zcashd/qa/rpc-tests/test_framework/mininode.py

1869 lines
53 KiB
Python
Raw Normal View History

# mininode.py - Bitcoin P2P network half-a-node
#
# Distributed under the MIT software license, see the accompanying
# file COPYING or https://www.opensource.org/licenses/mit-license.php .
#
# This python code was modified from ArtForz' public domain half-a-node, as
# found in the mini-node branch of http://github.com/jgarzik/pynode.
#
# NodeConn: an object which manages p2p connectivity to a bitcoin node
# NodeConnCB: a base class that describes the interface for receiving
# callbacks with network messages from a NodeConn
# CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....:
# data structures that should map to corresponding structures in
# bitcoin/primitives
# msg_block, msg_tx, msg_headers, etc.:
# data structures that represent network messages
# ser_*, deser_*: functions that handle serialization/deserialization
import struct
import socket
import asyncore
import binascii
import time
import sys
import random
2019-11-20 12:12:46 -08:00
import io
import hashlib
from threading import RLock
from threading import Thread
import logging
import copy
from .equihash import (
gbp_basic,
gbp_validate,
hash_nonce,
zcash_person,
)
BIP0031_VERSION = 60000
SPROUT_PROTO_VERSION = 170002 # past bip-31 for ping/pong
OVERWINTER_PROTO_VERSION = 170003
SAPLING_PROTO_VERSION = 170006
BLOSSOM_PROTO_VERSION = 170008
MY_SUBVERSION = b"/python-mininode-tester:0.0.1/"
SPROUT_VERSION_GROUP_ID = 0x00000000
OVERWINTER_VERSION_GROUP_ID = 0x03C48270
SAPLING_VERSION_GROUP_ID = 0x892F2085
# No transaction format change in Blossom.
SPROUT_BRANCH_ID = 0x00000000
OVERWINTER_BRANCH_ID = 0x5BA81B19
SAPLING_BRANCH_ID = 0x76B809BB
BLOSSOM_BRANCH_ID = 0x2BB40E60
MAX_INV_SZ = 50000
2017-01-11 04:25:19 -08:00
COIN = 100000000 # 1 zec in zatoshis
# Keep our own socket map for asyncore, so that we can track disconnects
2017-01-11 04:25:19 -08:00
# ourselves (to workaround an issue with closing an asyncore socket when
# using select)
mininode_socket_map = dict()
# One lock for synchronizing all data access between the networking thread (see
# NetworkThread below) and the thread running the test logic. For simplicity,
# NodeConn acquires this lock whenever delivering a message to to a NodeConnCB,
# and whenever adding anything to the send buffer (in send_message()). This
# lock should be acquired in the thread running the test logic to synchronize
# access to any data shared with the NodeConnCB or NodeConn.
mininode_lock = RLock()
# Serialization/deserialization tools
def sha256(s):
return hashlib.new('sha256', s).digest()
def hash256(s):
return sha256(sha256(s))
def deser_string(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
return f.read(nit)
def ser_string(s):
if len(s) < 253:
return struct.pack("B", len(s)) + s
elif len(s) < 0x10000:
return struct.pack("<H", 253, len(s)) + s
2019-11-20 12:12:46 -08:00
elif len(s) < 0x100000000:
return struct.pack("<I", 254, len(s)) + s
return struct.pack("<Q", 255, len(s)) + s
def deser_uint256(f):
2019-11-20 12:12:46 -08:00
r = 0
for i in range(8):
t = struct.unpack("<I", f.read(4))[0]
r += t << (i * 32)
return r
def ser_uint256(u):
rs = b""
2019-11-20 12:12:46 -08:00
for i in range(8):
rs += struct.pack("<I", u & 0xFFFFFFFF)
u >>= 32
return rs
def uint256_from_str(s):
2019-11-20 12:12:46 -08:00
r = 0
t = struct.unpack("<IIIIIIII", s[:32])
2019-11-20 12:12:46 -08:00
for i in range(8):
r += t[i] << (i * 32)
return r
def uint256_from_compact(c):
nbytes = (c >> 24) & 0xFF
2019-11-20 12:12:46 -08:00
v = (c & 0xFFFFFF) << (8 * (nbytes - 3))
return v
def deser_vector(f, c):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
2019-11-20 12:12:46 -08:00
for i in range(nit):
t = c()
t.deserialize(f)
r.append(t)
return r
def ser_vector(l):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
elif len(l) < 0x10000:
r = struct.pack("<BH", 253, len(l))
elif len(l) < 0x100000000:
r = struct.pack("<BI", 254, len(l))
else:
r = struct.pack("<BQ", 255, len(l))
for i in l:
r += i.serialize()
return r
def deser_uint256_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
for i in range(nit):
t = deser_uint256(f)
r.append(t)
return r
def ser_uint256_vector(l):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
elif len(l) < 0x10000:
r = struct.pack("<BH", 253, len(l))
elif len(l) < 0x100000000:
r = struct.pack("<BI", 254, len(l))
else:
r = struct.pack("<BQ", 255, len(l))
for i in l:
r += ser_uint256(i)
return r
def deser_string_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
for i in range(nit):
t = deser_string(f)
r.append(t)
return r
def ser_string_vector(l):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
elif len(l) < 0x10000:
r = struct.pack("<BH", 253, len(l))
elif len(l) < 0x100000000:
r = struct.pack("<BI", 254, len(l))
else:
r = struct.pack("<BQ", 255, len(l))
for sv in l:
r += ser_string(sv)
return r
def deser_int_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
for i in range(nit):
t = struct.unpack("<i", f.read(4))[0]
