53 9a ec d9 32 ea c6 46 32 c1 d2 4a

5a0 61 42 de 11 6d 49 3d 7d 1c 33 14 b0 37 56 cc 07 0d 53 3b cc 62 6d 2f bf 38 a2 59 d4 33 f2 cb 5b

5c0 52 d1 65 66 f6 a9 f5 79 bb 87 18 bf 7b d5 db ​ 01 01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00

5e0 00 ff ff ff ff 04 02 5a 01 00 ff ff

600 ff ff 02 20 fa 07 01 00 00 00 00 23 21 02 7a 46 eb 51 35 88 b0 1b 37 ea 24 30 3f 4b 62 8a fd 12

620 cc 20 df 78 9f ed e0 92 1e 43 ca d3 e8 75 ac 88 fe 41 00 00 00 00 00 17 a9 14 7d 46 a7 30 d3 1f

640 97 b1 93 0d 33 68 a9 67 c3 09 bd 4d 13 6a 87 00 00 00 00

Header:
Version:

04 00 00 00

Previous block hash:
13 d6 d1 a4 10 51 42 19

f7 2f f3 a0 df d5 c3 8b

62 1c c2 c6 68 78 4d 2f

d6 fd 10 8f 48 00 00 00

Merkle Root hash:
30 16 31 55 23 12 34 9d

d5 3b 6b 9e 23 1d f8 bc

b8 c2 d3 32 64 cc 02 f5

cd d9 a9 69 fb 93 80 50

Final sapling root hash:
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

Time:
3f 85 13 58

Bits (Difficulty):
bf c3 03 1e

Nonce:
1b b2 b5 50 a4 01 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 03

Equihash solution (the 0xfd4005 here is used to decode the length of the array of bytes, 0xfd means the size is
stored as a 2 byte integer 0x4005 == 1344 bytes):
fd 40 05 .. 7b d5 db(1344 bytes until address 0x5ce)

Transactions:
Transaction input array size (one transaction):
01

Version (only 4 bytes here as is not overwinter):
01 00 00 00

Input to transaction array size (one input):
01

OutPoint:
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

ff ff ff ff

Script (first byte is length, 4 bytes long):
04

02 5a 01 00

Sequence:
ff ff ff ff

Transaction output array size (two transactions):
02

1st transaction output amount (17300000, 0.173 ZEC):
20 fa 07 01 00 00 00 00

1st transaction output script (first byte is length, 35 bytes long):
23

21 02 7a 46 eb 51 35 88

b0 1b 37 ea 24 30 3f 4b

62 8a fd 12 cc 20 df 78

9f ed e0 92 1e 43 ca d3

e8 75 ac

2nd transaction output amount (4325000, 0.04325 ZEC):
88 fe 41 00 00 00 00 00

2nd transaction output script (first byte is length, 23 bytes long):
17

a9 14 7d 46 a7 30 d3 1f

97 b1 93 0d 33 68 a9 67

c3 09 bd 4d 13 6a 87

Locktime:
00 00 00 00