r.append(t)
return r
def ser_int_vector(l):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
elif len(l) < 0x10000:
r = struct.pack("<BH", 253, len(l))
elif len(l) < 0x100000000:
r = struct.pack("<BI", 254, len(l))
else:
r = struct.pack("<BQ", 255, len(l))
for i in l:
r += struct.pack("<i", i)
return r
# Deserialize from a hex string representation (eg from RPC)
def FromHex(obj, hex_string):
obj.deserialize(BytesIO(hex_str_to_bytes(hex_string)))
return obj
# Convert a binary-serializable object to hex (eg for submission via RPC)
def ToHex(obj):
return obj.serialize().hex()
""" def deser_string(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
return f.read(nit)
def ser_string(s):
if len(s) < 253:
return chr(len(s)) + s
elif len(s) < 0x10000:
return chr(253) + struct.pack(b"<H", len(s)) + s
elif len(s) < 0x100000000:
return chr(254) + struct.pack(b"<I", len(s)) + s
return chr(255) + struct.pack(b"<Q", len(s)) + s
"""
""" def deser_uint256(f):
r = 0
for i in range(8):
t = struct.unpack("<I", f.read(4))[0]
r += t << (i * 32)
return r
def ser_uint256(u):
rs = b""
for i in range(8):
rs += struct.pack(b"<I", u & 0xFFFFFFFF)
u >>= 32
return rs
def uint256_from_str(s):
r = 0
t = struct.unpack("<IIIIIIII", s[:32])
for i in range(8):
r += t[i] << (i * 32)
return r
def uint256_from_compact(c):
nbytes = (c >> 24) & 0xFF
v = (c & 0xFFFFFF) << (8 * (nbytes - 3))
return v
def deser_vector(f, c):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
for i in range(nit):
t = c()
t.deserialize(f)
r.append(t)
return r
def ser_vector(l):
r = b""
if len(l) < 253:
r = chr(len(l))
elif len(l) < 0x10000:
r = chr(253) + struct.pack(b"<H", len(l))
2019-11-20 12:12:46 -08:00
elif len(l) < 0x100000000:
r = chr(254) + struct.pack(b"<I", len(l))
else:
r = chr(255) + struct.pack(b"<Q", len(l))
for i in l:
r += i.serialize()
return r
def deser_uint256_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
2019-11-20 12:12:46 -08:00
for i in range(nit):
t = deser_uint256(f)
r.append(t)
return r
def ser_uint256_vector(l):
r = ""
if len(l) < 253:
r = chr(len(l))
elif len(l) < 0x10000:
r = chr(253) + struct.pack("<H", len(l))
2019-11-20 12:12:46 -08:00
elif len(l) < 0x100000000:
r = chr(254) + struct.pack("<I", len(l))
else:
r = chr(255) + struct.pack("<Q", len(l))
for i in l:
r += ser_uint256(i)
return r
def deser_string_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
2019-11-20 12:12:46 -08:00
for i in range(nit):
t = deser_string(f)
r.append(t)
return r
def ser_string_vector(l):
r = ""
if len(l) < 253:
r = chr(len(l))
elif len(l) < 0x10000:
r = chr(253) + struct.pack("<H", len(l))
2019-11-20 12:12:46 -08:00
elif len(l) < 0x100000000:
r = chr(254) + struct.pack("<I", len(l))
else:
r = chr(255) + struct.pack("<Q", len(l))
for sv in l:
r += ser_string(sv)
return r
def deser_int_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
2019-11-20 12:12:46 -08:00
for i in range(nit):
t = struct.unpack("<i", f.read(4))[0]
r.append(t)
return r
def ser_int_vector(l):
r = ""
if len(l) < 253:
r = chr(len(l))
elif len(l) < 0x10000:
r = chr(253) + struct.pack("<H", len(l))
2019-11-20 12:12:46 -08:00
elif len(l) < 0x100000000:
r = chr(254) + struct.pack("<I", len(l))
else:
r = chr(255) + struct.pack("<Q", len(l))
for i in l:
r += struct.pack("<i", i)
return r
def deser_char_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
r = []
2019-11-20 12:12:46 -08:00
for i in range(nit):
t = struct.unpack("<B", f.read(1))[0]
r.append(t)
return r
def ser_char_vector(l):
r = ""
if len(l) < 253:
r = chr(len(l))
elif len(l) < 0x10000:
r = chr(253) + struct.pack("<H", len(l))
2019-11-20 12:12:46 -08:00
elif len(l) < 0x100000000:
r = chr(254) + struct.pack("<I", len(l))
else:
r = chr(255) + struct.pack("<Q", len(l))
for i in l:
r += chr(i)
return r
"""
# Objects that map to bitcoind objects, which can be serialized/deserialized
2019-11-20 12:12:46 -08:00
class CAddress():
def __init__(self):
self.nServices = 1
self.pchReserved = b"\x00" * 10 + b"\xff" * 2
self.ip = "0.0.0.0"
self.port = 0
def deserialize(self, f):
self.nServices = struct.unpack("<Q", f.read(8))[0]
self.pchReserved = f.read(12)
self.ip = socket.inet_ntoa(f.read(4))
self.port = struct.unpack(">H", f.read(2))[0]
def serialize(self):
r = b""
r += struct.pack(b"<Q", self.nServices)
r += self.pchReserved
r += socket.inet_aton(self.ip)
r += struct.pack(b">H", self.port)
return r
def __repr__(self):
return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices,
self.ip, self.port)
2019-11-20 12:12:46 -08:00
class CInv():
typemap = {
0: "Error",
1: "TX",
2: "Block"}
2019-11-20 12:12:46 -08:00
def __init__(self, t=0, h=0):
self.type = t
self.hash = h
def deserialize(self, f):
self.type = struct.unpack("<i", f.read(4))[0]
self.hash = deser_uint256(f)
def serialize(self):
r = ""
r += struct.pack("<i", self.type)
r += ser_uint256(self.hash)
return r
def __repr__(self):
return "CInv(type=%s hash=%064x)" \
% (self.typemap[self.type], self.hash)
2019-11-20 12:12:46 -08:00
class CBlockLocator():
def __init__(self):
self.nVersion = SPROUT_PROTO_VERSION
self.vHave = []
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
self.vHave = deser_uint256_vector(f)
def serialize(self):
r = ""
r += struct.pack("<i", self.nVersion)
r += ser_uint256_vector(self.vHave)
return r
def __repr__(self):
return "CBlockLocator(nVersion=%i vHave=%r)" \
% (self.nVersion, self.vHave)
2019-11-20 12:12:46 -08:00
class SpendDescription():
def __init__(self):
self.cv = None
self.anchor = None
self.nullifier = None
self.rk = None
self.zkproof = None
self.spendAuthSig = None
def deserialize(self, f):
self.cv = deser_uint256(f)
self.anchor = deser_uint256(f)
self.nullifier = deser_uint256(f)
self.rk = deser_uint256(f)
self.zkproof = f.read(192)
self.spendAuthSig = f.read(64)
def serialize(self):
r = ""
r += ser_uint256(self.cv)
r += ser_uint256(self.anchor)
r += ser_uint256(self.nullifier)
r += ser_uint256(self.rk)
r += self.zkproof
r += self.spendAuthSig
return r
def __repr__(self):
return "SpendDescription(cv=%064x, anchor=%064x, nullifier=%064x, rk=%064x, zkproof=%064x, spendAuthSig=%064x)" \
% (self.cv, self.anchor, self.nullifier, self.rk, self.zkproof, self.spendauthsig)
2019-11-20 12:12:46 -08:00
class OutputDescription():
def __init__(self):
self.cv = None
self.cmu = None
self.ephemeralKey = None
self.encCiphertext = None
self.outCiphertext = None
self.zkproof = None
def deserialize(self, f):
self.cv = deser_uint256(f)
self.cmu = deser_uint256(f)
self.ephemeralKey = deser_uint256(f)
self.encCiphertext = f.read(580)
self.outCiphertext = f.read(80)
self.zkproof = f.read(192)
def serialize(self):
r = ""
r += ser_uint256(self.cv)
r += ser_uint256(self.cmu)
r += ser_uint256(self.ephemeralKey)
r += self.encCiphertext
r += self.outCiphertext
r += self.zkproof
return r
def __repr__(self):
return "OutputDescription(cv=%064x, cmu=%064x, ephemeralKey=%064x, encCiphertext=%064x, outCiphertext=%064x, zkproof=%064x)" \
% (self.cv, self.cmu, self.ephemeralKey, self.encCiphertext, self.outCiphertext, self.zkproof)
G1_PREFIX_MASK = 0x02
G2_PREFIX_MASK = 0x0a
2019-11-20 12:12:46 -08:00
class ZCProof():
def __init__(self):
self.g_A = None
self.g_A_prime = None
self.g_B = None
self.g_B_prime = None
self.g_C = None
self.g_C_prime = None
self.g_K = None
self.g_H = None
def deserialize(self, f):
def deser_g1(self, f):
leadingByte = struct.unpack("<B", f.read(1))[0]
return {
'y_lsb': leadingByte & 1,
'x': f.read(32),
}
def deser_g2(self, f):
leadingByte = struct.unpack("<B", f.read(1))[0]
return {
'y_gt': leadingByte & 1,
'x': f.read(64),
}
self.g_A = deser_g1(f)
self.g_A_prime = deser_g1(f)
self.g_B = deser_g2(f)
self.g_B_prime = deser_g1(f)
self.g_C = deser_g1(f)
self.g_C_prime = deser_g1(f)
self.g_K = deser_g1(f)
self.g_H = deser_g1(f)
def serialize(self):
def ser_g1(self, p):
return chr(G1_PREFIX_MASK | p['y_lsb']) + p['x']
def ser_g2(self, p):
return chr(G2_PREFIX_MASK | p['y_gt']) + p['x']
r = ""
r += ser_g1(self.g_A)
r += ser_g1(self.g_A_prime)
r += ser_g2(self.g_B)
r += ser_g1(self.g_B_prime)
r += ser_g1(self.g_C)
r += ser_g1(self.g_C_prime)
r += ser_g1(self.g_K)
r += ser_g1(self.g_H)
return r
def __repr__(self):
return "ZCProof(g_A=%r g_A_prime=%r g_B=%r g_B_prime=%r g_C=%r g_C_prime=%r g_K=%r g_H=%r)" \
% (self.g_A, self.g_A_prime,
self.g_B, self.g_B_prime,
self.g_C, self.g_C_prime,
self.g_K, self.g_H)
ZC_NUM_JS_INPUTS = 2
ZC_NUM_JS_OUTPUTS = 2
ZC_NOTEPLAINTEXT_LEADING = 1
ZC_V_SIZE = 8
ZC_RHO_SIZE = 32
ZC_R_SIZE = 32
ZC_MEMO_SIZE = 512
ZC_NOTEPLAINTEXT_SIZE = (
ZC_NOTEPLAINTEXT_LEADING +
ZC_V_SIZE +
ZC_RHO_SIZE +
ZC_R_SIZE +
ZC_MEMO_SIZE
)
NOTEENCRYPTION_AUTH_BYTES = 16
ZC_NOTECIPHERTEXT_SIZE = (
ZC_NOTEPLAINTEXT_SIZE +
NOTEENCRYPTION_AUTH_BYTES
)
2019-11-20 12:12:46 -08:00
class JSDescription():
def __init__(self):
self.vpub_old = 0
self.vpub_new = 0
self.anchor = 0
self.nullifiers = [0] * ZC_NUM_JS_INPUTS
self.commitments = [0] * ZC_NUM_JS_OUTPUTS
self.onetimePubKey = 0
self.randomSeed = 0
self.macs = [0] * ZC_NUM_JS_INPUTS
self.proof = None
self.ciphertexts = [None] * ZC_NUM_JS_OUTPUTS
def deserialize(self, f):
self.vpub_old = struct.unpack("<q", f.read(8))[0]
self.vpub_new = struct.unpack("<q", f.read(8))[0]
self.anchor = deser_uint256(f)
self.nullifiers = []
for i in range(ZC_NUM_JS_INPUTS):
self.nullifiers.append(deser_uint256(f))
self.commitments = []
for i in range(ZC_NUM_JS_OUTPUTS):
self.commitments.append(deser_uint256(f))
self.onetimePubKey = deser_uint256(f)
self.randomSeed = deser_uint256(f)
self.macs = []
for i in range(ZC_NUM_JS_INPUTS):
self.macs.append(deser_uint256(f))
self.proof = ZCProof()
self.proof.deserialize(f)
self.ciphertexts = []
for i in range(ZC_NUM_JS_OUTPUTS):
self.ciphertexts.append(f.read(ZC_NOTECIPHERTEXT_SIZE))
def serialize(self):
r = ""
r += struct.pack("<q", self.vpub_old)
r += struct.pack("<q", self.vpub_new)
r += ser_uint256(self.anchor)
for i in range(ZC_NUM_JS_INPUTS):
r += ser_uint256(self.nullifiers[i])
for i in range(ZC_NUM_JS_OUTPUTS):
r += ser_uint256(self.commitments[i])
r += ser_uint256(self.onetimePubKey)
r += ser_uint256(self.randomSeed)
for i in range(ZC_NUM_JS_INPUTS):
r += ser_uint256(self.macs[i])
r += self.proof.serialize()
for i in range(ZC_NUM_JS_OUTPUTS):
r += ser_uint256(self.ciphertexts[i])
return r
def __repr__(self):
return "JSDescription(vpub_old=%i.%08i vpub_new=%i.%08i anchor=%064x onetimePubKey=%064x randomSeed=%064x proof=%r)" \
% (self.vpub_old, self.vpub_new, self.anchor,
self.onetimePubKey, self.randomSeed, self.proof)
2019-11-20 12:12:46 -08:00
class COutPoint():
def __init__(self, hash=0, n=0):
self.hash = hash
self.n = n
def deserialize(self, f):
self.hash = deser_uint256(f)
self.n = struct.unpack("<I", f.read(4))[0]
def serialize(self):
r = b""
r += ser_uint256(self.hash)
r += struct.pack(b"<I", self.n)
return r
def __repr__(self):
return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n)
2019-11-20 12:12:46 -08:00
class CTxIn():
def __init__(self, outpoint=None, scriptSig="", nSequence=0):
if outpoint is None:
self.prevout = COutPoint()
else:
self.prevout = outpoint
self.scriptSig = scriptSig
self.nSequence = nSequence
def deserialize(self, f):
self.prevout = COutPoint()
self.prevout.deserialize(f)
self.scriptSig = deser_string(f)
self.nSequence = struct.unpack("<I", f.read(4))[0]
def serialize(self):
r = b""
r += self.prevout.serialize()
r += ser_string(self.scriptSig)
r += struct.pack("<I", self.nSequence)
return r
def __repr__(self):
return "CTxIn(prevout=%r scriptSig=%s nSequence=%i)" \
% (self.prevout, binascii.hexlify(self.scriptSig),
self.nSequence)
2019-11-20 12:12:46 -08:00
class CTxOut():
def __init__(self, nValue=0, scriptPubKey=b""):
self.nValue = nValue
self.scriptPubKey = scriptPubKey
def deserialize(self, f):
self.nValue = struct.unpack("<q", f.read(8))[0]
self.scriptPubKey = deser_string(f)
def serialize(self):
r = b""
r += struct.pack("<q", self.nValue)
r += ser_string(self.scriptPubKey)
return r
def __repr__(self):
return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \
% (self.nValue // 100000000, self.nValue % 100000000,
hexlify(self.scriptPubKey))
2019-11-20 12:12:46 -08:00
class CTransaction():
def __init__(self, tx=None):
if tx is None:
self.fOverwintered = True
self.nVersion = 4
self.nVersionGroupId = SAPLING_VERSION_GROUP_ID
self.vin = []
self.vout = []
self.nLockTime = 0
self.nExpiryHeight = 0
self.valueBalance = 0
self.shieldedSpends = []
self.shieldedOutputs = []
2019-06-16 04:39:05 -07:00
self.vJoinSplit = []
self.joinSplitPubKey = None
self.joinSplitSig = None
self.bindingSig = None
self.sha256 = None
self.hash = None
else:
self.fOverwintered = tx.fOverwintered
self.nVersion = tx.nVersion
self.nVersionGroupId = tx.nVersionGroupId
self.vin = copy.deepcopy(tx.vin)
self.vout = copy.deepcopy(tx.vout)
self.nLockTime = tx.nLockTime
self.nExpiryHeight = tx.nExpiryHeight
self.valueBalance = tx.valueBalance
self.shieldedSpends = copy.deepcopy(tx.shieldedSpends)
self.shieldedOutputs = copy.deepcopy(tx.shieldedOutputs)
2019-06-16 04:39:05 -07:00
self.vJoinSplit = copy.deepcopy(tx.vJoinSplit)
self.joinSplitPubKey = tx.joinSplitPubKey
self.joinSplitSig = tx.joinSplitSig
self.bindingSig = tx.bindingSig
self.sha256 = None
self.hash = None
def deserialize(self, f):
header = struct.unpack("<i", f.read(4))[0]
self.fOverwintered = bool(header >> 31)
self.nVersion = header & 0x7FFFFFFF
self.nVersionGroupId = (struct.unpack("<I", f.read(4))[0]
if self.fOverwintered else 0)
isOverwinterV3 = (self.fOverwintered and
self.nVersionGroupId == OVERWINTER_VERSION_GROUP_ID and
self.nVersion == 3)
isSaplingV4 = (self.fOverwintered and
self.nVersionGroupId == SAPLING_VERSION_GROUP_ID and
self.nVersion == 4)
self.vin = deser_vector(f, CTxIn)
self.vout = deser_vector(f, CTxOut)
self.nLockTime = struct.unpack("<I", f.read(4))[0]
if isOverwinterV3 or isSaplingV4:
self.nExpiryHeight = struct.unpack("<I", f.read(4))[0]
if isSaplingV4:
self.valueBalance = struct.unpack("<q", f.read(8))[0]
self.shieldedSpends = deser_vector(f, SpendDescription)
self.shieldedOutputs = deser_vector(f, OutputDescription)
if self.nVersion >= 2:
2019-06-16 04:39:05 -07:00
self.vJoinSplit = deser_vector(f, JSDescription)
if len(self.vJoinSplit) > 0:
self.joinSplitPubKey = deser_uint256(f)
self.joinSplitSig = f.read(64)
if isSaplingV4 and not (len(self.shieldedSpends) == 0 and len(self.shieldedOutputs) == 0):
self.bindingSig = f.read(64)
self.sha256 = None
self.hash = None
def serialize(self):
header = (int(self.fOverwintered)<<31) | self.nVersion
isOverwinterV3 = (self.fOverwintered and
self.nVersionGroupId == OVERWINTER_VERSION_GROUP_ID and
self.nVersion == 3)
isSaplingV4 = (self.fOverwintered and
self.nVersionGroupId == SAPLING_VERSION_GROUP_ID and
self.nVersion == 4)
r = b""
r += struct.pack("<I", header)
if self.fOverwintered:
r += struct.pack("<I", self.nVersionGroupId)
r += ser_vector(self.vin)
r += ser_vector(self.vout)
r += struct.pack("<I", self.nLockTime)
if isOverwinterV3 or isSaplingV4:
r += struct.pack("<I", self.nExpiryHeight)
if isSaplingV4:
r += struct.pack("<q", self.valueBalance)
r += ser_vector(self.shieldedSpends)
r += ser_vector(self.shieldedOutputs)
if self.nVersion >= 2:
2019-06-16 04:39:05 -07:00
r += ser_vector(self.vJoinSplit)
if len(self.vJoinSplit) > 0:
r += ser_uint256(self.joinSplitPubKey)
r += self.joinSplitSig
if isSaplingV4 and not (len(self.shieldedSpends) == 0 and len(self.shieldedOutputs) == 0):
r += self.bindingSig
return r
def rehash(self):
self.sha256 = None
self.calc_sha256()
def calc_sha256(self):
if self.sha256 is None:
self.sha256 = uint256_from_str(hash256(self.serialize()))
self.hash = hash256(self.serialize())[::-1].encode('hex_codec')
def is_valid(self):
self.calc_sha256()
for tout in self.vout:
2019-11-20 12:12:46 -08:00
if tout.nValue < 0 or tout.nValue > 2100000 * 100000000:
return False
return True
def __repr__(self):
r = ("CTransaction(fOverwintered=%r nVersion=%i nVersionGroupId=0x%08x "
"vin=%r vout=%r nLockTime=%i nExpiryHeight=%i "
"valueBalance=%i shieldedSpends=%r shieldedOutputs=%r"
% (self.fOverwintered, self.nVersion, self.nVersionGroupId,
self.vin, self.vout, self.nLockTime, self.nExpiryHeight,
self.valueBalance, self.shieldedSpends, self.shieldedOutputs))
if self.nVersion >= 2:
r += " vJoinSplit=%r" % (self.vJoinSplit,)
2019-06-16 04:39:05 -07:00
if len(self.vJoinSplit) > 0:
r += " joinSplitPubKey=%064x joinSplitSig=%064x" \
(self.joinSplitPubKey, self.joinSplitSig)
if len(self.shieldedSpends) > 0 or len(self.shieldedOutputs) > 0:
r += " bindingSig=%064x" % (self.bindingSig,)
r += ")"
return r
2019-11-20 12:12:46 -08:00
class CBlockHeader():
def __init__(self, header=None):
if header is None:
self.set_null()
else:
self.nVersion = header.nVersion
self.hashPrevBlock = header.hashPrevBlock
self.hashMerkleRoot = header.hashMerkleRoot
self.hashFinalSaplingRoot = header.hashFinalSaplingRoot
self.nTime = header.nTime
self.nBits = header.nBits
self.nNonce = header.nNonce
self.nSolution = header.nSolution
self.sha256 = header.sha256
self.hash = header.hash
self.calc_sha256()
def set_null(self):
self.nVersion = 4
self.hashPrevBlock = 0
self.hashMerkleRoot = 0
self.hashFinalSaplingRoot = 0
self.nTime = 0
self.nBits = 0
self.nNonce = 0
self.nSolution = []
self.sha256 = None
self.hash = None
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
self.hashPrevBlock = deser_uint256(f)
self.hashMerkleRoot = deser_uint256(f)
self.hashFinalSaplingRoot = deser_uint256(f)
self.nTime = struct.unpack("<I", f.read(4))[0]
self.nBits = struct.unpack("<I", f.read(4))[0]
self.nNonce = deser_uint256(f)
self.nSolution = deser_char_vector(f)
self.sha256 = None
self.hash = None
def serialize(self):
r = ""
r += struct.pack("<i", self.nVersion)
r += ser_uint256(self.hashPrevBlock)
r += ser_uint256(self.hashMerkleRoot)
r += ser_uint256(self.hashFinalSaplingRoot)
r += struct.pack("<I", self.nTime)
r += struct.pack("<I", self.nBits)
r += ser_uint256(self.nNonce)
r += ser_char_vector(self.nSolution)
return r
def calc_sha256(self):
if self.sha256 is None:
r = ""
r += struct.pack("<i", self.nVersion)
r += ser_uint256(self.hashPrevBlock)
r += ser_uint256(self.hashMerkleRoot)
r += ser_uint256(self.hashFinalSaplingRoot)
r += struct.pack("<I", self.nTime)
r += struct.pack("<I", self.nBits)
r += ser_uint256(self.nNonce)
r += ser_char_vector(self.nSolution)
self.sha256 = uint256_from_str(hash256(r))
self.hash = hash256(r)[::-1].encode('hex_codec')
def rehash(self):
self.sha256 = None
self.calc_sha256()
return self.sha256
def __repr__(self):
return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x hashFinalSaplingRoot=%064x nTime=%s nBits=%08x nNonce=%064x nSolution=%r)" \
% (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, self.hashFinalSaplingRoot,
time.ctime(self.nTime), self.nBits, self.nNonce, self.nSolution)
class CBlock(CBlockHeader):
def __init__(self, header=None):
super(CBlock, self).__init__(header)
self.vtx = []
def deserialize(self, f):
super(CBlock, self).deserialize(f)
self.vtx = deser_vector(f, CTransaction)
def serialize(self):
r = ""
r += super(CBlock, self).serialize()
r += ser_vector(self.vtx)
return r
def calc_merkle_root(self):
hashes = []
for tx in self.vtx:
tx.calc_sha256()
hashes.append(ser_uint256(tx.sha256))
while len(hashes) > 1:
newhashes = []
2019-11-20 12:12:46 -08:00
for i in range(0, len(hashes), 2):
i2 = min(i+1, len(hashes)-1)
newhashes.append(hash256(hashes[i] + hashes[i2]))
hashes = newhashes
return uint256_from_str(hashes[0])
def is_valid(self, n=48, k=5):
# H(I||...
digest = blake2b(digest_size=(512/n)*n/8, person=zcash_person(n, k))
digest.update(super(CBlock, self).serialize()[:108])
hash_nonce(digest, self.nNonce)
if not gbp_validate(self.nSolution, digest, n, k):
return False
self.calc_sha256()
target = uint256_from_compact(self.nBits)
if self.sha256 > target:
return False
for tx in self.vtx:
if not tx.is_valid():
return False
if self.calc_merkle_root() != self.hashMerkleRoot:
return False
return True
def solve(self, n=48, k=5):
target = uint256_from_compact(self.nBits)
# H(I||...
digest = blake2b(digest_size=(512/n)*n/8, person=zcash_person(n, k))
digest.update(super(CBlock, self).serialize()[:108])
self.nNonce = 0
while True:
# H(I||V||...
curr_digest = digest.copy()
hash_nonce(curr_digest, self.nNonce)
# (x_1, x_2, ...) = A(I, V, n, k)
solns = gbp_basic(curr_digest, n, k)
for soln in solns:
assert(gbp_validate(curr_digest, soln, n, k))
self.nSolution = soln
self.rehash()
if self.sha256 <= target:
return
self.nNonce += 1
def __repr__(self):
return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x hashFinalSaplingRoot=%064x nTime=%s nBits=%08x nNonce=%064x nSolution=%r vtx=%r)" \
% (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot,
self.hashFinalSaplingRoot, time.ctime(self.nTime), self.nBits,
self.nNonce, self.nSolution, self.vtx)
2019-11-20 12:12:46 -08:00
class CUnsignedAlert():
def __init__(self):
self.nVersion = 1
self.nRelayUntil = 0
self.nExpiration = 0
self.nID = 0
self.nCancel = 0
self.setCancel = []
self.nMinVer = 0
self.nMaxVer = 0
self.setSubVer = []
self.nPriority = 0
self.strComment = ""
self.strStatusBar = ""
self.strReserved = ""
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
self.nRelayUntil = struct.unpack("<q", f.read(8))[0]
self.nExpiration = struct.unpack("<q", f.read(8))[0]
self.nID = struct.unpack("<i", f.read(4))[0]
self.nCancel = struct.unpack("<i", f.read(4))[0]
self.setCancel = deser_int_vector(f)
self.nMinVer = struct.unpack("<i", f.read(4))[0]
self.nMaxVer = struct.unpack("<i", f.read(4))[0]
self.setSubVer = deser_string_vector(f)
self.nPriority = struct.unpack("<i", f.read(4))[0]
self.strComment = deser_string(f)
self.strStatusBar = deser_string(f)
self.strReserved = deser_string(f)
def serialize(self):
r = ""
r += struct.pack("<i", self.nVersion)
r += struct.pack("<q", self.nRelayUntil)
r += struct.pack("<q", self.nExpiration)
r += struct.pack("<i", self.nID)
r += struct.pack("<i", self.nCancel)
r += ser_int_vector(self.setCancel)
r += struct.pack("<i", self.nMinVer)
r += struct.pack("<i", self.nMaxVer)
r += ser_string_vector(self.setSubVer)
r += struct.pack("<i", self.nPriority)
r += ser_string(self.strComment)
r += ser_string(self.strStatusBar)
r += ser_string(self.strReserved)
return r
def __repr__(self):
return "CUnsignedAlert(nVersion %d, nRelayUntil %d, nExpiration %d, nID %d, nCancel %d, nMinVer %d, nMaxVer %d, nPriority %d, strComment %s, strStatusBar %s, strReserved %s)" \
% (self.nVersion, self.nRelayUntil, self.nExpiration, self.nID,
self.nCancel, self.nMinVer, self.nMaxVer, self.nPriority,
self.strComment, self.strStatusBar, self.strReserved)
2019-11-20 12:12:46 -08:00
class CAlert():
def __init__(self):
self.vchMsg = ""
self.vchSig = ""
def deserialize(self, f):
self.vchMsg = deser_string(f)
self.vchSig = deser_string(f)
def serialize(self):
r = ""
r += ser_string(self.vchMsg)
r += ser_string(self.vchSig)
return r
def __repr__(self):
return "CAlert(vchMsg.sz %d, vchSig.sz %d)" \
% (len(self.vchMsg), len(self.vchSig))
# Objects that correspond to messages on the wire
2019-11-20 12:12:46 -08:00
class msg_version():
command = b"version"
def __init__(self, protocol_version=SPROUT_PROTO_VERSION):
self.nVersion = protocol_version
self.nServices = 1
self.nTime = int(time.time())
self.addrTo = CAddress()
self.addrFrom = CAddress()
self.nNonce = random.getrandbits(64)
self.strSubVer = MY_SUBVERSION
self.nStartingHeight = -1
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
if self.nVersion == 10300:
self.nVersion = 300
self.nServices = struct.unpack("<Q", f.read(8))[0]
self.nTime = struct.unpack("<q", f.read(8))[0]
self.addrTo = CAddress()
self.addrTo.deserialize(f)
if self.nVersion >= 106:
self.addrFrom = CAddress()
self.addrFrom.deserialize(f)
self.nNonce = struct.unpack("<Q", f.read(8))[0]
self.strSubVer = deser_string(f)
if self.nVersion >= 209:
self.nStartingHeight = struct.unpack("<i", f.read(4))[0]
else:
self.nStartingHeight = None
else:
self.addrFrom = None
self.nNonce = None
self.strSubVer = None
self.nStartingHeight = None
def serialize(self):
r = b""
r += struct.pack("<i", self.nVersion)
r += struct.pack("<Q", self.nServices)
r += struct.pack("<q", self.nTime)
r += self.addrTo.serialize()
r += self.addrFrom.serialize()
r += struct.pack("<Q", self.nNonce)
r += ser_string(self.strSubVer)
r += struct.pack("<i", self.nStartingHeight)
return r
def __repr__(self):
return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%r addrFrom=%r nNonce=0x%016X strSubVer=%s nStartingHeight=%i)' \
% (self.nVersion, self.nServices, time.ctime(self.nTime),
self.addrTo, self.addrFrom, self.nNonce,
self.strSubVer, self.nStartingHeight)
2019-11-20 12:12:46 -08:00
class msg_verack():
command = b"verack"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return ""
def __repr__(self):
return "msg_verack()"
2019-11-20 12:12:46 -08:00
class msg_addr():
command = "addr"
def __init__(self):
self.addrs = []
def deserialize(self, f):
self.addrs = deser_vector(f, CAddress)
def serialize(self):
return ser_vector(self.addrs)
def __repr__(self):
return "msg_addr(addrs=%r)" % (self.addrs,)
2019-11-20 12:12:46 -08:00
class msg_alert():
command = "alert"
def __init__(self):
self.alert = CAlert()
def deserialize(self, f):
self.alert = CAlert()
self.alert.deserialize(f)
def serialize(self):
r = ""
r += self.alert.serialize()
return r
def __repr__(self):
return "msg_alert(alert=%r)" % (self.alert,)
2019-11-20 12:12:46 -08:00
class msg_inv():
command = "inv"
def __init__(self, inv=None):
if inv is None:
self.inv = []
else:
self.inv = inv
def deserialize(self, f):
self.inv = deser_vector(f, CInv)
def serialize(self):
return ser_vector(self.inv)
def __repr__(self):
return "msg_inv(inv=%r)" % (self.inv,)
2019-11-20 12:12:46 -08:00
class msg_getdata():
command = "getdata"
def __init__(self):
self.inv = []
def deserialize(self, f):
self.inv = deser_vector(f, CInv)
def serialize(self):
return ser_vector(self.inv)
def __repr__(self):
return "msg_getdata(inv=%r)" % (self.inv,)
2019-11-20 12:12:46 -08:00
class msg_notfound():
command = "notfound"
def __init__(self):
self.inv = []
def deserialize(self, f):
self.inv = deser_vector(f, CInv)
def serialize(self):
return ser_vector(self.inv)
def __repr__(self):
return "msg_notfound(inv=%r)" % (self.inv,)
2019-11-20 12:12:46 -08:00
class msg_getblocks():
command = "getblocks"
def __init__(self):
self.locator = CBlockLocator()
2019-11-20 12:12:46 -08:00
self.hashstop = 0
def deserialize(self, f):
self.locator = CBlockLocator()
self.locator.deserialize(f)
self.hashstop = deser_uint256(f)
def serialize(self):
r = ""
r += self.locator.serialize()
r += ser_uint256(self.hashstop)
return r
def __repr__(self):
return "msg_getblocks(locator=%r hashstop=%064x)" \
% (self.locator, self.hashstop)
2019-11-20 12:12:46 -08:00
class msg_tx():
command = "tx"
def __init__(self, tx=CTransaction()):
self.tx = tx
def deserialize(self, f):
self.tx.deserialize(f)
def serialize(self):
return self.tx.serialize()
def __repr__(self):
return "msg_tx(tx=%r)" % (self.tx,)
2019-11-20 12:12:46 -08:00
class msg_block():
command = "block"
def __init__(self, block=None):
if block is None:
self.block = CBlock()
else:
self.block = block
def deserialize(self, f):
self.block.deserialize(f)
def serialize(self):
return self.block.serialize()
def __repr__(self):
return "msg_block(block=%r)" % (self.block,)
2019-11-20 12:12:46 -08:00
class msg_getaddr():
command = "getaddr"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return ""
def __repr__(self):
return "msg_getaddr()"
2019-11-20 12:12:46 -08:00
class msg_ping_prebip31():
command = "ping"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return ""
def __repr__(self):
return "msg_ping() (pre-bip31)"
2019-11-20 12:12:46 -08:00
class msg_ping():
command = "ping"
2019-11-20 12:12:46 -08:00
def __init__(self, nonce=0):
self.nonce = nonce
def deserialize(self, f):
self.nonce = struct.unpack("<Q", f.read(8))[0]
def serialize(self):
r = ""
r += struct.pack("<Q", self.nonce)
return r
def __repr__(self):
return "msg_ping(nonce=%08x)" % self.nonce
2019-11-20 12:12:46 -08:00
class msg_pong():
command = "pong"
2019-11-20 12:12:46 -08:00
def __init__(self, nonce=0):
self.nonce = nonce
def deserialize(self, f):
self.nonce = struct.unpack("<Q", f.read(8))[0]
def serialize(self):
r = ""
r += struct.pack("<Q", self.nonce)
return r
def __repr__(self):
return "msg_pong(nonce=%08x)" % self.nonce
2019-11-20 12:12:46 -08:00
class msg_mempool():
command = "mempool"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return ""
def __repr__(self):
return "msg_mempool()"
# getheaders message has
# number of entries
# vector of hashes
# hash_stop (hash of last desired block header, 0 to get as many as possible)
2019-11-20 12:12:46 -08:00
class msg_getheaders():
command = "getheaders"
def __init__(self):
self.locator = CBlockLocator()
2019-11-20 12:12:46 -08:00
self.hashstop = 0
def deserialize(self, f):
self.locator = CBlockLocator()
self.locator.deserialize(f)
self.hashstop = deser_uint256(f)
def serialize(self):
r = ""
r += self.locator.serialize()
r += ser_uint256(self.hashstop)
return r
def __repr__(self):
return "msg_getheaders(locator=%r, stop=%064x)" \
% (self.locator, self.hashstop)
# headers message has
# <count> <vector of block headers>
2019-11-20 12:12:46 -08:00
class msg_headers():
command = "headers"
def __init__(self):
self.headers = []
def deserialize(self, f):
# comment in bitcoind indicates these should be deserialized as blocks
blocks = deser_vector(f, CBlock)
for x in blocks:
self.headers.append(CBlockHeader(x))
def serialize(self):
blocks = [CBlock(x) for x in self.headers]
return ser_vector(blocks)
def __repr__(self):
return "msg_headers(headers=%r)" % (self.headers,)
2019-11-20 12:12:46 -08:00
class msg_reject():
command = "reject"
def __init__(self):
self.message = ""
self.code = ""
self.reason = ""
2019-11-20 12:12:46 -08:00
self.data = 0
def deserialize(self, f):
self.message = deser_string(f)
self.code = struct.unpack("<B", f.read(1))[0]
self.reason = deser_string(f)
if (self.message == "block" or self.message == "tx"):
self.data = deser_uint256(f)
def serialize(self):
r = ser_string(self.message)
r += struct.pack("<B", self.code)
r += ser_string(self.reason)
if (self.message == "block" or self.message == "tx"):
r += ser_uint256(self.data)
return r
def __repr__(self):
return "msg_reject: %s %d %s [%064x]" \
% (self.message, self.code, self.reason, self.data)
2019-11-20 12:12:46 -08:00
class msg_filteradd():
command = "filteradd"
def __init__(self):
self.data = ""
def deserialize(self, f):
self.data = deser_string(f)
def serialize(self):
return ser_string(self.data)
def __repr__(self):
return "msg_filteradd(data=%r)" % (self.data,)
2019-11-20 12:12:46 -08:00
class msg_filterclear():
2018-04-03 09:12:46 -07:00
command = "filterclear"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return ""
def __repr__(self):
return "msg_filterclear()"
# This is what a callback should look like for NodeConn
# Reimplement the on_* functions to provide handling for events
2019-11-20 12:12:46 -08:00
class NodeConnCB():
def __init__(self):
self.verack_received = False
# Derived classes should call this function once to set the message map
# which associates the derived classes' functions to incoming messages
def create_callback_map(self):
self.cbmap = {
"version": self.on_version,
"verack": self.on_verack,
"addr": self.on_addr,
"alert": self.on_alert,
"inv": self.on_inv,
"getdata": self.on_getdata,
"notfound": self.on_notfound,
"getblocks": self.on_getblocks,
"tx": self.on_tx,
"block": self.on_block,
"getaddr": self.on_getaddr,
"ping": self.on_ping,
"pong": self.on_pong,
"headers": self.on_headers,
"getheaders": self.on_getheaders,
"reject": self.on_reject,
"mempool": self.on_mempool
}
def deliver(self, conn, message):
with mininode_lock:
try:
self.cbmap[message.command](conn, message)
except:
2019-11-20 12:12:46 -08:00
print("ERROR delivering %r (%s)" % (message,
sys.exc_info()[0]))
def on_version(self, conn, message):
if message.nVersion >= 209:
conn.send_message(msg_verack())
conn.ver_send = min(SPROUT_PROTO_VERSION, message.nVersion)
if message.nVersion < 209:
conn.ver_recv = conn.ver_send
def on_verack(self, conn, message):
conn.ver_recv = conn.ver_send
self.verack_received = True
def on_inv(self, conn, message):
want = msg_getdata()
for i in message.inv:
if i.type != 0:
want.inv.append(i)
if len(want.inv):
conn.send_message(want)
def on_addr(self, conn, message): pass
def on_alert(self, conn, message): pass
def on_getdata(self, conn, message): pass
def on_notfound(self, conn, message): pass
def on_getblocks(self, conn, message): pass
def on_tx(self, conn, message): pass
def on_block(self, conn, message): pass
def on_getaddr(self, conn, message): pass
def on_headers(self, conn, message): pass
def on_getheaders(self, conn, message): pass
def on_ping(self, conn, message):
if conn.ver_send > BIP0031_VERSION:
conn.send_message(msg_pong(message.nonce))
def on_reject(self, conn, message): pass
def on_close(self, conn): pass
def on_mempool(self, conn): pass
def on_pong(self, conn, message): pass
# The actual NodeConn class
# This class provides an interface for a p2p connection to a specified node
class NodeConn(asyncore.dispatcher):
messagemap = {
b"version": msg_version,
b"verack": msg_verack,
b"addr": msg_addr,
b"alert": msg_alert,
b"inv": msg_inv,
b"getdata": msg_getdata,
b"notfound": msg_notfound,
b"getblocks": msg_getblocks,
b"tx": msg_tx,
b"block": msg_block,
b"getaddr": msg_getaddr,
b"ping": msg_ping,
b"pong": msg_pong,
b"headers": msg_headers,
b"getheaders": msg_getheaders,
b"reject": msg_reject,
b"mempool": msg_mempool
}
MAGIC_BYTES = {
"mainnet": b"\x24\xe9\x27\x64", # mainnet
"testnet3": b"\xfa\x1a\xf9\xbf", # testnet3
"regtest": b"\xaa\xe8\x3f\x5f" # regtest
}
def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", protocol_version=SAPLING_PROTO_VERSION):
asyncore.dispatcher.__init__(self, map=mininode_socket_map)
self.log = logging.getLogger("NodeConn(%s:%d)" % (dstaddr, dstport))
self.dstaddr = dstaddr
self.dstport = dstport
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.sendbuf = b""
self.recvbuf = b""
self.ver_send = 209
self.ver_recv = 209
self.last_sent = 0
self.state = "connecting"
self.network = net
self.cb = callback
self.disconnect = False
# stuff version msg into sendbuf
vt = msg_version(protocol_version)
vt.addrTo.ip = self.dstaddr
vt.addrTo.port = self.dstport
vt.addrFrom.ip = "0.0.0.0"
vt.addrFrom.port = 0
self.send_message(vt, True)
2019-11-20 12:12:46 -08:00
print('MiniNode: Connecting to Bitcoin Node IP # ' + dstaddr + ':' \
+ str(dstport) + ' using version ' + str(protocol_version))
try:
self.connect((dstaddr, dstport))
except:
self.handle_close()
self.rpc = rpc
def show_debug_msg(self, msg):
self.log.debug(msg)
def handle_connect(self):
self.show_debug_msg("MiniNode: Connected & Listening: \n")
self.state = "connected"
def handle_close(self):
self.show_debug_msg("MiniNode: Closing Connection to %s:%d... "
% (self.dstaddr, self.dstport))
self.state = "closed"
self.recvbuf = b""
self.sendbuf = b""
try:
self.close()
except:
pass
self.cb.on_close(self)
def handle_read(self):
try:
t = self.recv(8192)
if len(t) > 0:
self.recvbuf += t
self.got_data()
except:
pass
def readable(self):
return True
def writable(self):
with mininode_lock:
length = len(self.sendbuf)
return (length > 0)
def handle_write(self):
with mininode_lock:
try:
sent = self.send(self.sendbuf)
except:
self.handle_close()
return
self.sendbuf = self.sendbuf[sent:]
def got_data(self):
while True:
if len(self.recvbuf) < 4:
return
if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]:
raise ValueError("got garbage %r" % (self.recvbuf,))
if self.ver_recv < 209:
if len(self.recvbuf) < 4 + 12 + 4:
return
command = self.recvbuf[4:4+12].split(b"\x00", 1)[0]
msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0]
checksum = None
if len(self.recvbuf) < 4 + 12 + 4 + msglen:
return
msg = self.recvbuf[4+12+4:4+12+4+msglen]
self.recvbuf = self.recvbuf[4+12+4+msglen:]
else:
if len(self.recvbuf) < 4 + 12 + 4 + 4:
return
command = self.recvbuf[4:4+12].split(b"\x00", 1)[0]
msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0]
checksum = self.recvbuf[4+12+4:4+12+4+4]
if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen:
return
msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen]
th = sha256(msg)
h = sha256(th)
if checksum != h[:4]:
raise ValueError("got bad checksum %r" % (self.recvbuf,))
self.recvbuf = self.recvbuf[4+12+4+4+msglen:]
if command in self.messagemap:
2019-11-20 12:12:46 -08:00
f = io.StringIO(msg)
t = self.messagemap[command]()
t.deserialize(f)
self.got_message(t)
else:
self.show_debug_msg("Unknown command: '%s' %r" % (command, msg))
def send_message(self, message, pushbuf=False):
if self.state != "connected" and not pushbuf:
return
self.show_debug_msg("Send %r" % (message,))
command = message.command
data = message.serialize()
tmsg = self.MAGIC_BYTES[self.network]
tmsg += command
tmsg += b"\x00" * (12 - len(command))
tmsg += struct.pack("<I", len(data))
if self.ver_send >= 209:
th = sha256(data)
h = sha256(th)
tmsg += h[:4]
tmsg += data
with mininode_lock:
self.sendbuf += tmsg
self.last_sent = time.time()
def got_message(self, message):
if message.command == b"version":
if message.nVersion <= BIP0031_VERSION:
self.messagemap[b'ping'] = msg_ping_prebip31
if self.last_sent + 30 * 60 < time.time():
self.send_message(self.messagemap[b'ping']())
self.show_debug_msg("Recv %r" % (message,))
self.cb.deliver(self, message)
def disconnect_node(self):
self.disconnect = True
class NetworkThread(Thread):
def run(self):
while mininode_socket_map:
# We check for whether to disconnect outside of the asyncore
# loop to workaround the behavior of asyncore when using
# select
disconnected = []
for fd, obj in mininode_socket_map.items():
if obj.disconnect:
disconnected.append(obj)
[ obj.handle_close() for obj in disconnected ]
asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1)
# An exception we can raise if we detect a potential disconnect
# (p2p or rpc) before the test is complete
class EarlyDisconnectError(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)